
Sparsity Estimation in Image Compressive Sensing
Shanzhen Lan,Qi Zhang

Information Engineering School
Communication University of China

Beijing 100024, P.R. China
Email: {lanshanzhen, disp}@cuc.edu.cn

Xinggong Zhang, Zongming Guo ∗

Institute of Computer Science & Technology
Peking University

Beijing 100871, P.R. China
Email: {zhangxg, guozongming}@pku.edu.cn

Abstract— Compressive sensing is an emerging technology
which can recover a K-sparse signal vector from M =
O(Klog(K/N)) measurements. However, it is a challenge to
know exactly how many measurements an image requires to
achieve an acceptable recovered visual quality. In this paper,
we study the relationship between the image’s complexity and
its sparsity. We propose a mathematical model to estimate
the number of needed measurements by using the image’s
texture, the edge density and the target reconstruction quality.
There exists a linear function between them. The experimental
results with a large number of photo pictures show that, quite
most reconstructed images using our pre-calculated number of
measurements have good enough quality, which confirms our
proposed image-complexity-based model well.

I. INTRODUCTION

The conventional approach of reconstructing signals from
measured data follows the well-known Shannon sampling
theorem, which states that the sampling rate must be twice the
highest frequency. Similarly, the fundamental theorem of linear
algebra suggests that the number of collected measurements of
a discrete finite-dimensional signal should be at least as large
as its dimension in order to ensure reconstruction. However,
the novel theory of compressive sensing (CS) provides an al-
ternative to Shannon/Nyquist sampling when the signal under
acquisition is known to be sparse or compressible [1]–[3]. It
states that if a signal is sparse, then under certain conditions it
can be reconstructed exactly from a small set of non-adaptive,
linear measurements using tractable optimization algorithms.

In CS, instead of taking N periodic signal samples, we
measure M � N inner products with measurement vectors. In
matrix notation, the measurements y = Φx , where the rows of
the M ×N matrix Φ contain the measurement vectors. While
the matrix is rank deficient, it loses the information in general.
In their works [4], Candes, Romberg and Tao prove that if
the matrix satisfies the restricted isometry property (RIP),
which is initially called the uniform uncertainty principle,
it can preserve the information in sparse and compressible
signals. A large class of random matrices have the RIP
with overwhelming probability, such as Gaussian, Bernoulli,
Rademacher(±1), partial random Fourier matrices, etc. To
recover the signal from the compressive measurements y, we
search for the sparsest coefficient vector θ that agrees with
the measurements. Today’s state-of-the-art CS systems can
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robustly recover K-sparse and compressible signals from just
M = O(Klog(K/N)) noisy measurements using polynomial-
time sparsity-seeking optimization solvers or greedy algo-
rithms. Several introductory texts about compressive sensing,
as well as a lot of reference materials can be found on [5].

In recent years, there have been growing interests in apply-
ing the results from the field of CS to imaging applications,
an area known as compressive imaging. It is proved that CS is
very effective in imaging [6], [7]. However, for compressible
signals or images, the sparsity K is unknown, so the value
of M is also undetermined. How many compressive measure-
ments it requires to achieve an acceptable visual quality for a
given image? To the best of our knowledge, this problem is
substantially unexplored.

The sparsity is obviously relevant to the complexity of
image content. There are a wide variety of definitions for
image complexity. For example, in [8], the image complexity
is related to the number of the objects and segments within
it. Some works have related the image complexity to the
entropy of image intensity [9]. In [10], the complexity has
been considered as a subjective characteristic represented by
a fuzzy interpretation of edges in an image. These definitions
show that there are different approaches to represent the image
complexity. Since each definition, based on either subjective
or objective characteristics of the input image, uses a distinct
measurement or calculation algorithm, therefore, there is not
any agreement on the image complexity definitions.

In this paper, we first study how to represent image com-
plexity, and propose a complexity metric using image texture
and edge density. We propose a mathematical model based
on image complexity to estimate the number for compressive
measurements. With the training image set, we model a
sparsity function with image complexity. We also explore the
relationship between the measurement number and the image
quality. It shows that it is nearly linear in a specific range,
such as 26dB - 38dB. We verify the effectiveness of the model
with a large number of natural images.The experimental results
confirm our proposed complexity-based model well.

In summary, this paper makes three important contributions.
Firstly, we give a method to represent the image complexity
by image texture and edge density. Secondly, we propose
a sparsity estimation algorithm based on image complexity.
Last, we model the relationship between the number of the
measurements and the target recovered quality.
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The remainder of the paper is organized as follows. In Sec-
tion II, we introduce the background of compressive sensing.
In Section III we firstly describe our image complexity metric
by image texture and edginess, and present our proposed
mathematical model based on the image complexity. Section
IV presents the experiments and results. Finally conclusions
are provided in Section V.

