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ABSTRACT
In this paper, we investigate the antenna selection (AS) prob-
lem for scalable video streaming over MIMO wireless net-
works. By scheduling scalable video layers over MIMO
antennas with different signal strength, the video layers are
transmitted with un-equal error protections. Considering
layer dependencies and various antenna conditions, it is a
non-linear combinatorial problem for AS to minimize the
overall end-to-end distortion. To find the optimal solution
with low complexity, a cross-entropy based solution, named
CEBAS, is proposed. All solutions are indexed by unique
binary strings, and the primal problem is reformulated to a
binary combination problem. Then, random strings are gen-
erated using the probability distribution of solutions, which is
updated by the cross-entropy optimization method. The fea-
sibility of solution is guaranteed by our proposed projection
strategy. CEBAS is iterative in nature and converges to the
global optimum in probability. Simulation results reveal both
the effectiveness and efficiency of our proposed algorithm.
When comparing CEBAS against other existing algorithms,
consistent superior performance has been observed.

Index Terms— AS, MIMO, UEP, Video streaming

1. INTRODUCTION

Recent years have seen a rapid growth of video communica-
tions over wireless networks. However, the potentially low
bandwidth and high bit error rates become significant obsta-
cles for high quality multimedia communications. To over-
come such obstacles, multi-input multi-output (MIMO) sys-
tem has recently emerged as one of the most prominent tech-
niques. Video delivery over PT-MIMO [1] to provide high
bit-rate video content could be found in [2]. However, since
video signal contains bits with different importances, it is able
to provide more reliable transmission in MIMO. The use of
scalable video coding (SVC) [3] is a basis for a number of
schemes, where different treatment of layers that corresponds
to their importance results in improvements of the transmit-
ted video quality. Thus, providing different levels of error
protection (UEP) [4–6] to the video layers is very crucial for
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scalable video streaming.

One of the most classical research work is ACS-MIMO
[6], in which the video layers are periodically switched among
multiple antennas according to antenna’s signal to noise ratio
(SNR) strength. In that fashion, implicit UEP is automatically
achieved by antenna selection (AS) for video streaming over
MIMO systems. The reconstructed video quality significantly
outperforms PT-MIMO [1]. Based on this work, many other
UEP schemes [7, 8] have been proposed. Nevertheless, all
of these works assume that the channel bandwidth and video
bit-rates are consistent, and also do not consider channel cod-
ing in transmission. In practical implementations, they may
suffer heavy quality deterioration since i) channel bandwidth
is generally time-varying and unpredictable in MIMO, and ii)
the bit-rate of video layers are diverse because video content
has different motion and spatial detail.

In this paper, we reinvestigate the AS problem for scal-
able video streaming over MIMO systems. Then an AS based
UEP scheme is proposed with the objective to minimize the
end-to-end video transmission distortion. In this scheme, an-
tennas’ bandwidth, SNR strength, and video layers’ bit-rate
are jointly considered, and UEP is achieved by mapping the
video layers to the appropriate MIMO antennas. We formu-
late this scheme into a non-linear combinatorial optimization
problem. It can be solved by an exhaustive search method,
but the computational complexity is prohibitive.

In order to reduce the complexity, we investigate the
cross-entropy optimization method, which was first proposed
by Rubinstein [9]. Based on the cross-entropy method, a
low-complexity near-optimal AS algorithm, named CEBAS,
is devised. In CEBAS, each feasible solution is denoted by
an unique binary string, and the primal problem is reformu-
lated to a binary combination problem, whose objective is
to find the optimal binary string. Then, random strings are
generated according to the stochastic properties of optimal
solutions, and the probability distribution of the solutions is
iteratively updated by the cross-entropy optimization method.
The string generated by the global optimal probability dis-
tribution corresponds to the optimal solution for the primal
problem. Furthermore, a projection strategy is proposed to
guarantee the binary string’s feasibility. The algorithm is
iterative in nature and converges to the global optimum in
probability. Simulation results reveal both the effectiveness
and efficiency of CEBAS. The quality of reconstructed video
demonstrates significant improvement in CEBAS as com-
pared with existing schemes.
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The paper is organized as follows: Section 2 formulates
the proposed scheme and a low-complexity near-optimal
antenna-selection algorithm is presented in Section 3. Fi-
nally, we present illustrative simulation results in Section 4
and conclude the paper in Section 5.

