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PrefCache: Edge Cache Admission with User
Preference Learning for Video Content Distribution

Yu Guan, Peking University, Xinggong Zhang, Peking University, and Zongming Guo, Peking University

Abstract—With the deployment of video streaming in 4G/5G
mobile network, Content Delivery Networks (CDN) are extending
to the network edge to provide end-users better Quality of
Experience (QoE). However, small cache size and irregular
request patterns make it a great challenge for edge caching in
video content distribution. Most of the existing cache policies
are item-wise, they admit each video object separately, which
performs poorly on the network edge due to irregular request
patterns.

We observe that compared with single video objects, users’
preferences for video topics are much more constant, thus are
easier to be predicted. So we propose PrefCache, a novel cache
admission policy based on preference learning, for video content
edge caching. PrefCache enables an edge cache to learn users’
preferences for videos in real-time. Once receiving a video object,
PrefCache decides whether to admit it to the cache by whether
it is under users’ preference.

We make three contributions in this work. (1) First, we
design an information collector, which can proactively collect
the preference-related information without any modification of
clients and video providers. (2) Second, we propose a tree-
structure model to learn and compress users’ preferences. (3)
Third, to decide which videos should be admitted to the cache in
real-time, an explore-and-exploit method is applied. We carried
out extensive experiments with 24 hours of trace data from
a large commercial video content provider. The experimental
results demonstrate that PrefCache can improve hit ratio up to
12%, and save 92% memory / 98% CPU overhead, compared to
the state-of-the-art cache policies.

Index Terms—Edge caching, cache admission, video content
delivery.

I. INTRODUCTION

OVer the last few years, network caching has become
the dominant technology to improve the performance

of video delivery, such as Content Delivery Networks (CDN)
and proxy. As a part of Internet infrastructure, it has been
quickly pushed from the data center to the network edge. Edge
caching, such as 5G macro Based Station (BS) and Femto
BS, promises to decrease back-haul overload and provides
low-latency applications [7], [40]. A cache policy usually
consists of two modules: (1) cache admission policy decides
whether to admit a new object, and (2) cache eviction policy
decides which existing object should be evicted when the
cache storage is full. As pointed out by previous works [60],
compared with the back-bone CDN, edge caching has two new
characteristics [40], [6]:

• Small cache storage. Constrained by physical space and
power consumption, the storage of an edge cache is much
smaller than that of current CDN by several orders of
magnitude.
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Fig. 1: Based on real request traces (Appendix A), we select
the top 10% popular video objects and record their popularity
in the following one hour. We measure their popularity by their
request ratio of total requests. The result shows that the request
arrivals of these videos are highly irregular and random.

• Irregular request pattern. Due to the small coverage
region, the content popularity is full of fluctuations and
bursts.

Existing cache policies, especially the cache admission part,
are mainly designed for CDNs, most of them did not consider
these new characteristics of edge caching [30]. In general, they
work in an item-wise way: they analyze the request pattern for
each single video object (e.g., the time interval between two
requests, the request frequency of a video object), and execute
cache admission or eviction for each video object separately.
Some approaches (e.g., LRU [10], LFU [57], FIFO [9])
directly utilize the request pattern to make cache admission or
replacement decisions. Other approaches ([58], [26], [31]) try
to learn each video’s popularity based on their request pattern,
and then admit or replace videos based on their predicted
popularity. However, due to the irregular request pattern of
video objects on the network edge (Figure 1), both item-wise
request pattern analysis and prediction are inaccurate, thus the
performance of edge cache is still limited.

Cache admission by users’ preference has been validated by
many works. Researches [30], [24], [23] show that, although
the request pattern of a single video object is highly irregular,
the users’ preference for video topics (e.g., videos in the same
category or the same author) are much more constant, thus
is much easier to be predicted. So they try to learn users’
preferences for videos. Then, whether a video is admitted to
cache or not depends on whether it is under users’ preference.

