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Abstract—Cache-equipped Base-Stations (CBSs) is an attrac-
tive alternative to offload the rapidly growing backhaul traffic in
a mobile network. New 5G technology and dense femtocell enable
one user to connect to multiple base-stations simultaneously.
Practical implementation requires the caches in BSs to be re-
garded as a cache server, but few of the existing works considered
how to offload traffic, or how to schedule HTTP requests to CBSs.
In this work, we propose a DNS-based HTTP traffic allocation
framework. It schedules user traffic among multiple CBSs by
DNS resolution, with the consideration of load-balancing, traffic
allocation consistency and scheduling granularity of DNS. To
address these issues, we formulate the user-traffic allocation
problem in DNS-based mobile edge caching, aiming at maximiz-
ing QoS gain and allocation consistency while maintaining load
balance. Then we present a simple greedy algorithm which gives
a more consistent solution when user-traffic changes dynamically.
Theoretical analysis proves that it is within 3/4 of the optimal
solution. Extensive evaluations in numerical and trace-driven
situations show that the greedy algorithm can avoid about 50%
unnecessary shift in user-traffic allocation, yield more stable
cache hit ratio and balance the load between CBSs without losing
much of the QoS gain.

Index Terms—Mobile Edge Caching, Traffic Allocation

I. INTRODUCTION

Mobile traffic grows explosively in recent years and is likely
to increase seven-fold between 2017 and 2022[1]. Cache-
equipped Base-Station (CBS) is an attractive alternative to of-
fload the backhaul traffic, especially for large scale multimedia
services. Besides, it can improve user Quality of Service (QoS)
significantly by reducing content-fetching latency [2].

With the development of mobile technologies (e.g. 5G),
small BSs (e.g. Femto BSs) are densely distributed in an
network area and a user can be associated to multiple BSs
in the neighborhood (rather than just the closest one), as
depicted in FemtoCacing [3]. Therefore, it is necessary to
decide how user requests should be routed, a.k.a. user-traffic
allocation, and CBSs can serve user traffic collaboratively.
Plenty of works have studied user-traffic allocation problems
in collaborative mobile edge caching [3–5], while few of
them consider the practical implementations of a CBS. To
incrementally deploy cache in a BS without modifying the
rest of the Internet infrastructure, caches need to support
application-level protocols, which means equipped cache in
a BS should still be treated as a cache server [6] 1. DNS

1The majority of mobile traffic, especially video traffic, are transmitted by
application-level protocol, e.g. HTTP, RTP, etc.
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Fig. 1. Mobile edge caching: Cache-equipped base stations (CBSs) are
densely distributed in a network area. A user can be associated with multiple
CBSs close enough. Caches equipped on CBSs are served as cache servers[6],
user traffic is allocated to them by DNS resolution.

resolution has been widely used in user-traffic allocation to
cache servers [7–9]. DNS servers respond with the location of
caches or source server according to its traffic allocation policy
when users issue content requests. However, DNS-based user-
traffic allocation faces two main challenges:

Allocation granularity. DNS-based traffic allocation is
realized by carefully determining an IP list of available caches.
For example, if the traffic allocated to cache A and B is 3 : 1,
the IP list may contain 3 identical IP addresses of A and 1
IP address of B [10]. The size of this IP list, however, is
often limited, as DNS responses are normally propagated in
only one UDP packet [8] with a max-length of 512 Bytes [11]
2. Therefore, one of the practical concerns omitted in many
theoretical models is that user traffic cannot be distributed in
an arbitrary proportion [4, 5, 12]. Although the solution to
these models can be adjusted to applied in DNS resolution,
it may lead to a suboptimal policy. We believe it is better to
take into account the allocation granularity when formulating
the user-traffic allocation problem.

Allocation Consistency. Although most of the existing
works [3–5, 12] aim to jointly solve the content placement
and user-traffic allocation problem, we suppose that reactive
caching (e.g. LRU cache) is applied in CBSs to cope with
dynamic user traffic and content popularity in DNS-based
scenarios3. The cache of each CBS is large enough to cache

2Although TCP protocol or EDNS option can be used to expand the packet
length, it requires extra support of the application.

