
Joint Multi-CDN and LT-Coding for
Video Transport over HTTP∗

Kai Tang, Chao Zhou, Xinggong Zhang, Zongming Guo†
Institution of Computer Science and Technology

Peking University, Beijing, 100080, China
Email: {tangkai, zhouchaoyf, zhangxg, guozongming}@pku.edu.cn

Abstract—Video transport over HTTP is becoming more and
more popular. Many video service providers construct huge
content distribution networks(CDN) to support HTTP streaming
service, however, they seldom exploit the benefits of multiple
servers to achieve higher bandwidth and reliability by parallel
streaming. In this paper, we study the problem of jointing
multi-CDN and LT-coding for video transport over HTTP. Using
LT coding, a client could download the same video segment
from multiple servers without considering data segmentation
and server scheduling issue. Thus, we are able to treat all
CDN servers as a virtual server with higher bandwidth and
reliability. To reduce the ACK overhead, a stochastic model is
designed to predict the amount of data to be sent from each
server while guaranteeing the decoding probability. Compared
with the existing schemes, the experimental results show that
our proposed scheme obtains less overhead and fewer number
of HTTP requests. Besides, we also achieve better video quality
and better robustness to fluctuant bandwidth.

I. INTRODUCTION

Recently, video transport over HTTP has drawn a lot of
attention. Video transport upon HTTP/TCP makes it easy
to traverse through firewalls and NAT. Moreover, the use
of HTTP/TCP makes it possible to reuse existing network
infrastructures such as geographically distributed CDN and
widely deployed proxies. It has been widely accepted that
CDN is a necessary part in building a modern media transport
service. There are many CDN companies in the world such as
Akamai, Level3, Limelight, and CloudFront etc. The multi-
CDN strategy could provide service with higher reliability,
lower cost and better user experience. In [1] V. Adhikari et al.
have shown that Netflix has employed multi-CDN. They also
show that, for a certain user, only one CDN server is used
at a time in netflix. It further suggested that users could get
better quality of video if concurrent transmission from multi-
CDN is allowed. To the best of our knowledge, there has been
no HTTP video transport system that implements concurrent
downloading in multi-CDN.

There are two typical classes of concurrent downloading:
the Block-based and Fountain-based. Rodriguez et al. pro-
posed a Block-based parallel transport scheme in [2]. The
authors proposed to fragment files into blocks of fixed size.
Client requests one block at a time. However, there had been
two issues. I) Each server will be idle between two consecutive
block transmission. This is because each block transmission
is initiated by a client request. It takes time for request to
be received by the server. The idle time could be referred to

†Correspondent Author.
∗This work was supported by National High-tech Technology R&D Program

(863 Program) of China under Grant 2013AA013504, National Natural
Science Foundation of China under contract No. 61201442 and National Key
Technology R&D Program of China under Grant 2014BAK10B02.

as interblock idle time. If the segmentation size is too small,
interblock idle would be too high to be ignored compared with
transfer time. II) Servers may not finish transmission at the
same time. We referred to the period of time, which starts from
the moment when any of the servers stop transmission and ends
at the moment when the whole file is received, as termination
idle time. The bigger the block size is, the greater termination
idle would be. During termination idle, bandwidth parallelism
could not be fully utilized. These two issues contradict to
each other, and the trade-off is hard to achieve. The work
in [3] [4] follow the work in [2] and implement concurrent
downloading in HTTP video transport scenario. G. Tian et
al. [4] changes the granularity in [2] from block to the whole
video segments. The block size, however, is too big and it
increases the termination idle time. W. Pu et al. [3] splits the
video file into blocks of various sizes based on approximate
bandwidth of each server. Video segments may be fragmented
into too many pieces, which makes the interblock idle issue
even more serious.

Fountain-based concurrent downloading avoids the in-
terblock idle and termination idle issues. Fountain codes are
a class of erasure codes with the property that a potentially
limitless sequence of encoding symbols can be generated from
a given source file. The original file can be recovered from
any subset of the encoding symbols with larger size than the
original file. Thus, there is no need to segment the video
file. The servers just keep sending the encoded packets until
the client recovers the original file. M. Luby et al. among
the first to employ Tornado codes, which also belong to the
fountain codes, to speed up downloading by concurrently
downloading Tornado encoded chunks in multiple servers in
[5]. The scheme, however, barely considered the transmitting
overhead, which will be explained later and it is referred as
ACK overhead in this paper, incurred by the use of fountain
codes. The servers would keep sending data until they receive
ACK from the clients. During the period since the client sends
the ACK till the servers receive it, the amount of transmitted
data is referred as ACKoverhead. The ACKoverhead grows
with RTT and bandwidth, and it could not be simply ignored.