Currently, there are existing approaches of preference mod-
eling in video caching ([30], [19], [24], [23]), but most of
them are individual preference learning methods. They rely
on a client-side logic to learn each end-user’s preference, and
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then an edge cache fetches the information from end-users.
Two fatal issues limit their deployment in the real-world. First,
not all users are willing to share their preference information
due to privacy and ethical issue. Second, as far as we know,
currently there is no technical support for an edge cache to
fetch the preference information from an end-user in the video
streaming process.

In this paper, we propose PrefCache, a novel cache ad-
mission policy, which utilizes a common preference learning
model to improve the performance of an edge cache. With
PrefCache, an edge cache learns the common preference of
all users in its service area, rather than each user’s individual
preference, thus can work independently from end-users. First,
all videos are grouped by some preference-related features
(e.g., categories, video authors, duration). Then, PrefCache
learns the users’ preferences for each group of videos by an
unsupervised learning model. Finally, PrefCache admits videos
based on whether the groups they belong to are under users’
preferences. For the cache eviction part, we directly apply
LRU policy due to its simplicity and efficiency.

We make three contributions in the design of PrefCache:

• First, to enable an edge cache to be aware of preference-
related information of a given video object, PrefCache
sets up a connection to video providers to proactively
collect the information, which enables PrefCache to work
independently from end-users (§IV).

• Second, to learn users’ preference with a power-
constrained edge node, PrefCache proposes a tree-
structure learning algorithm to highly compress the pref-
erence model (§V).

• Third, to efficiently adjust the cache admission
when users’ preferences change, PrefCache presents a
weighted-exploration admission algorithm. Once users’
preferences change, PrefCache admits new groups of
videos and evicts some old groups. In this process,
PrefCache proposes a weighted reward function for each
admission choice to avoid some choices that lead to a
significant cache replacement. This enables PrefCache to
keep high cache performance during the cache admission
adjustment (§VI).

The evaluation shows that in the edge video caching
scenario, PrefCache improves the cache hit ratio (the ratio
between the number of requests being satisfied by cache and
the number of all requests) by up to 12%, while requiring
92% less CPU overhead and 98% less memory overhead than
state-of-the-art cache policies.

This paper is organized as the following. §II explains the
problem of current edge caching and why we need a cache
admission based on preference modeling. §III presents an
overview of our system PrefCache. §IV presents our user-
independent information collector. §V presents our model to
learn users’ preferences. §VI presents our algorithm to make
cache admission decisions in real-time. §VII presents the
implementation details. In §VIII we show the evaluation of
the proposed PrefCache. We present some related work in §IX.
In §X we discuss some limitations of our work. Finally, we
conclude this work in §XI.

II. MOTIVATION

A. Video caching on the network edge

At present, video delivery is the dominant traffic in the
network [4]. In 2022, more than 82 % of network traffic will
be video traffic, and this number will increase to 90 % by the
year 2025. In video delivery, reducing network delay is one of
the key factors of improving users’ quality of experience (e.g.,
significantly reduce the playback latency [41]). As a result,
video caching is pushed from back-bone CDN node to edge
network to provide end-users a low-delay video delivery [7],
[40].

Compared with back-bone CDN nodes, the storage space of
an edge cache is much smaller and the video traffic is highly
irregular, which makes existing cache policies designed for
CDNs inefficient on the network edge [30].

Pattern-based cache policies such as first in first out
(FIFO) [9], least recently used (LRU) [10], least frequently
used (LFU) [57] and their variants [51] have been widely
deployed in the CDN caching, where there are abundant
computing resources and they serve end-users in a large
area. These methods directly utilize request patterns (e.g., the
time interval between two requests of the same object, the
recent number of requests for an object) to decide whether to
admit or evict a video object. However, they do not fit the
edge network well due to irregular request patterns, and they
may suffer major performance degradation caused by frequent
cache replacement [30].