3We make this assumption for two reasons. First, in most the cases, DNS
server knows only the domain name of the requested content rather than the
detailed URL. Second, if content placement remains unchanged, cache utility
will degrade when content popularity changes, and frequently recalculating
content placement policy is computationally unacceptable.
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most of the popular contents in the user traffic [3], but lacking
the capacity to cache all the contents in the category. In a
mobile network, both user traffic and user location change
dynamically. Therefore, user-traffic allocation policy needs to
be adaptive and ever-changing (see Section V). ”Inconsistent”
traffic allocation may result in severely high cache miss ratio,
which reduces the utility of a CBS. For example, suppose
traffic belonging to Y.com is reallocated from cache A to B.
B is very unlikely to cache contents under Y.com, since it
does not serve Y.com before. Therefore, B must fetch these
contents from the Internet, which may lead to cache misses,
and cache them to serve subsequent user requests for Y.com.
It becomes harmful when the strategy is so ”sensitive” that
it comes up with a very ”inconsistent” (i.e. totally different)
traffic allocation policy just to attain a trivial estimated gain
in QoS after recalculation.

In this paper, we focused on the scenarios where users can
be associated with multiple close enough CBSs, each CBS
equipped with a cache server, and user traffic is allocated by
DNS resolution (Figure 1). In summary, the main contributions
of this paper are as follows:
• We present and formulate user-traffic allocation (UTA)

problem (Section III), the problem of how can user traffic
be allocated to CBSs considering the allocation granularity
of DNS. In UTA problem, we want to maximize QoS gain,
balance the load, and keep the allocation policy consistent.

• We prove that the formulation can be transformed equiv-
alently into a typical combinatorics optimization and then
presented a simple greedy algorithm with 3/4 approximation
ratio (Section IV).

• We provide extensive evaluations in both numerical and
trace-driven situations (Section V). The results show that
our algorithm yields more consistent traffic allocation while
maintaining the QoS gain and balancing the load.

II. RELATED WORK

User-traffic allocation in mobile edge caching. In [3],
traffic allocation depends on the placement of the content;
user requests can be allocated to any neighboring CBS caching
the content. [4] further examines the delay between users and
CBSs to optimize user QoS. However, as CBSs are expected
an unlimited traffic capacity, user traffic is usually allocated
to the nearest CBS with the requested content, which is likely
to overburden a CBS. [12–15] allocate user traffic considering
the upper bound of traffic that a CBS can serve and avoid
QoS degradation when a CBS caching popular contents is
submerged by user requests and thus overburdened. In their
formulation, however, no matter whether the variables of traffic
allocation are continuous [13] or not [12], user traffic could be
distributed in arbitrary portion, which can not be implemented
due to the allocation granularity of DNS resolution.

Consistent user-traffic allocation. Consistent hashing [16]
has long been used by cache networks to balance server
load with minimum allocation changes. Jiang et.al. formulated
a traffic allocation problem in CDNs comprising distributed
caches (e.g. set-top boxes) in [17]. Their algorithm updates

traffic allocation policy smoothly. While these algorithms suit
clusters consisting of caches with identical characteristics,
our work targets a different problem where CBSs are often
heterogeneous. Even in the context of wired content delivery,
few of the works considered allocation consistency in such a
problem. To the best of our knowledge, in 2015, Akamai trans-
formed the load balancing problem into a variant of the stable
marriage one and presented their generalized Gale-Shapley
(GGS) algorithm for traffic allocation [7]. They pointed out
the importance of allocation consistency but did not present a
detailed solution. GSS algorithm can allocate user traffic when
caches are heterogeneous. However, optimality of this solution
lacks theoretical analysis as well.

Practical implementations of CBS. An example of practi-
cal implementations of CBS is presented in [6]. The equipped
cache of a Base Station (BS) node (i.e. eNodeB) is installed as
a cache server in its kernel, and modification is made on the
protocol stack of BS. In this way, the BS node can act as not
only a gateway but also a router that can forward IP packets.
IP packets whose destination is the equipped cache server are
captured and served by cache, others forwarded to the Serving
Gateway (S-GW) in Evolved Packet Core (EPC). Thus, cache
on BS can support application-level data flow. Content requests
are allocated to each cache by DNS resolution. However, user-
traffic allocation or other optimization problems in mobile
edge caching remain understudied in [6].

III. NETWORK MODEL AND PROBLEM STATEMENT

A. Wireless Environment and Cache Network

CBSs and User Association: Each CBS covers a commu-
nication range with a specific radius in a 2D plane. Users
within such range can be associated with it. Thanks to the
dense distribution of CBSs, users can have multiple association
alternatives when CBSs’ communication ranges overlap. We
do not consider multi-source downloading, and therefore each
content request can only be assigned to at most one CBS.