In this paper, we propose a joint multi-CDN and LT-
coding scheme to resolve the above challenges. With LT
codes [6], the interblock idle and termination idle issues are
disappeared as file fragmentation is unnecessary. To reduce
the ACK overhead, we periodically predict the mean and
variance of bandwidth using sophisticated ARMA/GARCH.
With the mean and variance, a stochastic model is designed to
minimize the ACK overhead while controlling the decoding
probability. We formulate it into an optimization problem.
By some approximation, an effective near-optimal solution is

978-1-4799-3432-4/14/$31.00 ©2014 IEEE 562

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 02:55:01 UTC from IEEE Xplore. Restrictions apply.

presented. Our contribution is threefold.

1) We are among the first to study the problem of video
transport over HTTP by jointly considering multi-
CDN and LT-coding. The proposed video transport
scheme greatly exploits the benefits of parallel trans-
mission.

2) By building the bandwidth prediction model and a
stochastic model, we are able to minimize the ACK
overhead while guaranteeing the decoding probabil-
ity.

3) We further formulate the problem into an optimiza-
tion problem. Under proper approximation, we solve
the problem effectively with low complexity.

The rest of the paper is organized as follows. We will
present the multi-CDN architecture and identify the problem
in Section II. In Section III, we give the formulation of the
problem. In Section IV, we give a solution to the problem
with reasonable approximation. Experiments are presented to
validate our analysis in Section V.

II. SYSTEM ARCHITECTURE

CDN Servers

Client

Video source

1 2 3 4
n
-
1

n

Receiving Buffer

LT
Decoder

5 6

n
n
-
1

34 2 1LT
Decoder

CDN-A1
LT

Encoder

LT
Encoder

CDN-B2

CDN-C3
LT

Encoder

Requesting Queue

Fig. 1: Architecture of multi-CDN video transport system

We describe the multi-CDN DASH(aka Dynamic Adaptive
Streaming over HTTP) architecture in Fig 1. Suppose there
are three CDN servers. Video is transcoded into video files
of various qualities/bitrates. These files are fragmented into
video segments which then are replicated in all CDN servers.
When a client sends HTTP request GET for a certain quality
of video, it sends requests to all servers for the same segment
simultaneously. Different from traditional DASH, servers then
send the LT-encoded packets to clients. All received data is
collected in the buffer at the client side waiting to be decoded.

To encode the video segments using LT codes, video seg-
ments have to be refragmented into subsegments called Input
Symbols. To generate the encoded Output Symbols, the encoder
has to randomly choose a degree d from Robust Soliton
distribution. The encoder then chooses uniformly at random d
distinct Input Symbols as neighbors and conducts XOR opera-
tion to compute the current Output Symbols. The neighbors ids
are included in the header of the encoded packets. To avoid the
duplicate encoded packets, different random seeds are assigned
to different servers. We also implement an interface in the
client to prevent the transmission of existing Output Symbols
by checking the header of incoming packets. At the client side,
the decoder progressively decodes Output symbols. As soon as
original files are recovered, the client stops transmission, puts
the decoded segment in the receiving buffer and moves into
the next video segment. The client could safely download the

video segment concurrently from all servers without worrying
issues in block-based transmission. Although the TCP provides
HTTP transmission with reliability, it could do nothing to cope
with bandwidth deterioration or even link disconnection. These
issues will cause assigned blocks to be downloaded overtime
in block-based approaches. As a result, buffered media data
would drain up quickly and video playout interruption would
happen. The use of LT codes would increase robustness in case
of any one of the link becomes congested. The reason is that
the client retrieves data as if it retrieves from a single virtual
server with higher bandwidth and deterioration in any of links
would be compensated by other links timely.