Recently, popularity learning approaches have been pro-
posed in video object caching. They utilize the request patterns
of video objects to learn their popularity, and then admit
popular objects and evict unpopular ones. These methods fall
into two categories: (1) popularity distribution learning ap-
proaches [25], [49], [20] assume that video popularity subjects
to a uniform distribution, and then try to learn this distribution
and explore the optimal caching decisions. (2) popularity trend
learning approaches [14], [18], [47], [39] recognize that on
the network edge, the popularity of each video is changing,
but they assume that it is possible to learn the trend of
popularity change for each video object. Then videos are
admitted or evicted according to their predicted popularity.
The above assumptions usually make sense in back-bone CDN
caching, but they are not true for edge caching because the
popularity of videos on the network edge is changing with
high randomness [40], [6]. As a result, the video popularity
they learned is inaccurate and their cache performance is still
limited.

B. Users’ preferences for single video objects and video topics

Among the existing solutions we presented in §II-A, one
common design choice is that all those cache policies are item-
wise: they analyze the request pattern for each single video
object, then execute cache admission or replacement for each
video object separately. Therefore, their weaknesses are the
same: when the item-wise request pattern can not be well-
modeled, their cache performance drops significantly.

Our intuition is that, although the popularity of a single
video object can be highly irregular on edge, when we group
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Fig. 2: Temporal popularity change of top 10% videos and top
10% video topics in 60 minutes.

videos of similar topics, users’ preference for the video groups
is much more constant. For example, a user is watching a
TV play one episode by one episode. When one episode is
finished, the user may not watch it again, but it is most
likely that she will continue watching the next episode. In
this scenario, the video popularity of every single video is
changing, but the video popularity of this set of TV play keeps
constant. As a result, by clustering similar videos into one
group, one can build a model to learn the users’ preferences
of each group of videos. Thus, a video is admitted or not
depending on whether the group it belongs to is under users’
preference.

To prove our intuition, we present our data analysis for
users’ preferences on single video objects and video topics.
We collect some real video request traces of Bilibili [3], one
of the biggest video providers in China. The data collection
details are presented in Appendix A.

Key Observation: Users’ preferences on video topics are
much more constant than that on single videos. We compare
the popularity persistence of video objects and videos grouped
by topics. As shown in Figure 2, we pick 10% most popular
videos at a moment. Then, we group videos by topics and then
pick 10% most popular topics at the same moment. We record
their temporal popularity change in the following 60 minutes.
The popularity of the top 10% objects drops dramatically from
58% to only 12.6% in 30 minutes, while the popularity of the
top 10% topics keeps much more constant, which is randomly
floating between 34.6% and 47.2%.

In addition, we make a CDF gram of their popularity in
the following 24 hours. Figure 3 shows that, the number of
video requests for the top 10% topics keeps generally stable,
which makes up 31% to 48% of total video requests. On the
contrary, the video requests for the top 10% videos change
dramatically, which makes up 10% to 58% of total video
requests. Moreover, they become not-so-popular videos most
of the time (their request ratio is below 40% in more than
80% of the time).

Based on the two facts above, we can conclude that the
popularity of video topics is much more constant, thus is much
easier to be predicted.

Insight: caching videos by preference groups achieves
higher cache performance than caching videos by objects!
After video grouping by preference-related features (e.g.,
video topics), preference prediction for a video group is much
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Fig. 3: CDF gram of popularity statistic of top 10% videos
and top 10% video topics in 24 hours.

easier than that for single video objects. Therefore, as a sharp
difference with previous work, we want to design a cache
policy based on users’ preference modeling: we group videos
by some preference-related features, learn users’ preference of
each video group, so as to cache them by groups, rather than
by single video objects.

C. Challenges: Enabling an edge cache to learn users’ pref-
erence

Currently, there are already some existing researches about
end-users’ preference modeling in cache policy design [30],
[24]. However, most of these approaches learn users’ indi-
vidual preferences. They rely on a client-side logic to learn
each end-user’s preference, and then an edge cache fetches
the information from end-users. As a result, the requirement
of client-side logic modification and some privacy issues make
them difficult to be deployed.