Let there be a group of CBSs M in the network area. The
amount of user traffic that a CBS can handle has an upper
bound, a.k.a. capacity. A CBS are probably overburdened
when it receives more traffic than its capacity. We use cj to
denote the capacity of each CBS j ∈M.

User Traffic: To cope with the high computational com-
plexity caused by user quantity in the network area, users is
grouped into User Groups (UGs) U. In each UG, it is assumed
that all users locate in neighboring locations and experience
the same radio conditions regarding fading and interference.
Therefore, they share the same group of associable CBSs.
For example, users in the same building could be grouped
together. User traffic from each UG u ∈ U are grouped before
allocation to CBSs. Let S be the category of domain names.
Thus, user traffic can be divided into different flows. Each
flow i = 〈u, s〉 ∈ F = U × S comprising content requests
from UG u under domain name s. The amount of user traffic
in flow i is denoted by λi (see Flow layer in Figure 2).

We denote the connectivity between users and CBSs by
tij ∈ {0, 1}. For i = 〈u, s〉, tij = 1 when UG u can be
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Fig. 2. UTA problem: user traffic are partitioned into flows based on (user
group, domain name); flows are divided into mapping units to be allocated to
CBSs. Since a user can be associated with multiple CBSs, each mapping unit
can have multiple alternative CBSs to be matched (solid and dotted lines),
and can be allocated to some of them (solid lines).

associated with CBS j and otherwise tij = 0. {tij} are also
constant variables identical for all the sub-flows of flow i.

Mapping Units: Considering the granularity in DNS-based
traffic allocation, we assume that each flow i is divided evenly
into |Ki| sub-flows a prior, where each sub-flow carries an
equal amount of traffic λ0, applying certain rounding methods.
Since the division is uniform, we can assume that in the same
flow, all the sub-flows are identical regarding the category of
requested contents, user group, and domain name. The long
tail effect of content popularity distribution may generate a
lot of small flows whose amount of traffic is less than λ0.
In practice, those flows in the same or nearby regions can
be merged into one flow with the amount approximate to
λ0 to take full advantage of the CBS capacity. Suppose the
maximum length of IP list is ι, λ0 can be set up as 1/ι of
the maximal traffic amount of all the flows, which ensures
that |Ki| ≤ ι, thus enabling a realistic allocation policy in
DNS-based load balancing. We refer to a sub-flow 〈i, k〉 as a
mapping unit, for i ∈ F and k ∈ Ki. k can be regarded as
the identifier of each sub-flow, as depicted in Figure 2. There
are other methods to divide flows into the granularity suitable
for DNS server allocation, which is beyond our discussion as
our main purpose in this paper is to present an optimization
model with considerations of practical limitations.

Let xkij(i ∈ F, j ∈ M, k ∈ Ki) be the 0-1 variable that
indicates if mapping unit 〈i, k〉 should be allocated to CBS j
when xkij = 1, or not otherwise. Then X = [xkij ] is our traffic
allocation policy.

Notice that user requests that are not assigned a CBS can
connect to any neighboring BS –not necessarily a CBS– to
fetch the content from the Internet.

B. Optimization Goal

QoS Gain: In our problem, we suppose that QoS depends
mainly on the content fetching delay. When a user receives the
content from caches in CBSs rather than the Internet, there is
QoS gain because content fetching delay is saved. We denote
the QoS gain of allocating a user request of mapping unit
〈i, k〉 to CBS j by gij , and we assume gij ≥ 0. Because
of the homogeneity of sub-flows, all the sub-flows within the
same flow have the same estimated QoS gain.

The estimation of gij involves multiple concerns, including
distance between a user and CBS, backhaul delay, etc.. When

the cache in a CBS has a high capacity but unfortunately small
storage, user requests routed to it may suffer frequent cache
miss, which is likely to damage the QoS gain as well. In our
problem, we regard gij as a constant factor and do not focus
on the estimation of it.

Now the total QoS gain can be quantified as:

G(X) =
∑
j∈M

∑
i∈F

gij
∑
k∈Ki

λ0x
k
ij (1)

Load Balancing: To balance the load, we first ensure each
CBS receives user traffic no more than its capacity:

Lj(X) =
∑
i∈F

∑
k∈Ki

λ0x
k
ij ≤ cj (2)

, where Lj(X) quantifies user traffic that CBS j receives,
which also represents the load of CBS j.