2. PROBLEM FORMULATION

Consider a video streaming link from source terminal equipped
with Nt transmit antennas to the destination terminal equipped
with Nr receive antennas, and Nt ≤ Nr for guaranteeing
the Degrees-of-Freedom (DOF) constraint. Assume that
channel matrix is known perfectly at the receiver[10], the
approximated BER with M -QAM using gray coding of i-
th(∀1 ≤ i ≤ Nt) transmit antenna is derived as[11]:

ρi ≈
√
M − 1√

M log2
√
M

erfc

(√
3γi

2 (M − 1)

)
(1)

where erfc (·) is the complementary error function, γi is
the post-processing SNR of i-th transmit antenna. We fur-
ther assume the bandwidth vector R = [R1, R2, ..., RNt ] is
known perfectly at the transmitter, where Ri is i-th transmit
antenna’s bandwidth.

The input video sequence is also encoded into Nt layers
(scalability in SNR quality dimension) [3] with bit-rate vec-
tor r = [r1, r2, ..., rNt ], where ri denotes i-th video layer’s
bit-rate, and assume that Ri ≥ rj , ∀1 ≤ i, j ≤ Nt. All
these assumptions can be easily met by adjusting the encoder
parameters (layer-number, QP, etc.) in the config file. We
employ the distortion model proposed in [5], and write the
end-to-end video transmission distortion as

D =

Nt∑
i=1

wi(1−
i∏

k=1

(1− Pk)) (2)

where wi is the weight of i-th video layer, denoting its prior-
ity, Pk denotes k-th video layer’s PER.

We define ANt×Nt as AS matrix to denote the mapping
relationship between video layers and transmit antenna ele-
ments, and its entries aij ∈ {0, 1} , ∀1 ≤ i, j ≤ Nt. Let
aij = 1 if i-th video layer is transmitted over j-th transmit
antenna, and aij = 0 otherwise. Then we have:

Pi = [ANt×Nt ]i ×
[
Pc

Nt×Nt

]T
i
, ∀1 ≤ i ≤ Nt (3)

where [·]i denotes i-th row of the matrix, [·]T denotes the
transpose operation. Pc

Nt×Nt
is the FEC coding error ma-

trix, and its entries P c
ij denotes the error probability of FEC

when i-th video layer transmitted over j-th transmit antenna.
In order to protect the video layers against channel error, lin-
ear FEC coding is adopted and the error probability is

P c
ij = 1−

mij∑
k=0

(
N
k

)
ρkj (1− ρj)

(N−k)
(4)

where mij is the number of partial bits in each packet, and N
is the packet size. Noting that P c

ij is a monotonic decreasing

function of mij , we set mij = N × (1 − ri
Rj

), which is the

maximal number of partial bits under bandwidth constraints.
Equ.(4) shows that matrix Pc is affected by not only SNR

strength, but also antenna’s bandwidth and video layer’s bit
rates. Therefore, when we implement AS in Equ.(3), all these

factors should be considered, rather than simply according to
SNR strength [6]. At last, the proposed antenna-video-layer
mapping problem can be formulated as

A∗ = argmin
{A}

Nt∑
i=1

wi(1−
i∏

k=1

(1− Pk(A,R, r)))

s.t.

aij ∈ {0, 1} , ∀1 ≤ i, j ≤ Nt

Nt∑
i=1

aij = 1, ∀1 ≤ j ≤ Nt

Nt∑
j=1

aij = 1, ∀1 ≤ i ≤ Nt

(5)

The constraints denote that this is a one-to-one mapping
problem, and the number of video quality layers is equal to
the number of antennas. The case that they are not equal is
beyond the scope of this paper, and we will investigate it in
our future work. Besides, this is a non-linear combinational
optimization problem due to video layer’s inter-dependence.
The most straightforward method to determine the optimal
AS matrix A∗ is to perform an exhaustive search over the
whole solution space, whose size is Nt!. However, the re-
quired computational complexity is prohibitive.

3. CROSS ENTROPY BASED ANTENNA
SELECTION ALGORITHM

In this section, a low-complexity near-optimal cross-entropy
based antenna selection algorithm is devised. First, each solu-
tion in the solution space is indexed with an unique identifier,
i.e. a binary string. Then we reformulate the original problem
to a binary combination problem. Through the cross-entropy
optimization method, we continually update the probability
distribution of feasible solutions to approach the global op-
timal probability distribution. The string generated by the
global optimal probability distribution corresponds to a op-
timal solution for the primal problem. Moreover, a projection
strategy is proposed to guarantee the feasibility of strings.