II. BACKGROUND OF COMPRESSIVE SENSING

Consider a signal x ∈ <N , which is K-sparse in an
orthonormal basis Ψ with size N×N ; that is, θ ∈ <N defined
as θ = ΨTx, has at most K nonzero components. Compressive
sensing [1]–[4] deal with the recovery of x from undersampled
linear measurements of the form:

y = Φx = ΦΨθ = Aθ, (1)

where y is a M × 1 vector, Φ ∈ <M×N is the measurement
matrix that is incoherent with Ψ, and A = ΦΨ. More
specifically, the M measurements in y are random linear
combinations of the entries of θ, which can be viewed as
the compressed and encrypted version of x. For M < N ,
estimating x from the measurements y is an ill-conditioned
problem. Exploiting the sparsity of θ, CS states that the signal
x can be recovered exactly from

M = O(Klog(N/K)) (2)

measurements provided the matrix A satisfies the so-called
restricted isometry property (RIP). Many random matrices
whose entries are independent and identically distributed
(i.i.d.) Gaussian, or more generally subgaussian have the
RIP property. It has been shown that we can recover θ (or
equivalently, x) exactly by solving the following l0-norm
minimization problem:

min‖θ‖0 s.t.y = Φx = Aθ. (3)

Unfortunately, it is a combinatorial, NP-hard problem; further-
more, the recovery is not stable in the presence of noise [3].
Stable recovery algorithms actually rely on the RIP. They can
be grouped into two camps. The first approach convexifies the
l0-norm minimization (3) to the l1-norm minimization

min‖θ‖1 s.t.y = Φx = Aθ. (4)

It corresponds to a linear program that can be solved in polyno-
mial time. Many algorithms have been proposed to solve the
convex optimization problem, including interior-point meth-
ods, projected gradient methods, and iterative thresholding.

The second approach finds the sparsest x agreeing with the
measurements y through an iterative, greedy search. Algo-
rithms such as matching pursuit, orthogonal matching pursuit,
StOMP [12], CoSaMP [13], and Subspace Pursuit all build up
an approximation one step at a time by making locally optimal
choices at each step.

III. IMAGE COMPLEXITY BASED COMPRESSIVE SENSING

For K-sparse signal, we can recover it with M =
O(Klog(N/K)) measurements via sparsity-seeking optimiza-
tion or greedy algorithms. The image, however, is not a sparse
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Fig. 1. The flow chart of proposed method.

Fig. 2. Four different directions for distance d. (d = 5)

signal, but a compressible signal. The sparsity K of the image
is unknown and non-obvious. So it is difficult to determine
how many measurements a given image requires to achieve an
acceptable visual quality. Moreover, the adaptivity is crucial
to capture the regularity of complex natural images.

In this paper, we propose a framework to estimate the re-
quired number M of compressive measurements based on the
image complexity. Here we concern the overall description of
the image complexity so as to have a global grasp of the image
data, but not other detail messages, such as the number of
objects and segments within the image. Although there is not a
unique method for the image complexity calculation, there is a
global agreement in classifying images by complexity. Among
all image features, the texture and the edginess are the two
most important ones for the image visual complexity. Fig. 1 is
the flow chart of our proposed method. In the next section, we
firstly introduce our complexity measuring approach, including
texture metric and edginess metric, and then propose our
model to estimate the number of measurements of compressive
sensing for a target reconstruction quality.

A. Texture Metric

To date, many measuring methods about the texture have
been developed. Gray level co-occurrence matrix (GLCM)
[14] is one of the most known texture analysis approaches.
It estimates the image properties related to the second-order
statistics. Each entry (i, j) in GLCM corresponds to the
number of occurrences of the pair of gray levels i and j which
are a distance d apart in the original image. The probability
of gray level i to j is defined as pd(i, j). In general, there
are 4 different directions for distance d, shown in Fig. 2. In
order to estimate the similarity between different gray level
co-occurrence matrices, Haralick [14] proposed 14 statistical

Authorized licensed use limited to: Peking University. Downloaded on November 04,2020 at 03:06:01 UTC from IEEE Xplore.  Restrictions apply. 



features extracted from them. Among these features, the en-
tropy measures the disorder of the image. Its mathematical
equation is shown as:

Entropy = −
∑
i

∑
j

pd(i, j)logpd(i, j). (5)

The entropy achieves the largest value when all elements in
GLCM matrix are equal, which implies it is a completely
random image. When the image is texturally uniform, only
few GLCM elements are large values, others are zero, which
implies that the entropy is very small. The entropy gives us
the average information or uncertainty of a random variable,
which just corresponds to the image complexity.

In our experiments, we firstly divide the whole image into
several regions with size 16 × 16, and calculate each one’s
entropy of GLCM. At last, the average entropy is defined as
the image texture complexity, as in:

Etex =
1

NR

NR∑
k=1

Entropyk

= − 1

NR

∑
k

∑
i

∑
j

pd(i, j, k)logpd(i, j, k),

(6)

where NR is the number of regions of the image, pd(i, j, k)
is the probability of gray level i to j in region k. In our work,
the distance d = 5 in Fig. 2 (a).