Second, considering that balancing spare capacity between
CBSs can not only help to offload popular CBSs and increase
the utilization of light-loaded CBSs, but also reduce the risk of
overload when ”flash crowd” occurs, we maximize the spare
capacity fairness between CBSs by maximizing

B(X) =
∑
j∈M

H(cj − Lj(X))

. H(·) can be any decreasing concave function on [0,max(cj)],
which encourages a mapping unit to be allocated to a light-
loaded CBS for higher gain. For instance, we use H(v) =
−v2, and thus we have:

B(X) = −
∑
j∈M

(cj − Lj(X))2 (3)

Allocation Consistency: A CBS can suffer severe cache
miss and consume more backhaul bandwidth if the domain
names it serves change a lot after the recalculation of alloca-
tion policy. Therefore, our traffic allocation policy needs to be
less ”sensitive” and more consistent.

We denote whether CBS j serves mapping unit(s) under the
domain name of flow i by wij , which indicates the favorability
of mapping 〈i, k〉 to j. We assume wij ≥ 0 as well. Note
that the identifier k of sub-flow makes no difference to wij .
Specifically, the estimation of wij is based on the previous
traffic allocation policy X̂ = [x̂kij ]. Suppose Fs consists of
mapping units under the same domain name s, and then wij

can be defined as:

wij =

{
1 , if i = 〈∗, s〉 and ∃i′ ∈ Fs, x̂

k
i′j = 1

0 , otherwise
We can then maximize W (X) to maximize the consistency of
traffic allocation policy X:

W (X) =
∑
j∈M

∑
i∈F

∑
k∈Ki

wijx
k
ij (4)

Similar to mapping units, there may also be other methods to
quantify wij , which is beyond the scope of this paper.

C. User-traffic Allocation Problem

All in all, we present user-traffic allocation (UTA) problem
in a DNS-based mobile edge caching that aims at maximizing
QoS gain, allocation consistency as well as maintaining load
balancing. We can formulate UTA problem as:



max F (X) = µ1G(X) + µ2B(X) + µ3W (X) (5a)
s.t. Lj(X) ≤ cj ,∀j ∈M (5b)∑

j∈M

xkij ≤ 1,∀i ∈ F, k ∈ Ki (5c)

xkij ≤ tij ,∀i ∈ F, k ∈ Ki (5d)

xkij ∈ {0, 1},∀i ∈ F, j ∈M, k ∈ Ki (5e)
(5a) is the objective function, where µ1, µ2 and µ3 are

constant variables to balance the trade-off among the three
goals in this optimization model, QoS gain, load balancing and
allocation consistency. Since we do not assume multi-source
downloading, (5c) indicates that each mapping unit should be
allocated to at most one CBS. Finally, (5b), (5d), (5e) are
capacity, connectivity and integrality constraints, respectively.

IV. ALGORITHM WITH OPTIMALITY GUARANTEE

The formulation of UTA problem (5) is a problem of NP-
hard quadratic integer programming, which calls for a com-
putationally efficient approximate algorithm. In this section,
we prove that our model (5) is equivalent to maximizing a
monotone submodular function which is subject to matroid
constraints. We then propose a simple and elegant greedy
algorithm with the considerable approximation ratio of 3/4 to
solve this problem.

Properties of (5) (abstract). The integrality constraint (5e)
enables that every cache decision X = [xkij ] can be written
as a set A ⊂ {fkij |i ∈ N, j ∈ M, k ∈ Ki},where xkij = 1 ⇔
fkij ∈ A. Thus, the constraints of (5) can be written as matroid
constraints, according to the definition of partition matroids
[18]. Moreover, the objective function (5a) can be written as
a set function [18] which is a monotone submodular function.
Thus, (5) is equivalent to maximizing a monotone submodular
function which is subject to matroid constraints. Due to space
constraints, detailed proof is in Appendix A.

Fisher et al.[20] presents a simple and common greedy
algorithm to approximately solve the optimization problem
that maximizing monotone submodular function subject to ma-
troid constraints, with specific optimality guarantees. Before
introducing the algorithm, we define the marginal value of
allocating mapping unit 〈i, k〉 to CBS j as

mk
ij(X) = F (X|xkij = 1)− F (X|xkij = 0)

, where xkij = 1 refers to the new matrix generated by changing
xkij of X from 0 to 1. Then the offline algorithm is described in
Algorithm 1, which keeps on greedily choosing a tuple (i, j, k)
with highest marginal value under constraints (5b)-(5d), and
then allocating 〈i, k〉 to j, i.e. let xkij = 1. Appendix B has
proven the solution obtained by Algorithm 1 yields a 3/4
approximation.