3.1. Problem Reformulation

Since the whole solution space is Nt!, we can use a certain
binary string u with length K = �log (Nt!)	 as an unique
identifier for each solution A. We denote U as the set of fea-
sible u, whose feasibility is guaranteed by DEC(u) ≤ Nt!,
where DEC(·) denotes binary-to-decimal conversion. Also,
each u corresponds to a streaming distortion I(u) as Equ. 2.

Now, the primal problem in (5) is reformulated as

u∗ = argmax
u∈U

I (u) (6)

where I(u) = −
Nt∑
i=1

wi(1−
i∏

k=1

(1− Pk(u,R, r))).

3.2. Cross-entropy Iterations

We define the indicator function h+ (X ) which returns one
if event X is true, and zero otherwise. Let ui denote the i-th
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element of binary string u, and pi is the probability of ui = 1,
where i = 1, 2, ...,K. Then, given p, the probability of the
string u is:

f (u,p) =

K∏
i=1

p
h+(ui=1)
i (1− pi)

1−h+(ui=1)
(7)

where p is the set of pi.
We further define a collection of outputs {h+ (I (u) ≥ d)}

in the space u ∈ U for various d. From [12], the cross entropy
of random selected string set {u[n]} is defined as:

Q̂ (p) = − 1

Nu

Nu∑
n=1

h+ (I (u [n]) ≥ d) ln f (u [n] ,p) (8)

where u[n](1 ≤ ∀n ≤ Nu) is the n-th random string gener-
ated by the previous p (updated in the last iteration), Nu is
the number of generated strings.

Thus, in each iteration, we generate some new strings
from the previous probability distribution of solutions, and
obtain a new distribution f (·,p) by the cross-entropy opti-
mization method. The distribution function f (·,p) is iter-
atively updated to approach the global optimal distribution
f (·,p∗). As discussed in [13], the probability updating rule
is obtained by minimizing the Kullback-Leibler divergence.
This is equivalent to solving

p̂∗ = argmin
p

Q̂ (p) (9)

and Q̂ (p) is concave. In order to minimize Q̂ (p), we set
∂Q̂(p)
∂p = 0, leading to the updating rule as

pi =

Nu∑
n=1

h+ (I (u [n]) ≥ d)h+ (ui [n] = 1)

Nu∑
n=1

h+ (I (u [n]) ≥ d)

(10)

This updating rule is iteratively executed with an aim to
generate a sequence of increasing thresholds d [0] ≤ d [1] ≤
... (where d [t] denotes the threshold at the t-th iteration), until
the convergence to d∗ is reached.

3.3. Projection Strategy

It is important to note that the samples generated based on
Equ.(10) cannot guarantee that the samples are feasible, or
DEC(u) ≤ Nt!. A projection strategy is proposed to con-
vert the infeasible samples into feasible ones. Given a ran-
dom string u, which consists of ones and zeros following the
Bernoulli p.d.f. by the parameter vector in Equ.(10), the fol-
lowing projection strategy is applied:

Case 1) If u ∈ U , then no projection is needed.
Case 2) If u /∈ U , i.e., DEC(u) > Nt!. We define Z =

{i |ui = 1, 1 ≤ i ≤ K}. Then, the feasibility is ensured by
iteratively seting uk = 0 and updating Z = Z − {k}, where
k = argmin

i∈Z
pi. The iteration ends if DEC (u) ≤ Nt!.

3.4. Solution Algorithm

To end this section, we present the pseudo-code of CEBAS
algorithm as in Algorithm 1:

Algorithm 1 Cross Entropy Based Antenna Selection Algo-

rithm
1: initialize iteration counter t = 1, probability vector

p[0] =
{
p0i
}Nu

i=1
= {0.5}Nu

i=1, d [0] = −∞;

2: generate Nu random binary strings, {u [n, t]}Nu

n=1, by ex-

ploiting the p.d.f. f (·,p [t− 1]);
3: for each n ∈ [1, Nu] do
4: if u[n, t] /∈ U then
5: modify u[n, t] until that u[n, t] ∈ U by the projec-

tion strategy in Sec. 3.3;

6: end if
7: compute the function I (u [n, t]);
8: end for
9: d [t] = max

(
ηmax

(
{I (u [n, t])}Nu

n=1

)
, d [t− 1]

