
Parallelizing Video Transcoding Using
Map-Reduce-Based Cloud Computing

Feng Lao, Xinggong Zhang ∗ and Zongming Guo
Institute of Computer Science & Technology

Peking University, Beijing 100871, P.R. China
Email: {laofeng, zhangxg, guozongming}@pku.edu.cn

Abstract— Due to the complexity of video coding, fast transcod-
ing is still a challenge. Various parallel coding methods have
been proposed. In this paper, we present a parallel transcoding
system over Map/Reduce cloud computing architecture. Input
video sequences are divided into segments, and mapped to
multiple computers. The sub-tasks are launched in parallel with
processing results concatenated to the final output sequences.
For heterogeneous clips, computing capacity, and task-launching
overhead, the task scheduling over cloud is an NP-hard problem.
We propose a low-complexity heuristic algorithm, Max-MCT, to
find out the optimal solutions for task scheduling. By estimating
the low-bound of finish time, we transform the problem into a
virtual knapsack problem. But it is not an optimal solution for
the original problem therefore we use a minimal complete time
(MCT) algorithm to minimize the entire finish time. We carry
out extensive experiments on numerical simulations. The results
verified that our algorithm outperforms the existing algorithms.

I. INTRODUCTION

Recent years, there has been a growing demand for high
quality video, which leads to advances of coding technology,
such as H.264, MPEG-4 and MPEG-2 and so on. And various
environments usually require different coding formats. This
results in the demand of fast transcoding. However, due to
the complexity of video coding, fast transcoding remains a
problem to be explored. This gives rise to parallel transcoding.
There have been many efforts devoted to parallel transcoding
over multi-core processor, such as [1] [2] [3]. But due to
specified hardware, the parallel transcoding over multi-core
processor is hard to extend. Cloud computing, as an emerging
technology, can utilize computing power of thousands of
computers. It is a potential platform for parallel transcoding.

Cloud computing consists of a cluster of distributed comput-
ers. Each of them can be engaged in their tasks independently
and all of them together provide a great parallel computing
power. Since the computers can be heterogeneous, cloud com-
puting is extendable and relatively inexpensive. Map/Reduce is
a distributing cloud computing model. As showed in figure 1,
in this model, the input data would be divided into many splits.
These splits would be submitted as sub-tasks and handled by
mappers in multiple computers. The output of mappers would
be handled by reducers to provide the final output.

There have been some research efforts devoted to cloud

*Corresponding author

MapperSplit 0

MapperSplit 1

MapperSplit 2

Reducer Output

Fig. 1. Cloud Computing Architecture

computing. [4] and [5] divide the video file into small
segments and transcodes them in parallel. They focused on
handling the length of segments to optimize the transcoding
speed. [6] proposed CloudStream, a cloud-based proxy that
transcodes streaming video in real time. They formulated the
transcoding process as an on-line scheduling problem and gave
two mapping options to optimize transcoding speed and reduce
the transcoding jitters. However, they did not consider the
overhead when launching a sub-task.

For Map-Reduce-based cloud computing here, we mainly
focus on the scheduling for sub-tasks to multiple computers.
[7] compared 11 heuristic algorithms and found that Min-
Min performed the best. Moreover, when the transcoding time
is in proportion to segment complexity, Min-Min algorithm
is equal to minimal complete time (MCT) algorithm. The
MCT algorithm assigns segments according to descending
complexity order. Each time, it assigns the segment to the
computer with the shortest time to complete the transcoding.
Obviously, it would average the finish time of the computers.
However, this may result in placing too many segments and
task-launching overhead in powerful computers.

In this paper, We introduce a Map-Reduce-base cloud
transcoding system, which divides video sequence into seg-
ments and submits them as sub-tasks. We formulate the
scheduling as an NP-hard problem. Considering overhead
to launch sub-tasks, we propose a heuristic task scheduling
algorithm, named Maximizing Minimal Complete Time (Max-
MCT), which includes two procedures: virtual knapsack and
MCT procedures. At first, we convert our problem to a virtual
knapsack problem and assign complex segments to powerful
computers, so that these computers would not waste too much
capacity on task-launching overhead. For residual pieces, we
employ MCT algorithm to assign them to the computers with
the minimal complete time, which would average the finish
time of the computers. To verify our algorithm, we carry out

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:06:05 UTC from IEEE Xplore. Restrictions apply.

Splitter

Merger

Host Cloud

Video

Video Segment

Max MCT

Scheduler

Fig. 2. System Architecture

extensive numerical experiments. The results show that our
algorithm outperforms the existing algorithms significantly.

The rest of this paper is organized as follow. Chapter two
is our system architecture. Problem formulation is presented
in chapter three. We propose Max-MCT algorithm in chapter
four and experiment results are given in chapter five.