B. Edginess Metric

Excepted for the texture, the edginess is also a very impor-
tant component for image visual complexity. An image which
contains more prominent edges looks clearly more complex.
In this paper we use the edge ratio as edginess metric, defined
as in:

Redge =
Nedge pixel

Ntotal pixel
, (7)

where Nedge pixel is the total number of edge pixels and
Ntotal pixel is the total number of pixels in the image. We
make use of Prewitt edge detection method with threshold
0.04. The Prewitt operator calculates the gradient of the image
intensity at each point, giving the direction of the largest
possible increase from light to dark and the rate of change
in that direction. Its result therefore shows how ”abruptly”
or ”smoothly” the image changes at that point. It is exactly
corresponding to the image complexity or sparsity.

C. Compressive Sensing Based on Image Complexity

Next, we introduce our proposed mathematical model,
which describes the relationship between the image complex-
ity and the number of needed measurements in compressive
sensing for a certain expectant quality. From the above, we
measure the image complexity Ic with the sum of the texture
and the edginess of the image, as in

Ic = Etex +Redge, (8)

where Etex is calculated with (6), Redge is carried out
with (7), and they are normalized in the range (0, 1), re-
spectively. Furthermore, we do experiments to recover the
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Fig. 3. The sparsity vs the complexity for training images. The line is the
fitted result with least-square approximation.
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Fig. 4. The construction quality of some training images with different
number of measurements.

image with a varying number of compressive measurements
using Romberg’s recovery algorithm in [6]. The reconstruction
performance is measured by PSNR (dB). From the experiment
results, we estimate the required M value for PSNR=32dB of
the reconstructed image. Our training image set includes 100
images downloaded from USC SIPI image database. Fig. 3
presents the result about the image sparsity vs the complexity
for the training images. And then we fit the experimental data
with least-squares approximation to a linear function, as the
line shown in Fig. 3. The fitted result is formulated as:

M̃ = f(Ic) = α · Ic + β, (9)

where M̃ is the estimated sparsity, that is the ratio of the
measurements to the total number of pixels in the image, and
α and β are fitting coefficients, Ic is the image complexity
using (8). In our experiments α = 0.70, β = −0.24. In Section
IV we verify the model with a large number of test images.

D. Target Reconstruction Quality

For the image, the more measurements in compressive
sensing, the better reconstruction quality. We observe that the
recovery quality is almost linear to the number of compressive
measurements in a general range, and the lines’ slopes are
nearly the same. The construction quality of some training
images with different number of compressive measurements
are shown in Fig. 4. So we can revise the model (9) to :

M̃T = λ · (T − 32) + M̃, (10)
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Fig. 6. The actual reconstruction quality vs target PSNR.

where T is the target reconstructioin quality, λ is the quality
parameter, which is the average slope of training image set, M̃
is the calculated sparsity using (9) for PSNR = 32dB. In our
experiments λ = 0.04. In next section we verify the updated
model.

IV. EXPERIMENTS AND RESULTS

The experiments are conducted as follows. Firstly, the test
image set contains 5000 images in good quality. 3000 of
them are downloaded from the USDA NRCS Photo Gallery.
Another 2000 images are collected from several types of
digital cameras. All images are resampled to make all the
images in the size 256× 256 and converted into gray-scale.

At first, we validate the sparsity model based on image com-
plexity. Given a required PSNR, the number of compressive
measurements is calculated using the proposed model. Each
image is sampled with the number and then is recovered using
Romberg’s algorithm[6]. The quality of recovered image is
measured by PSNR. Fig. 5 illustrates the cumulative distribu-
tion function (CDF) of reconstructed quality for all images. It
demonstrates that, for a given target quality, most of images
can be recovered with good enough visual quality.

Fig. 6 presents the relationship between the actual recovery
quality and the target PSNR. It plots the 95% confidence
interval of the reconstruction quality for all images. It can
be seen that there exists a linear function between them. We
also notice that the target PSNR curve locates well in the
confidence interval. It shows that our model is accurate to
estimate the image sparsity under a given target quality. In
short, the above results demonstrate that our proposed sparsity
estimation model is workable and suitable for compressive
image sensing.

V. CONCLUSIONS

Compressive sensing is a new research topic in signal
processing which has promoted wide research interests in
various fields. In this paper, we propose a image-complexity-
based sparsity model to estimate the number of compressive
measurements. Among lots of image features, we use the
image texture and the edginess as the metric of its complexity.
The experimental results with a large number of real-world
images show that, most of reconstructed images have achieved
the target visual quality. In future, we will further check our

model on more used resolutions (e.g. 720p, 1080p), and will
exploit more relationships between the visual features and the
image sparsity.
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