)
;

10: calculate the vector p[t] according to Equ.(10);

11: p [t] := ξp [t] + (1− ξ)p [t− 1];
12: if a convergence criterion is satisfied then
13: stop;

14: else
15: t = t+ 1, go to 2;

16: end if

In the pseudo-code, line 9 increases the threshold d [t] iter-
atively until the convergence to d∗ is reached, and η = 0.9 ∼
1 typically. In line 11, a smoothing process is adopted to avoid
the local optimum, and 0 < ξ < 1 is the smoothing fac-
tor. The convergence criterion in line 12 may be a maximum
number of iterations, after which d[t] has not made noticeable
improvement. The convergence proof of this algorithm can
refer to the literature [12].

4. SIMULATION RESULTS

In order to evaluate the performance of CEBAS, we con-
duct extensive experiments by simulations. Some existing
AS methods, including exhaustive search (ES), conventional
genetic algorithm (GA), SNR-Based AS [6], and random
antenna-selection (RAS), are implemented for comparisons.
We consider a MIMO channel which is characterized with
the average SNR of antennas is proportional to a truncated
normal distribution, i.e., γ ∼ Nt

(
μ, σ2

)
and bounded in

[γmin, γmax]. The test video sequence, akiyo, is encoded into
Nt layers using the JSVM reference software Ver9.12 [3],
and transmitted over a MIMO system.

We first compare the complexity of the four schemes un-
der different antenna number (video layers) Nt. The conver-
gence criterion for all algorithms is when the quality loss of
reconstructed video is less than 0.1dB compared with ES. The
results is illustrated in Fig.1(a). It shows that for various num-
ber of antennas, CEBAS always needs the least number of
iterations. We also plot the curves of quality increased with
the number of iterations. For the scenario with 5 antennas,
Fig.1(b) shows that CEBAS always provides a better perfor-
mance than others under the same complexity (iterations). In
other words, CEBAS is able to achieved the same video qual-
ity with lower complexity. The figure also shows that when
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Fig. 1. Complexity comparisons under the fixed channel con-

ditions μ = 18dB, σ2 = 15, γmin = 0dB, γmax = 35dB.

12 14 16 18 20 22 24
24

26

28

30

32

34

36

38

40

μ [dB]

P
S

N
R

 [d
B

]

ES
GA
SNR−Based
RAS
CEBAS

(a) Varying average SNR

0 5 10 15 20 25 30
30

31

32

33

34

35

36

37

σ 2

P
S

N
R

 [d
B

]

ES
GA
SNR−Based
RAS
CEBAS

(b) Varying channel variance

Fig. 2. PSNR under different channel conditions with Nt =
5, γmin = 0dB, γmax = 35dB.

the iterations is greater than 40, 80, and 110 for CEBAS,
GA and RAS respectively, the performance improvements are
negligible. Thus, we choose the iterations of 30 for CEBAS,
and 60 for both GA and RAS in the following simulations.
This also demonstrates the efficiency of CEBAS.

We also validate the algorithms under various network
conditions. By varying the average SNR μ and variance σ,
the quality of reconstructed video is shown in Fig.2. ES
method always yields the optimum performance with the
highest complexity (120 iterations) as expected. CEBAS
has a very close performance with ES but in a much lower
complexity. Moreover, it outperforms GA, RAS, and SNR-
Based methods for all channel conditions. We also find that
PSNR is increasing as μ increases as Fig.2(a) shows, while
the monotonicity is lost in Fig.2(b) as σ2 increases. This is
mainly because that when the variance of antennas SNR is
very small, all the antennas nearly have the same quality and
UEP is hard to be achieved by AS. On the other hand, when
the variance is large, SNR-Based AS and RAS method do not
fully exploit the diverse of antennas, and their performances
are deteriorated monotonously.

5. CONCLUSION

In this paper, we have investigated the AS problem for scal-
able video transmission over MIMO systems. Unlike previ-
ous works, antenna’s bandwidth, SNR strength, and video bit
rates are jointly considered in AS, and UEP is achieved. We
formulate the AS problem into a non-linear combinatorial op-
timization problem with the object to minimize the end-to-end
video transmission distortion. Furthermore, a low-complexity
cross-entropy based AS algorithm is devised. The simulation
results reveal both the effectiveness and efficiency of CEBAS.
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