However, there is a major drawback in the procedure above.
The servers would only stop sending data when they received
the ACK indicating that data has been successfully decoded.
It takes time for ACK to be delivered from servers to client.
During that time, the transmitted data is regarded as the ACK
overhead. Fig 2 is a diagram to exhibit the ACKoverhead in
fluctuating network situation. Shaded part is the overhead. The
main purpose of this paper is to calculate the transmission time
of each server to minimize ACK overhead while controlling
the decoding probability to be high enough.

Tr
an

sm
iss

io
n

Ra
te

Last useful
package sent

Acknowledgement
Arrived

ACK
Overhead

Deadline
(cross which cause playout interruption)

R

Fig. 2: Diagram of ACK Overhead using scheme in [5]

III. PROBLEM FORMULATION

We denote BWi as the bandwidth between the client and
the i-th server. The transmission time of all servers is denoted
as T = [t1, t2, . . . , tN], where ti is the transmission time of
server i, and N is the number of servers. We further denote
R as overall data amount to be transmitted, thus:

R(T) =
∑N

i=1

∫ ti

0
BW i (t) dt (1)

We define C as the size of a video segment, then the ACK
overhead can be defined as (E[R(T)]−C)/C, where E[R(T)]
is the mean value of R(T). Given the transmission time vector
T and data amount r, the successfully decoding probability
is denoted as P (T; r). P (T; r) is the joint distribution of T
and r. We define P (T) as the marginal probability density
functions of P (T; r) on T and ε as excepted successfully
decoding probability, then the problem can be formulated as
follows:

T∗ = argmin
{T}

(E[R(T)]− C)/C

s.t. P (T) ≥ ε
(2)

The problem aims to find the optimal T∗ to minimize the ACK
overhead while guaranteeing the decoding probability to be no
less than ε.

To solve the constraint optimization problem, we need to
calculate E[R(T)] and P (T). We begin with the analysis of
R(T). The work in [7] has pointed out that BWi(t) can be
approximated as a strict-sense stationary gaussian process. As

563

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 02:55:01 UTC from IEEE Xplore. Restrictions apply.

a result, for any given tsi ∈ [0, ti], BW i(tsi) is a Gaussian
random variable. i.e., BW i(tsi) ∼ N (µi,σi). According to
math theorem, the integral of Gaussian variable is a Gaussian
variable; the sum of several Gaussian variables is a Gaussian
variable as well. Considering that the data sent by i-th server
is independent from all the other servers, R satisfies R(T) ∼

N (µ(T),σ(T)), with mean µ(T) = E[R(T)] =
N∑
i=1

µiti and

variance σ2(T) =
N∑
i=1

σ2
i
t2i .

Then, we come to derive P (T). As R(T) is a Gaussian
variable, the probability of transmitting r (bits) of data is:

PGaussian(R(T) = r) =
1

σ
√
2π

exp

(
− (r − µ(T))2

2σ2(T)

)
(3)

According to [6], given r (bits) of LT encoded data, the
decoding probability PLT (r) is:

PLT (r) = max

(
1− C exp

(
−

√
r − C

α
√
C

)
, 0

)
(4)

where α is a constant. The decoding probability P (T; r) is
affected by two factors: the first is probability of transmitting r
(bits), the second is the LT decoding probability for the given
data size r. Thus, we have P (T; r) = PGaussian(R(T) =
r)PLT (r). At last, since P (T) is the marginal distribution of
P (T; r) on T, we have:

P (T) =

∫ +∞

-∞
PGaussian (R (T) = r)PLT (r) dr (5)

IV. SOLUTION

LT codes have good performance. In practice, if the number
of Input Symbols K satisfies 1000 ≤ K ≤ 8192, only K + 2
Output Symbols are needed to recover the original file [8]. So
it is quite reasonable to use a step-function as approximation
of PLT (r). If we denote the amount of data that is needed to
successfully decode as M , we will have:

PLT (r) ≈
{
0 if r < M

1 if r ≥ M
(6)

Together with (3) (5) (6), (2) could be rewritten as:
T∗ = argmin

{T}
µ(T)

s.t.
∫ +∞

M
PGaussian (R (T) = r) dr ≥ ε

(7)

We rewrite the constraints formula in (7) as follows:

βσ(T) + µ(T) ≥ M (8)

where β = Φ−1 (1− ε) and Φ is the CDF of standard normal
distribution. Using method of Lagrange multiplier, the problem
can be rewritten as an unconstraint optimization problem:

T∗ = argmin
{T}

µ(T) + λ (βσ(T) + µ(T)−M) (9)

The solution is as follows:

ti =
Mβ

√∑N
i=1

µi

σ2
i
+M

∑N
i=1

µ3/2
i

σ2
i

−β2
∑N

i=1
µi

σ2
i
+ (
∑N

i=1
µ3/2
i

σ2
i
)
2

√
µi

σ2
i

(10)

V. EXPERIMENT

In this section, we designed a group of experiments to
prove the validity and performance of the Proposed scheme.
We compare with the Proposed scheme with ACK with LT [5]
scheme, Parallel [4] scheme and CMSS [3] scheme.

A. Interblock Idle and Termination Idle
The motivation of using fountain coding based concurrent

downloading scheme is the problem of interblock idle and
termination idle caused by the block based concurrent down-
loading scheme. To study the trade-off of these two idles, we
have done some experiments. We have three servers. Their
bandwidth are 800, 400, 280 kbps and RTT are 10, 70, 120
ms respectively. The result is shown in Fig. 3. From the
figure, we find that the smallest total idle (i.e. the sum of
interblock idle and termination idle) is higher than 500ms. The
idle time is fluctuated heavily under various block numbers.
Generally, the optimal block number (corresponding to the
minimal total idle) is also changed with many factors, such
as the server number and time-varying bandwidth. For space
limit, we omit the experiments under different server number
and bandwidth conditions. Thus, how to set the block number
is no easy job. Instead of setting the best block number which is
necessary for the block based concurrent downloading scheme,
we adopt LT-coding to prevent such problems. In the following
experiments, we demonstrate the effectiveness of our proposed
video transport scheme and algorithm.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Block Num

Id
le

/s

Interblock Idle
Termination Idle
Total Idle

Fig. 3: Total Idle time with given block number

B. ACK Overhead
We aim to minimize the ACK overhead under a given de-

coding probability. The definition of ACK overhead indicates
that it only exists in Fountain based approaches: ACK with LT
and the Proposed.

The parameters of Proposed approach are as follows. Ac-
cording to the three sigma principle, we expect the minimum
decoding probability ε = 99.7%. With (8), β = 2.0985. Con-
sidering the LT codes performance mentioned in Section IV,
α could reasonably be set as 10−4. The experiment is set up
in LAN with one client and three servers. netem is deployed
on each server to manipulate the network condition. In Fig. 2,
it is obvious that the area of shaded part(ACK overhead) is
affected by the width(RTT) and the height(bandwidth). By
adjusting the RTT and the bandwidth, we get the amount of
ACK overhead in Fig. 4. Overhead in Propose algorithm is
merely affected by RTT and bandwidth while Overhead in
ACK with LT grows with RTT and bandwidth. However, it
has a certain upper bound as netem maintains a drop tail
queue. When RTT or bandwidth becomes too large, the queue

564

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 02:55:01 UTC from IEEE Xplore. Restrictions apply.

tends to overflow which leads to packet loss and HTTP/TCP
throughput declines. In most cases, Our Proposed algorithm
has a better performance. It indicates that Proposed algorithm
is better in higher RTT and bandwidth situation.

Fig. 4: ACK Overhead v.s. different network parameter

C. Real world experiment
We set up the real world experiment using Planetlab.

The client is deployed at PKU with LT decoder, while three
servers are deployed at HUST, SYSU and BUPT with LT
encoder. Video files whose bitrate range from 300kbps to
2000kbps are fragmented into 4s length of video segments.
We set L = 128bytes, M = 1.002C. Therefore the number of
InputSymbol and OutputSymbol in a video segment meets
the requirement we discussed in section IV. We conducted a
6-hour-long experiment by video loop playback.

1) ACK Overhead: We show the average ACK overhead
within every 15 minutes in Fig. 5. Although RTT and band-
width varied with time among three different sites, the Pro-
posed approach always achieves at least 1/3 less ACK overhead
than the ACK with LT.