V. EVALUATION

In this section, we carry out both numerical and trace-driven
evaluations to explore the influence of different factors. We
compare our approximation algorithm with other baselines in
terms of QoS gain, load balancing and cache miss ratio.

Algorithm 1 The greedy algorithm
1: Initializing: X← {0};
2: C← {(i, j, k) | xkij = 0

and
∑

i′∈F
∑

k′∈Ki′
λ0x

k′

i′j ≤ cj − λ0
and

∑
j′∈M xkij′ ≤ 0

and xkij ≤ tij}
3: while C 6= ∅ do
4: (i0, j0, k0)← argmax(i,j,k)∈Cm

k
ij(X);

5: X← X|xk0
i0j0

= 1;
6: end while
7: return X;

(a) Average CHRD of algorithms (%)
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Fig. 3. Scenario 2: the real-time average cache hit ratio of all the caches suf-
fers an immediate, drastic decrease after the regeneration of traffic allocation
policy due to ”inconsistent” allocation, as many contents need to be replaced.
Greedy have lower CHRD because of its consistency.

A. Experimental Setup

Wireless Environment: We consider a 500×500m2 wireless
network area. The positions of CBSs follow the Poisson Point
Process (PPP) with a density of 80CBS

km2 . To simulate the
situation of heterogeneous CBSs, we assume that the radius of
CBS’s communication range is randomly chosen from 150m
to 300m. We fix the total capacity CAPACITY. As CBS that
covers larger communication range is likely to associate with
more users and handle more user traffic, we let capacity of
each CBS be proportional to its coverage radius. When CBS
receives more user traffic than its capacity, we simply assume
that it just rejects to serve the exceeded part of requests.
However, in practice, overloading may lead to more severe
consequences such as damage to the function of the BSs. User
groups are distributed with a density of 40 UGs per km2.

All the content files are equally sized as 30MB. We set the
cache size of each CBS to be (i) 60GB for numerical eval-
uations (ii) 3GB for trace-driven evaluations. Caches all use
Least Recently Used (LRU) policy to do content replacement.
We use gij = 100e−dij/500 to estimate the QoS gain, where
dij refers to the distance between the location of flow i’s user
group u and CBS j.

Baselines and Performance Metrics: We name Algorithm 1
as Greedy, and compare it with three baselines: 1) GGS, the
generalized Gale-Shapley algorithm presented by Akamai[7]
that solves UTA problem algorithmically, but without consid-
ering consistency. 2) Greedy-IC, the inconsistent version of
(5) whose objective function without W (X) and solved by
Algorithm 1. 3) Closest, the algorithm that considers neither
load balancing nor consistency. We assume the maximal length
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(c) Cache Miss Ratio

Fig. 4. Scenario 1: we divide domain names into sections and randomly shuffle the popularity of domain names within each section. Content Popularity
changes more when section length grows. Greedy performs more consistent and yields less cache miss ratio without losing much QoS gain.
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(a) QoS gain
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Closest

86.3

66.5

69.1

75.9

(b) Consistency

Cache Miss Ratio (%)
Greedy

GGS

Greedy-IC

Closest

58.9

61.5

63.2

63.8
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Fig. 5. Scenario 2: we carry out a trace-driven evaluation using a short video request trace collected from real world, which reflects the dynamics of user
requests. Greedy performs more consistent without losing much QoS.

of the IP list to be 164. The performance is evaluated by the
following metrics:

QoS gain per request: we calculate average QoS gain
per user request, which indicates how near user traffic can be
served by a CBS.

Consistent fraction: each time the traffic allocation policy
is recalculated, we record the fraction of ”consistent” alloca-
tion, i.e. the fraction of user traffic that is allocated to a CBS
that serves traffic under the same domain name in the previous
traffic allocation policy.

Cache miss ratio: the average cache miss ratio of the
mobile network during each time interval, which reflects the
damage of ”inconsistent” allocation.

Cache hit ratio drop (CHRD): as is shown in Figure 3(b),
the real-time average cache hit ratio of all the caches suffers
an immediate, drastic decrease after the regeneration of traffic
allocation policy due to ”inconsistent” allocation, as many
contents need to be replaced. The ratio then increases and
becomes stable. We record this instant drop of the cache hit
ratio, which shows the harm of inconsistent traffic allocation.