II. SYSTEM ARCHITECTURE

We now present our Map-Reduce-based cloud transcoding
system, which consists of a host and a cloud. As showed in
figure 2.

Upon user or operator request, the splitter at the host gets the
input video sequence from storage and divides it into several
video segments. To insure the independency of the segments,
video sequence should be divided in between GOPs. For the
case of Open-GOP, in which there exists dependency between
GOPs, we duplicate one GOP after segmentation point. This
technique had been introduced in [4]. The difference is that
we do not limit the length of segments. Moreover, the content
of each segment is also various. Therefore, the complexity
of segments is heterogeneous. There have been many efforts
to estimate the complexity of video sequence, such as using
time motion metric, spatial detail metric and length and so
on. These can be achieved by profiling [8] [9]. Here, we just
assume we can obtain the complexity of each segment. After
generated, all segments are mapped to multiple computers by
Max-MCT scheduler, and then pushed to the cloud.

The cloud consists of a cluster of computers with different
computing power. The computer capacities can be estimated
and normalize by the historical transcoding record. Base on
the Map/Reduce model, we submit segments as sub-tasks and
assign them to computers according to Max-MCT scheduler.
In each computer, all sub-tasks must be processed sequentially,
without preemption. To launch a sub-task, computers have to
obtain the video segment from the distributed file system of
the cloud and prepare the input data. These are irrelevant with
the computer capacity. We denote them as a constant task-
launching overhead. The cloud transcoding finishes when all
computers finish their sub-tasks.

After the cloud transcoding, all transcoded segments are
available at the cloud. The merger at the host downloads these
segments and concatenates them together to provide the output
video sequence.

III. PROBLEM FORMULATION

For a given video sequence, the time spent for dividend and
concatenation are constant. We only consider the transcoding
process at the cloud and formulate it as a scheduling problem.

As present above, we are given n different segments, J =
(1, 2, ..., n) with different complexity, C = (c1, c2, ..., cn).
Each segment must be processed without preemption until its
completion. We also have m computers with different capacity,
P = (p1, p2, ..., pn). And the task-launching overhead is
toverhead. The transcoding time is proportional to segment
complexity and inversely proportional to computer capacity.
So that the transcoding time spent for segment i on computer
j can be computed as tij = ci/pj + toverhead.

After some scheduling strategy, each computer would have
several segments. We denote the set of segments on computer
j as Sj . Then the finish time of set Sj is

fSj =
∑
i∈Sj

tij =
∑
i∈Sj

ci/pj + |Sj | × toverhead

The scheduling strategy can be denoted as L =
{S1, S2, ..., Sm}. The assignment of segment i is A(i) : J →
L, which means the mapping of segments to computers. The
goal here is to find the scheduling strategy to minimize the
entire finish time, which is bounded by the maximal finish
time of all the computers. So our problem can be formulated
as

min
L

max
Sj∈L

fSj

s.t.
L = {S1, S2...Sm}∪
Sj∈L

Sj = J

∀Si, Sj ∈ L, Si ∩ Sj = ∅
We show that this problem is NP-hard. Consider the sub

problem that computer capacities are identical and the task-
launching overhead is zero. This sub problem here is known
to be the load balance problem, which had been proved to
be NP-hard. So our original problem is NP-hard. To find the
optimal solution we have to traverse all the possible solutions,
which leads to a complexity of O(nm). Therefore, heuristic
algorithms are proposed.

Our motivation is, in addition to the load balance problem,
our problem has heterogeneous computing power and non-zero
task-launching overhead. Since the task-launching overhead
is constant to different computers, we should map complex
segments to powerful computers so that they would have
relatively fewer sub-tasks. Therefore they would not waste too
much capacity on overhead.

IV. MAX-MCT ALGORITHM

Here, we proposed a novel heuristic algorithm, named Max-
imizing Minimal Complete Time (Max-MCT), which consists
of two procedures: virtual knapsack and MCT procedure. In
the virtual knapsack procedure, by estimating the low-bound
and converting our problem to a virtual knapsack problem,
we assign complex segments to powerful computers until
they may overflow. Then, we employ MCT algorithm for the
residual segments to average the finish times, so that we can
minimize the entire finish time.

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:06:05 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Virtual Knapsack

A. Virtual knapsack procedure

At first, we are given m computers and n segments. We can
estimate the low-bound as the average finish time:

f∗ =
∑

ci/
∑

pj + toverhead × n/m

Obviously, this gives the optimal situation. If the finish times
of some computers are lower than the optimal finish time,
there must exist some computers whose finish times exceed the
low-bound. Therefore, we can treat the computers as virtual
knapsacks with a volume vi = pi× f∗. And there are n items
weighting ci + overhead. Here, overhead denote the task-
launching overhead. As showed in figure 3. Therefore, our
problem is converted to a virtual knapsack problem, which
limits that the knapsacks can not overflow. In this procedure
we schedule complex segments to powerful computers.