15:00 16:00 17:00 18:00 19:00 20:00
1

1.5

2

2.5

3

3.5

Time

O
ve

rh
ea

d/
%

Proposed
ACK With LT

Fig. 5: Overhead in real world experiment

2) Overall quality: We set up the experiment by measuring
the video quality within DASH client. Due to great fluctuation
of network from the three sites, rate adaptation algorithm in
OSMF is of bad performance. In this case, we employed the
buffer-based algorithm proposed in our previous works [9] as
a replacement. In this algorithm, qmin indicates the expected
minimum buffer. When the buffer is less than qmin, playout
interruption is more likely to happen. Results are shown in
Table I. As video was encoded uniformly before transmission,
the video bitrate reflects the video quality directly. DASH
achieves different effective throughput in different parallel
transmission framework within the same network condition. As
a result, they have different bitrate choice and different video

quality. Moreover, the buffer min value and time below qmin

reflects the robustness to bandwidth fluctuation. From Table I,
we could conclude that the Proposed scheme achieves higher
bitrate than other schemes. Also, the Proposed has higher
buffer to cope with any potential network deterioration. The
minimal buffer using Parallel(proposed in [4]) is the smallest.
That is because in Parallel a segment is downloaded by a
single CDN server rather than by all simultaneously, and it took
longer time to update buffer. During that time, buffer is more
likely to be drained up. In CMSS(proposed in [3]), client sends
more HTTP requests, which leads to significant interblock idle.
That would be detrimental to both transmission throughput and
video quality. In ACK with LT, the use of LT codes makes the
transmission more robust to bandwidth fluctuation. However,
ACK overhead in ACK with LT undermines the video quality.

TABLE I: Video Quality Overview
Algorithm Average Buffer Times when buffer

Type Bitrate min is less than qmin

Proposed 1579.2 kbps 4.5s 6
ACK with LT [5] 1509.0 kbps 3.6s 12

Parallel [4] 1416.4 kbps 0.9s 25
CMSS [3] 1483.2 kbps 1.1s 21

VI. CONCLUSION

In this paper, we studied multi-CDN video transport over
HTTP. We identified the challenge faced in multi-CDN HTTP
video transport. To resolve the issues above, we present a joint
multi-CDN and LT-coding transport scheme. Experimental
results show that the proposed method could reach less ACK
overhead, better video quality and better robustness to network
fluctuation.

REFERENCES
[1] V. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and Z.-

L. Zhang, Unreeling Netflix: Understanding and improving multi-CDN
movie delivery, in INFOCOM, 2012 Proceedings IEEE, march 2012,
pp. 1620 1628.

[2] P. Rodriguez and E. W. Biersack, Dynamic parallel access to replicated
content in the internet, IEEE/ACM Trans. Netw., vol. 10, no. 4, pp.
455465, Aug. 2002.

[3] W. Pu, Z. Zou, and C. W. Chen, Dynamic adaptive streaming over
HTTP from multiple content distribution servers, in Global Telecom-
munications Conference (GLOBECOM 2011), 2011 IEEE, dec. 2011,
pp. 1 5.

[4] G. Tian and Y. Liu, Towards agile and smooth video adaptation in
dynamic HTTP streaming, in Proceedings of the 8th international
conference on Emerging networking experiments and technologies, ser.
CoNEXT 12. New York, NY, USA: ACM, 2012, pp. 109120.

[5] J. Byers, M. Luby, and M. Mitzenmacher, Accessing multiple mirror
sites in parallel: using tornado codes to speed up downloads, in INFO-
COM 99. Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, vol. 1, Mar, pp. 275
283 vol.1.

[6] M. Luby, LT codes, in Proceedings of the 43rd Symposium on Foun-
dations of Computer Science, ser. FOCS 02. Washington, DC, USA:
IEEE Computer Society, 2002, pp. 271.

[7] M. Wang, X. Meng, and L. Zhang, Consolidating virtual machines
with dynamic bandwidth demand in data centers, in INFOCOM, 2011
Proceedings IEEE, april 2011, pp. 71 75.

[8] J.-P. Wagner, J. Chakareski, and P. Frossard, Streaming of scalable video
from multiple servers using rateless codes, in Multimedia and Expo,
2006 IEEE International Conference on, 2006, pp. 15011504.

[9] C. Zhou, X. Zhang, L. Huo, and Z. Guo, A control-theoretic approach to
rate adaptation for dynamic http streaming, in Visual Communications
and Image Processing (VCIP), 2012 IEEE, 2012, pp. 16.

565

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 02:55:01 UTC from IEEE Xplore. Restrictions apply.