B. Scenario 1: Randomly-shuffled Workload

In this scenario, we simulate the dynamics of content
popularity. Let there be 50 domain names with each domain
name having 10,000 contents. The popularity of domain names
and contents under each domain follow Zipf distribution. Zipf
exponent of domain names and contents of each domain name
are αS = 0.8 and αC = 1.5, because we think popularity intra-
site skewness of contents is more prominent than the inter-
site one. Considering that few regions with high population

4The maximal length of a DNS packet is 512B [11], and the size of IP
address entry for IPv4/IPv6 is 16B/28B. The DNS response in one packet can
consist of about 25 IPv4/14 IPv6 address at most.

density while most of the regions have small population [21],
we use a very flat Zipf distribution to approximate the traffic
volume from UGs, with αU = 0.5. We let CAPACITY= 1200,
and set a total user traffic volume RATE= 0.9×CAPACITY
(requests/s). Specifically, the traffic volume in a UG u for
domain name s is expected to be RATE×pU (u) × pS(s),
where pU and pS are the Zipf probability distribution functions
of UG and domain name, respectively. Then we sort the
domain names by popularity and partition them into sections
with equal length of {5, 10, 25, 50} domain names. The
popularity of the domain names is randomly shuffled within
each section, which may lead to traffic increase for some flows
but decrease for others. The longer a section is, the higher
popularity variance domain names in it have, and thus the more
drastic popularity would change. The simulation lasts for 5,000
seconds and the time interval is 100 seconds, which means we
shuffle the popularity and regenerate allocation policy every
100 seconds. Therefore, we have 50 results in each run. We
record the real-time cache hit ratio every 2 seconds, in order
to detect the immediate cache hit ratio drop. Before logging
the results, we ran for another 500 seconds to warm up.

Results. Results are in Figure 4. Closest yields least GoS
gain because most of its requests are rejected by the CBS
they are allocated to, which shows that if we don’t consider
load balancing, even when the total traffic volume remains the
same, CBSs are likely to be overburdened. QoS gain of other
algorithms is similar. In terms of consistency, when the content
popularity sustains different degrees of oscillations, total QoS
gain changes little (no more than 8%), but the traffic allocation
policy is likely to change a lot. GSS and Greedy-IC can bring
about up to nearly 40% ”inconsistent” allocation, while Greedy
no more than 10%. It shows that GSS and Greedy-IC are more
sensitive to the popularity changes than Greedy and Closest,



which makes Greedy yield least cache miss ratio. Although
Closest performs also well in terms of consistency, its total
QoS gain is unsatisfactory. We present the average CHRD in
Figure 3(a) as well. It shows that the consistency of Greedy
results in its better performance in cache hit ratio oscillation,
because it causes less content replacement, which validates the
effectiveness of our formulation (5).

C. Scenario 2: Trace-driven Evaluation

In this scenario, we use the dataset from [22] that records
YouTube requests arising from the wired campus network. The
trace we used lasts for 14 days in Feb. 2008, with 611,630 user
requests from 6,670 anonymous users and 303,190 contents.
We calculate the number of requests in each time interval
as the total traffic volume RATE for traffic allocation policy
calculation in the algorithms. To avoid the influence of un-
popular contents that do not even receive a second request,
we screen out 20,000 most popular contents, and hash them
into 20 domain names. The real request trace reflects both
the user request patterns and the dynamics of traffic volume
as well as content popularity. We divide all the users into 10
groups in order to partition the user requests into different
flows according to the tuple(user group, domain name). We
let Time interval be 4 hours, and CAPACITY be 80% of the
highest traffic volume among all the time intervals. We design
the scenario this way as CBS is expected to serve a certain
amount of user traffic during peak hours.

Results. As shown in Figure 5, we find that results in trace-
driven evaluations show similar tendency with those in numer-
ical evaluations. Greedy increases the allocation consistency
while trying to avoid much of QoS loss, which results in less
cache miss ratio and thus saves more backhaul bandwidth. We
think one of the reasons why the difference among algorithms
is less clear than scenario 1 could be that the content popularity
indicated in the trace is severely skewed. Specifically, among
all the 303,190 contents there are only about 200 of them
popular enough to be requested repeatedly in multiple time
intervals. Therefore, even consistent traffic allocation policy
may suffer from severe cache miss. The comparison with
Closest shows if load balancing is not considered when
allocating user traffic, a large amount of traffic is likely to
overburden popular CBSs. In such cases when QoS is severely
damaged, pursuing consistency is useless.

