
Probabilistic Chunk Scheduling Approach in
Parallel Multiple-server DASH

Li Liu †, Chao Zhou †, Xinggong Zhang †∗, Zongming Guo †, Cheng Li #

† Institute of Computer Science & Technology, Peking University, Beijing, P.R. China
Freewheel

Abstract—Recently parallel Dynamic Adaptive Streaming over
HTTP (DASH) has emerged as a promising way to supply higher
bandwidth, connection diversity and reliability. However, it is still
a big challenge to download chunks sequentially in parallel DASH
due to heterogeneous and time-varying bandwidth of multiple
servers. In this paper, we propose a novel probabilistic chunk
scheduling approach considering time-varying bandwidth. Video
chunks are scheduled to the servers which consume the least
time while with the highest probability to complete downloading
before the deadline. The proposed approach is formulated as a
constrained optimization problem with the objective to minimize
the total downloading time. Using the probabilistic model of
time-varying bandwidth, we first estimate the probability of
successful downloading chunks before the playback deadline.
Then we estimate the download time of chunks. A near-optimal
solution algorithm is designed which schedules chunks to the
servers with minimal downloading time while the completion
probability is under the constraint. Compared with the existing
schemes, the experimental results demonstrate that our proposed
scheme greatly increases the number of chunks that are received
orderly.

Index Terms—DASH; Multiple Servers; Probabilistic Ap-
proach; Chunk Request Scheduling

I. INTRODUCTION

In recent years, Dynamic Adaptive Streaming over HTTP
(DASH) has been widely used for video streaming over the
Internet[1], [2], [3], [4]. Besides well-known single-server
DASH, parallel DASH also emerges recently as a promising
technology for video streaming[6], [7]. It employs multiple
connections with different CDN or servers to improve stream-
ing robustness and available bandwidth. In parallel DASH,
video content is encoded into multiple versions at various
bit-rates[5]. Each video version is further broken into small
video chunks, which normally contains a few seconds worth
of video. Using HTTP connections, DASH client is able to
download chunks from multiple servers concurrently. Com-
pared with the traditional single-server scheme, parallel DASH

∗Corresponding author.Email:zhangxg@pku.edu.cn
This work was supported by National High-tech Technology R&D

Program (863 Program) of China under Grant 2013AA013504 and National
Natural Science Foundation of China under contract No. 61271020.

with multiple servers is able to supply higher bandwidth,
connection diversity and reliability. However, it is still a big
challenge to download chunks sequentially because of multi-
servers’ diversified bandwidth.

In parallel DASH, video chunks are requested from multiple
servers in parallel, and the request scheduling plays a critical
role in guaranteeing video chunks playback in sequence. In
[7], the chunk-server scheduling scheme is same as that in
single-server DASH. The video chunks are requested orderly
from multiple servers (i.e., one after another). However, the
download completion time may be out-of-order due to servers’
heterogeneous bandwidths. On the other hand, the video
chunks must be played orderly at the clients. Thus, this method
may deteriorate the continuity of video playback.

In this paper, we propose a novel probabilistic chunk
scheduling approach considering time-varying bandwidth of
multiple servers. Video chunks are scheduled to the servers
which consume the least download time while have the highest
probability to complete downloading before the deadline.
The scheduling approach is formulated as a constrained op-
timization problem with the objective to minimize the total
downloading time. Using the probabilistic model of time-
varying bandwidth, we first estimate the probability of success-
ful chunks downloading before the playback deadline. Then
we estimate the download time of chunks. A near-optimal
solution algorithm is designed which schedules chunks to the
servers with minimal downloading time while the completion
probability is under the constraint.

The main contributions of this paper can be summarized in
two-fold:

1) We propose a probabilistic approach to schedule chunk
requests in parallel multi-server DASH. Our method
considers time-varying bandwidth, and aims to ensure
chunks downloading in sequence in parallel DASH
under the condition that the chunks are completed before
their playback deadline.

2) We formulate the approach into an constrained optimiza-
tion problem. A near-optimal solution is designed that
the chunks are scheduled by the estimated downloading
time and completion probability.

The rest of the paper is organized as following. The for-
mulation of the problem are presented in section 2. In section
3, the optimization problem is further studied and then our978-1-4799-6139-9/14/$31.00 ©2014 IEEE

5

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

scheduling algorithms are proposed. Experiments setup and
emulation results are presented in section 4. We conclude the
paper in section 5.