We use fj to record the finish time of computer j. Then we
fill the computers in descending capacity order. For each time,
it attempts to place the most complex unassigned segments to
the current handling computer. Before assigning, we estimate
if the computer may overflow. That is for segment i to
computer j, if fj + tij > f∗, the computer would overflow.
Then we should begin to handling the next computer, and
attempt to place the segment to it.

B. MCT procedure

After the virtual knapsack procedure, there might be some
residual segments and some gaps between fj and f∗, which
are different from each others. Therefore we should assign
these segments to minimize the maximal finish time, since the
entire finish time is bound by the computer with the maximal
finish time.

Here, we employ MCT algorithm to handle the residual
pieces. It traverses the segments in descending complexity
order. For each segment, it estimates the complete time on each
computer, such as segment i on computer j has tcij = fj+ tij .
Then the computer with the minimal complete time is chosen.
It continues until all the residual segments have been assigned.
Obviously, MCT algorithm tends to average the finish time of
the computers.

C. Algorithm Analysis

Now, we analyze the complexity of our Max-MCT al-
gorithm. Sorting the segments according has complexity
O(n log n). The virtual knapsack procedure has complexity
O(n) and the complexity of MCT algorithm is O(nm). So
our algorithm has a low complexity O(n log n).

It can be proved that the entire finish time generate by our
algorithm is at most twice the average finish time. To simplify,

we assume that n > m. If n ≤ m, it is easy to prove. And
we denote fentire = max

Sj∈L
fSj .

Theorem 1: the entire finish time by Max-MCT algorithm
is not larger than twice the average finish time, that is

fentire ≤ 2× f∗ = 2
(∑

ci/
∑

pj + n× toverhead/m
)

Proof: Assume that the entire finish time by Max-MCT
algorithm is larger than twice the average finish time. Suppose
there are many cases satisfying such assumption. Then it
must exist a case having the smallest n. In this case, the
least complex segment is not only the last to be scheduled
but also the last to be completed. Otherwise, removing this
segment makes no difference to fentire but reduces f∗ and
the assumption is still satisfied.

In the case with the smallest n, fentire is the finish time of
the computer that handles the last segment. It satisfies that

fentire ≤ fi + cn/pi + toverhead

Then, with our assumption, we can get

fentirepi ≤ fipi + cn + pitoverhead

fentire
∑

pi ≤
∑

fipi +mcn + toverhead
∑

pi

fentire ≤
∑

fipi/
∑

pi +mcn/
∑

pi + toverhead

fentire ≤
∑

ci∑
pj

+ n× toverhead
m

+
mcn∑

pi
+ toverhead∑

ci/
∑

pj + n× toverhead/m < mcn/
∑

pi + toverhead

It is known that cn is the least complex segment, and n <
m, so the above expression is never set up. The assumption
is incorrect and the theorem is proved.

V. EXPERIMENT

As mentioned above, we focus on the task scheduling
to mainly consider segment length, computer capacity and
task-launching overhead. Compared with these operations,
other overheads, such as network or system overhead, is too
small to be considered in our simulations. Thus we employ
Matlab to conduct simulation experiments to evaluate different
scheduling strategies.

Generally, we create 8 computers, with capacity ranging
from 5 to 15, and 300 video segments whose complexity
ranges from 300 to 900. And the task-launching overhead is
10. For each situation, we conduct 1000 experiments and pick
the average as an output. Here we mainly evaluate the Max-
MCT algorithm against MCT algorithm.

We mainly compares the entire finish time of algorithms.
As we mention above, f∗ is the optimal finish time and we
want to approximate it. Hence, we compare the gaps between
the entire finish time and f∗, which is denoted as exceeding
time, te = fentire − f∗.

In figure 4(a), we vary the number of segments from 100
to 300. Obviously, the exceeding time of MCT algorithm
increases as the number of segments increase. While the

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:06:05 UTC from IEEE Xplore. Restrictions apply.

0

5

10

15

20

25

30

35

40

45

100 120 140 160 180 200 220 240 260 280 300

E
xc

e
e

d
in

g
 t

im
e

(s
)

Number of video segments

MCT

Max-MCT

(a) different numbers of segments

0

5

10

15

20

25

30

35

40

45

50

4 5 6 7 8 9 10 11 12

E
xc

e
e

d
in

g
 t

im
e

(s
)

Number of computers

MCT

Max-MCT

(b) different numbers of computers

0

5

10

15

20

25

30

35

40

45

50

400 500 600 700 800 900 1000 1100 1200 1300 1400

E
xc

e
e

d
in

g
 t

im
e

(s
)

Upper bound of complexity

MCT

Max-MCT

(c) different range of complexity

Fig. 4. Exceeding time with different environments
exceeding time of our proposal is not only lower but also
insensitive to the change of segments number. And figure
4(b) shows the result of changing computer number from 4
to 12. The MCT algorithm gets decreasing exceeding time as
the number of computers increase. While our algorithm gets
almost constant and lower exceeding time. Both of the results
show that Max-MCT algorithm performs better.