VI. CONCLUSION

In this paper, we focus on the user-traffic allocation and load
balancing in DNS-based mobile edge caching and coping with
the two challenges posed by the practical implementation of
caches in BSs. One is the granularity of DNS-based traffic
scheduling, and the other is the need for consistent allocation
policy under dynamic user-traffic. We formulate the user-
traffic allocation (UTA) problem in DNS-based mobile edge
caching, which aims at maximizing QoS gain and allocation
consistency as well as maintaining load balance. We then
prove that the problem is equivalent to maximizing monotone
submodular function that subjects to matroid constraints. A

simple greedy algorithm is presented to solve this problem
within 3/4 of the optimal solution. Extensive evaluations
under both numerical and trace-driven situations show that the
algorithm yields more consistent traffic allocation policy and
thus results in less cache miss ratio and more balanced server
load without losing much of QoS gain.
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APPENDIX

A. Properties of (5)
Ground Set: Let element fkij represents the event that

mapping unit 〈i, k〉 is assigned to CBS j, and thus the ground
set in our UTA problem can be defined as:

E = {fkij | j ∈M, i ∈ F, k ∈ Ki} (6)

For a subset A ⊆ E, whether fkij is in A depends on
whether xkij = 1, thus a one-to-one correspondence is achieved
between a subset A ⊆ E and the solution X to (5).

Constraints and Feasible Solutions: Every element of 2E

(the power set of E) corresponds to a set of solutions to (5),
and the set defined by the constraints in (5) is no exception.

Proposition 1. Let Pj = {fkij | i ∈ F, k ∈ Ki}, Qk
i = {fkij |

j ∈ M} and T k
ij = {fkij | i ∈ F, j ∈ M, k ∈ Ki}. The

constraints in (5) are equivalent to I, where

Ib = {A ⊆ E | |A ∩ Pj | ≤ b
cj
λ0
c} (7a)

Ic = {A ⊆ E | |A ∩Qk
i | ≤ 1} (7b)

Id = {A ⊆ E | |A ∩ T k
ij | ≤ tij} (7c)

I = Ib ∩ Ic ∩ Id (7d)

Proof. Suppose A and X are equivalent, which means for
every j ∈M, i ∈ F, and i ∈ Ki: fkij ∈ A⇔ xkij = 1.

The sum of some xkij indicates that how many variables
equal to 1 in all of them, which is exactly the cardinality of
the intersection of A and another set. For example,∑

j∈M

xkij = |A ∩Qk
i |

. Therefore, we have:

Lj(X) ≤ cj ⇔ λ0
∑
i∈F

∑
k∈Ki

xkij ≤ cj ⇔
∑
i∈F

∑
k∈Ki

xkij ≤ b
cj
λ0
c

and ∑
j∈M

xkij ≤ 1⇔ |A ∩Qk
i | ≤ 1

. Due to the discreteness of set, all the solutions to (5) denoted
by a set A inherently satisfies (5e). Thereinto, all the solutions
satisfy (5b) are in Ib, while that satisfies (5c) are in Ic and that
satisfies (5d) are in Id, for which I = Ib ∩Ic ∩Id represents
all the feasible solutions to (5), i.e. the constraints of (5).

The tuple (E, I) contains the ground set E and the con-
straints I ∈ 2E . Proposition 2 shows that the tuple is a
matroid[? ] and therefore (5) has matroid constraints.

Proposition 2. M = (E, I) is a matroid with the definition
of E and I in (6) and (7) respectively.

Proof. Review the definition of partition matroid: Partition
matroid is a typical instance of matroids. In a partition matroid,
the ground set E is partitioned into disjoint sets E1, E2,...,El

and I = {A ⊆ E | |A ∩ Ei| ≤ βi,∀i = 1, ..., l}, for constant
parameters β1, β2, ..., βl [18].

Likewise, {Pj}, {Qk
i } and {T k

ij} are three different par-
titions of the ground set E, and thus Mb = (E, Ib),
Mc = (E, Ic) andMd = (E, Id) are three partition matroids.

M = (E, I) can be regarded as the intersection of Mb, Mc

and Md, which, according to [? ], is a matroid as well.

Corollary 1. The constraints in (5) are matroid constraints,
and they are equivalent to the matroid M = (E, I).

Objective Function: Due to the one-to-one correspondence
between X and A, we can define the objective function of (5)
accordingly as a set function [? ] F ′ : 2E → R.