II. PROBLEM FORMULATION

In this section, we will introduce the problem of chunk
request scheduling in parallel multi-server DASH, and give
its optimization formulation.

In parallel multi-server DASH, a client builds connections
with multiple servers, and downloads chunks concurrently.
Although parallel downloading could exploit diversities of
multi-server capacity, time-varying bandwidth makes it a big
challenge to download chunks in sequence from multiple
servers. When a chunk close to deadline is assigned to a wrong
server, it would result the chunk missing the playback deadline
and the playback is interrupted. To address the problem, it
is a good choice to predict server capability accurately and
schedule chunks by the available bandwidth. But as demon-
strated in [8], the Internet bandwidth is time-varying which is
hardly predicted accurately. Thus, we propose a probabilistic
scheduling method to solve this problem.

In the proposed probabilistic scheduling method, chunks are
scheduled by completion probability and average download
time. The download completion probability is defined as the
probability that a chunk is successfully received before its
playback deadline. The average download time is the average
downloading complete time. We would like to assign chunks to
the servers which consume the smallest download time while
have the highest probability to complete downloading before
the deadline.

In parallel DASH, all versions of video are segmented
into equal-length chunks. For the chunks to be scheduled,
we define N as the number of video chunks and S as the
number of servers. Let M be the indicator matrix with size
N × S, its entries mij = 1 if the request for chunk i is
assigned to server j, otherwise mij = 0. For each chunk
n(1 ≤ n ≤ N), we define tn as the average download time,
and pn as the successful download probability. The chunk
scheduling problem can be formulated as:

M∗ = arg min
M

∑
N

tn(M)

s.t. pn(M) ≥ η,∀n ≤ N
, (1)

where η represents a given threshold value. The problem aims
to find the optimal server for each chunk n so as to ensure that
the chunks can be completely downloaded at the earliest time
under the constraint that the chunks are successfully received
before their playback deadline.

In the next section, we will analyze the probability pn(M)
and the time tn(M) used in the above optimization problem,
and a near-optimal solution algorithm is designed. In Table
I, some symbols and their explanations used in the paper are
listed.

TABLE I: Major symbols used in the paper

bn video bitrate of chunk n
Z chunk size in time unit
L the playback deadline
M the indicator matrix with size N × S, its entries mij = 1

if the request for chunk i is assigned to server j, otherwise
mij = 0

tn(M) the average download complete time for chunk n downloaded
from server s

pn(M) the estimated probability that chunk n is completely down-
loaded from server s before its playback deadline

Ds the sum of data amount to transfer for server s before the
deadline if the request for chunk n is assigned to server s

Cs(t, t+ τ) the average available bandwidth of the connection between
client and server s during the time interval (t, t+ τ)

III. ANALYSIS AND SCHEDULING ALGORITHMS

A. Analysis

To select the best server s∗ for chunk n(1 ≤ n ≤ N),
we firstly need to calculate pn(M) and tn(M) for each server
s(1 ≤ s ≤ S). We begin with the analysis of pn(M).

All versions of video are broken into equal-length chunks,
each of which contains the same playback time of Z. The
video bit-rate of chunk n is denoted as bn. Let εi denote
the completion proportion of chunk i that has been requested
before the time instant t0, obviously, εi ∈ [0, 1]. Thus, if chunk
i is assigned to server s, the remaining data of chunk i needs
to be downloaded from server s is (1− εi)Zbi. We define Ds

as total data amount to be downloaded from server s if the
request for chunk n is assigned to server s. Then we have

Ds = Zbn + Σi∈U (1− εi)Zbi, (2)

where the second term of (2) is the data amount of chunk n,
and U denotes the un-finished downloading chunks in server
s.

We define Cs(t) as the available bandwidth of the connec-
tion between client and server s around the time t. Obviously,
chunk n can be successfully received from server s before
the deadline L only if the total downloading traffic amount∫ t0+L
t0

Cs(t) is no less than Ds, which can be defined as

pn(M) = P (

∫ t0+L

t0

Cs(t) ≥ Ds), (3)

where the function P (·) return the probability value.
As demonstrated in the references [8], [9], the available

bandwidth in a time slot τ can be viewed as a stationary
and identically distributed stochastic process, and at any time
instant t the process is described by the same random variable
Cs(t, t + τ). Furthermore, Cs(t, t + τ) can be viewed as
a Gaussian random variable with mean µs,τ and variance
σs,τ

2. The mean does not depend on τ . The variance σ2
s,τ =

Var[Cs(t, t + τ)], however, depends strongly on τ . Under
the assumption that Cs(t) is independently and identically
distributed, the variance decreases inversely proportional with
the length of the measuring time duration, i.e. Var[Cs(t, t +
kτ)] = Var[Cs(t, t+ τ)]/k.