We also examine the performance with different complexity
feature. As showed in figure 4(c). We set the lower bound of
the complexity to 300 and vary the upper bound from 400 to
1400. The performance of MCT is not sensitive to the change
of complexity range. However, the exceeding time of our
algorithm is decrease when the upper bound is increasing. This
is because, as the differentiation of the video segment increase,
putting the complex segments into the powerful computer
becoming more significant and greatly reduce the capacity
waste of powerful computer.

The main difference between our algorithm and MCT is
the virtual knapsack procedure that tends to map complex
segments to powerful computers to reduce the sub-tasks in
these computers. Figure 5 shows this feature. We compare
the number of the video segments in different computers. The
computer here is sorted in descending capacity order. As we
can see, MCT algorithm tends to assign more segments to
the powerful computers. The first computer gets almost 50
segments, while the last one has only 25 pieces. While the
distribution of Max-MCT is quite average. All the computers
have nearly 37 clips. Our algorithm makes the powerful
computers have relatively fewer sub-tasks and fewer task-
launching overheads. As the computers are heterogeneous,
this means powerful computer must handling those complex
segments.

VI. CONCLUSION

In this paper, we investigate the fast transcoding problem
and present a Map-Reduce-based cloud transcoding system.
We further formulate the transcoding process in the cloud
as an NP-hard problem. To reduce complexity, we propose
a heuristic algorithm named Max-MCT with two procedures.
The virtual knapsack procedure assigns complex segments
into powerful computers to reduce their capacity waste on
overheads. And the MCT procedure tends to average the finish
time of the computers. We also conduct various simulation
experiments to verify that our algorithm outperforms the
exiting algorithms.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

se
g

m
e

n
ts

Computer

MCT

Max-MCT

Fig. 5. The number of segments in different computers

ACKNOWLEDGMENT

This work was supported by National Basic Research
Program (973) of China under contract No.2009CB320907,
National Development and Reform Commission High-tech
Program of China under Grant No. [2010]3044, National
Science Foundation of China and Microsoft Research Asia
under 60833013.

REFERENCES

[1] D. Barbosa, J. Kitajima, and J. Weira, W., “Parallelizing mpeg video
encoding using multiprocessors,” in Computer Graphics and Image
Processing, Campinas, Brazil, Oct 1999, pp. 215–222.

[2] Y. Chen, E. Li, X. Zhou, and S. Ge, “Implementation of h.264 encoder and
decoder on personal computers,” J. Visual Commun. Image Represent.,
vol. 17, no. 2, pp. 509–532, 2006.

[3] B. Jung and B. Jeon, “Adaptive slice-level parallelism for h.264/avc
encoding using pre macroblock mode selection,” J. Visual Commun.
Image Represent., vol. 19, no. 8, pp. 558–572, 2008.

[4] Y. Sambe, S. Watanabe, D. Yu, T. Nakamura, and N. Wakamiya, “High-
speed distributed video transcoding for multiple rates and formats,” IEICE
Trans., vol. E88-D, no. 8, pp. 1923–1931, 2005.

[5] Z. Tian, J. Xue, W. Hu, T. Xu, and N. Zheng, “High performance cluster-
based transcoder,” in ICCASM, Taiyuan, Oct 2010, pp. V2 48–52.

[6] Z. Huang, C. Mei, and L. L. W. T., “Cloudstream: Delivering high-quality
streaming videos through a cloud-based svc proxy,” in INFOCOM, April
2011, pp. 201–205.

[7] T. Braun, “A comparison of eleven static heuristics for mapping a class
of independent tasks onto heterogeneous distributed computing systems,”
Journal of Parallel and Distributed Computing, vol. 61, no. 6, pp. 810–
837, 2001.

[8] W. Yuan and K. Nahrstedt, “Energy-efficient soft real-time cpu schedul-
ing for mobile multimedia systems,” ACM SIGOPS Operating Systems
Review, vol. 37, no. 5, p. 149, 2003.

[9] S. Sadjadi, S.M.and Shimizu, J. Figueroa, R. Rangaswami, J. Delgado,
H. Duran, Collazo-Mojica, and X.J., “A modeling approach for estimating
execution time of long-running scientific applications,” in IEEE Int’l
Symposium on Parallel and Distributed Processing, Apr 2008, pp. 1–8.

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:06:05 UTC from IEEE Xplore. Restrictions apply.