Proposition 3. The objective function F (·) of (5) is equivalent
to the set function F ′(·):

F ′(A) = µ1G
′(A) + µ2B

′(A) + µ3W
′(A) (8)

,where

G′(A) =
∑

fk
ij∈A

λ0gij

B′(A) = −
∑
j∈M

(cj − λ0|A ∩ Pj |)2

W ′(A) =
∑

fk
ij∈A

wij

Proof. Suppose A and X are equivalent, which means for
every j ∈M, i ∈ F, and i ∈ Ki, fkij ∈ A⇔ xkij = 1.

G(X) =
∑
j∈M

∑
i∈F

∑
k∈Ki

λ0gijx
k
ij

indicates that G(X) is added by λ0gij if xkij = 1, for which
G(X) = G′(A).

Similarly, we have

W (X) =
∑
j∈M

∑
i∈F

∑
k∈Ki

wijx
k
ij =

∑
fk
ij∈A

wij =W ′(A)

.
It’s noted that

∑
i∈F

∑
k∈Ki

xkij quantifies how many vari-
ables xkij = 1 when j is given, which is equal to the value
|A ∩ Pj |. Therefore, we have

Lj(X) = λ0
∑
i∈F

∑
k∈Ki

xkij = λ0|A ∩ Pj |

, and thus
B(X) = −

∑
j∈M

(cj−Lj(X))2 = −
∑
j∈M

(cj−λ0|A∩Pj |)2 = B′(A)

.
Finally, we come to a conclusion that the objective function

of (5),
F (X) = µ1G(X) + µ2B(X) + µ3W (X)

, equals to F ′(A).

Proposition 4 shows that the equivalent objective function
(8) is a monotone submodular function. Therefore, (5) can be
seen as maximizing a monotone submodular function, with
regards to the constraints.

Proposition 4. F (·) defined in (8) is a monotone submodular
function.

Proof. For simplicity, we use FA(i) to denote the marginal
value F (A∪{i})−F (A). A set function is monotone if ∀A ⊆
B ⊆ E,F (A) ≤ F (B)[? ].



(Monotonicity) For any A ⊆ E and fkij ∈ E\A, since gij ≥
0 (see Section III-B), wij ≥ 0 (see Section III-B) and λ0|A∩
Pj | ≤ cj (see (7a)), we have
F ′A(f

k
ij) = µ1λ0gij + µ2 · 2λ0(cj − λ0|A ∩ Pj |) + µ3wij ≥ 0

(Submodularity) For any B1 ⊆ B2 ⊆ E, if we take out the
elements from B2\B1 one by one and add them to B1, the
value of F ′(·) will not decrease as F ′A(f

k
ij) ≥ 0 for any A, for

which F ′(B2) ≥ F ′(B1). F ′(·) is hence a monotone function.
For all A ⊆ B ⊆ E and all fkij ∈ E\B,

FA(f
k
ij)− FB(f

k
ij) = µ2 · 2λ02(|B ∩ Pj | − |A ∩ Pj |)

. We have |A∩Pj | ≤ |B∩Pj | because A ⊆ B, and finally we
have FA(f

k
ij) ≥ FB(f

k
ij). Since a set function is submodular

if FA(i) ≥ FB(i) for all A ⊆ B ⊆ E and all i ∈ E\B [? ],
F (·) is a submodular function.

Corollary 2. The objective function of (5) is equivalent to a
monotone submodular function, namely, F (·), defined in (8).

Equivalent model: In conclusion, the formulation of the
UTA problem (5) is equivalent to the following model:

max F (A) (9a)
s.t. A ∈ I (9b)

(7) and (8) define the constraints (i.e. a set of feasible
functions) I, and the objective function F (·), in which M =
(E, I) is a matroid and F (·) is a monotone submodular
function.

B. Optimality of Algorithm 1

[20] proves that when the matroid constraint I can be
written as the intersection of P matroids, i.e. I =

⋂P
p=1 Ip, the

greedy algorithm yields a tight approximation ratio of P
P+1 .

Let A∗ be the optimal solution of (5) and AG be the output
of Algorithm 1. The approximation ratio means

F ′(A∗)− F ′(AG)

F ′(A∗)− F ′(∅)
≤ P

P + 1
. In our problem, P = 3 as I = Ib ∩ Ic ∩ Id, for which the
greedy algorithm is supposed to yield a 3/4 approximation.
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