6

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

Thus, we can know that Cs(t, t + L) is also a Gaussian
random variable. The mean of Cs(t, t+L) is equal to µs,τ , and
its variance is determined as Var[Cs(t, t+ L)] = σ2

s,τ/(L/τ).
Finally, we can get Cs(t, t+ L) ∼ (µs, (σ

2
s,ττ/L)).

Let Fs(·) be the cumulative distribution function of Cs(t, t+
L), and we have

Fs(x) = P (Cs(t, t+ L) ≤ x), (4)

= Φ

(
x− µs,τ
σs,τ

∗
√
L

τ

)
, (5)

=
1

2

(
1 + erf

(
x− µs,τ√

2σs,τ
∗
√
L

τ

))
, (6)

where Φ denotes the cumulative distribution function of the
standard normal distribution and erf(·) denotes the Gauss
error function. Now, according to formulas (3), (4) and (6),
we can determine pn(M) as

pn(M) = 1− Fs(Ds/L), (7)

=
1

2

(
1− erf

(
(
Ds

L
− µs,τ)

1

σs,τ
∗
√

L

2τ

))
, (8)

and
tn(M) = t+

Ds

µs
, (9)

Finally, we can get pn(M), tn(M) from (8), (9) respectively.

B. Scheduling Algorithms

For each candidate solution matrix M, we firstly calculate
the completion probability and average download time for each
chunk n. And then, the chunks are assigned to the servers
which consume the smallest average download time under the
constraint that all chunks’ probability is no less than the given
threshold value. However, it is not impossible that no potential
matrix M meets the constraint. In that case, the matrix with
the largest average probability is chosen. Finally, chunks are
assigned to servers as summarized in Algorithm 1.

In Algorithm 1, the Boolean variable exist reflects that if
there are matrixs that meet the constraint. Variable exist is
initialized to be false. For each potential matrix M, we firstly
calculate pn(M) and tn(M) for each chunk n. And if there is
a matrix that meet the constraint, set exist to be true. Then,
the server M∗ is selected according to exist.

IV. PERFORMANCE EVALUATION

In this section, we evaluate our scheduling approach via
real network traces. The bandwidth traces are extracted from
three different servers. All traces are extracted during the
same time with length of about 3000s. In our experiments, all
three servers provide five different versions of video bitrates
{3.0Mbps, 4.0Mbps, 5.0Mbps, 6.0Mbps, 7.0Mbps}. Each
video is broken into a sequence of small equal-length video
chunks, each chunk containing 2s worth of video content. The
emulation starts from 0s and ends at 2000s. The client starts
to send chunk requests at 20s and to play video at 35s. Liu’s

Algorithm 1 Probabilistic Scheduling Algorithms

1: initialize exist⇐ false
2: for each M do
3: for n⇐ 1 to N do
4: initialize meet⇐ true
5: calculate pn(M) with formula (8)
6: calculate tn(M) with formula (9)
7: if pn(M) < η then
8: meet⇐ false
9: end if

10: end for
11: if meet then
12: exist⇐ true
13: end if
14: end for
15: if exist then

16:
M∗ = arg min

M

∑
N

tn(M)

s.t. pn(M) ≥ η,∀n ≤ N
17: else
18: M∗ = arg max

M

∑
N

pn(M)

19: end if
20: return

self-adaptive chunk assignment scheme in [7] and the random
scheduling method are implemented for comparison.

Fig.1 shows the complete download time of each chunk
from all three methods, compared with the BenchMark. And
the points on the BenchMark are the playback deadline of
each chunk. The figures clearly show that our curve is much
smoother than the others, and thus our probabilistic scheduling
scheme can ensure continuous playback. The random method
performs poorly and its curve shakes violently. In Liu’s self-
adaptive strategy, the chunks are orderly requested. However
it takes different time to download them. Thus, Liu’s curve
is always oscillating, which may deteriorate the continuous
video playback. In our method, the chunk download requests
are assigned according to their complete download time. So
our curve is always smooth, which greatly improve the quality
of video playback.

For each chunk n, we define time difference as the dif-
ference value between its complete download time te,n and
its playback deadline td,n, i.e., td,n − te,n. A negative time
difference results in playback interruption since the client must
play video chunks orderly. On the other hand, if the time
differences is always small and fluctuate severely, the playback
interruptions may incur when network bandwidths deteriorate,
which is not uncommon in the real network. Fig.2(a) shows
the time difference of each chunk. It is clearly that our
scatterplot is much smoother than others and always the
highest, while Liu’s fluctuates drastically. Fig.2(b) depicts the
CDF of chunks’ time differences from different schemes. The
random method performs really poor and its CDF simply starts
from roughly 0.3, which indicates that many chunks are not

7

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

0 10 20 30 40 50
0

50

100

150

Chunk−ID

D
ow

nl
oa

d−
E

nd
−T

im
e/

s

Random
Self−Adaptive
Probabilistic
BenchMark

(a) Chunk ID ∈ (0, 50)

450 500 550

900

950

1000

1050

1100

Chunk-ID

D
ow

n
lo
ad

-E
n
d
-T

im
e/
s

Random
Self−Adaptive
Probabilistic
BenchMark

(b) Chunk ID ∈ (450, 550)

Fig. 1: Complete download time with given chunk ID

0 200 400 600 800 1000
0

10

20

30

40

50

60

Chunk−ID

T
im

e−
D

iff
er

en
ce

/s

Random
Self−Adaptive
Probabilistic

(a) Time Difference with given chunk ID

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time−Difference/s

F
(¡

¤)

Empirical CDF

Self−Adaptive
Probabilistic
Random

(b) CDF of the Time Differences

Fig. 2: Time Difference between completely download time and playback deadline

received in time. Liu’s time differences are mostly distributed
from 20s to 40s. At the same time, our time differences are
mainly distributed from 40s to 50s. It is clearly that our scheme
greatly improves the quality of video playback.

Table II depicts the proportion of chunks that are received
orderly from three methods. The proportions of Random,
Self-Adaptive and Probabilistic are 51.4%, 64.7% and 79.7%
respectively. Our method greatly improve the proportion of
chunks that are received orderly.

TABLE II: The proportion of chunks that are orderly received

scheme Random Self-Adaptive Probabilistic
proportion(%) 51.4 64.7 79.7

V. CONCLUSION

In this paper, we proposed a novel probabilistic chunk
scheduling approach for parallel multi-server DASH. Video
chunks are scheduled to the servers which consume the
smallest download time while have the highest probability
to complete downloading before the deadline. The scheduling
approach is formulated as a constrained optimization problem
with the objective to minimize the total downloading time. A
near-optimal solution algorithm is designed which schedules

chunks to the servers with minimal downloading time while
the completion probability is under the constraint. Compared
with the existing schemes, the experimental results demon-
strated that our proposed scheme greatly increased the number
of chunks that are received orderly.

REFERENCES

[1] T.Stockhammer. Dynamic Adaptive Streaming over HTTP:standards and
design principles. In Proc. of ACM MMSys11,2011.

[2] S. Akhshabi etc. An Experimental Evaluation of RateAdaptation Algo-
rithms in Adaptive Streaming over HTTP. In Proc. of ACM MMSys11,
2011.

[3] M. Watson. Http Adaptive Streaming in Practice. Netflix, Tech. Rep.,
2011.

[4] A. Zambelli. IIS smooth streaming technical overview. Microsoft Cor-
poration, 2009.

[5] James F.Kurose and Keith W.Ross. Computer Networking: A Top-Down
Approach, 6th Edition. Addison-Wesley, 2012.

[6] V.K.Adhikari, Y.Guo, F.Hao, M.Varvello, V.Hilt, M.Steiner, and Z.-
L.Zhang. Unreeling netflix: Understanding and improving multi-cdn
movie delivery. In Proc. of IEEE INFOCOM, 2012.

[7] Guibin Tian and Yong Liu. Towards Agile and Smooth Video Adaption
in Dynamic HTTP Streaming. In Proc. of ACM CoNEXT, 2012.

[8] J.Kilpi and I.Norros. Testing the Gaussian approximation of aggregate
traffic. In Proc. of ACM SIGCOMM Workshop on Internet measurment,
2002.

[9] M.Jain and C.Dovrolis. End-to-end estimation of the available bandwidth
variation range. In Proc. of ACM SIGMETRICS Performance Evaluation
Review, 2005.

8

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