We argue that to enable an edge node to cache videos based
on users’ preference, it is important to build a preference
learning model on the network edge, instead of on the client-
side. An edge cache should be able to adaptively learn users’
common preferences in its service area without any help
from end-users. To achieve this, we face three new technical
challenges:

• How can an edge cache be aware of preference-related
information of a video? In our approach, preference-
related information (e.g., topics, video authors) of videos
is necessary. On the one hand, when a video request
arrives at the edge cache, its preference-related infor-
mation is used to build our preference model. On the
other hand, when a video object arrives, the edge cache
decides whether to admit it based on its preference-
related information. However, In current video streaming
architecture, a video is requested only by HTTP requests.
Preference-related information of the requested video is
not provided by end-users. As a result, an edge cache
should collect this information on its own.

• How to learn users’ preferences in real-time with
a power-constrained edge node? A preference model
on the network edge takes inputs from many different
users, whose preference may be distributed across a huge
feature space. However, unlike a back-bone CDN node,
an edge cache is usually power-constrained [40], [6]. How
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Video Features Under  users’ 
Preferences?

Admission

Category Author Duration

Music Video Alice 0-10min Yes

Music Video Alice 10-30min No

Sports Video Alice 0-10min No

Music Video Bob 0-10min No

Sports Video Bob 10-30min No

Fig. 4: An example of PrefCache.

to efficiently learn their preference in real-time among
this huge feature space is a challenge.

• How to efficiently explore the cache admission when
users’ preference changes? Although users’ preferences
do not change with an extremely high frequency, we can
not regard it as a constant. Adjusting the cache admission
decisions based on the changing users’ preference is a
classical multi-arm bandit problem that can be solved by
explore & exploit process [28]. However, exploring cache
admission decisions on an edge cache leads to serious
problems: when a cache decides to admit a different set
of videos, it needs to first evict existing ones. This leads
to serious I/O overhead and degradation of hit ratio during
the cache replacement process, which is unacceptable for
an edge device. How to minimize the cache replacement
in the cache admission exploration is a challenge.

III. OVERVIEW

In this paper, we proposed PrefCache, a novel cache admis-
sion policy that utilizes users’ preference for groups of videos
to decide which videos can enter the cache storage.

An example of how PrefCache works: As shown in
Figure 4, each video has some preference-related features such
as category (e.g., movies, cartoons, or sports videos, which
represent the topic of a video), author, and duration. Suppose
Alice is a famous singer, her short music videos are preferred
by many users. Now a new music video of Alice arrives at an
edge node. PrefCache checks its features and finds that this
video’s category is Music, its author is Alice, and the duration
is short. According to PrefCache’s preference model, the video
group (“Music + 0-10min + Alice”) it belongs to is under
users’ preference. Therefore, this video is admitted to enter
the cache. Similarly, when a sports video from Bob arrives at
the edge cache, it is not admitted to the cache because it is
not preferred by most users.

To address the key challenges listed in §II-C, our system
has three design choices (Figure 5):

• Information collection by User-Independent Informa-
tion Collector (§IV): In most video providers, each video
object is coupled with some tags (e.g., category, author,
duration) in its corresponding video information page,
and these tags are highly related to users’ preference.
Therefore, we build a request listener on edge cache.
Once receiving a video request, the edge node creates
a paralleled request to fetch these tags from the video
provider, instead of collecting them from users.

Preference 
Learning Tree 

(§V)

Weighted-Exploration
Admission 
Model (§VI)

Client Video provider

Edge cache

Information
Collector (§IV)

Features
Users’ 

Preference

Listened by Cache admission 
decision

PrefCache

HTTP 
request/response

HTTP 
request/response

Fig. 5: System overview of PrefCache.

• Preference modeling by Preference Learning Tree
(§V): Inspired by decision tree [50], we design a tree-
structured model to learn users’ preferences with high
efficiency. Different from classical decision tree ap-
proaches, we design a dynamic node pruning and branch-
ing process, which enables an efficient online model
compression.

• Real-time cache admission by Weighted-Exploration
Admission Model (§VI): We present an explore & exploit
method which dynamically admits the videos under users’
preference. Different from traditional solutions, we design
a new reward function to limit some exploration choices
which cause a significant change of cache admission
decisions, thus reduces the cache replacement in the
learning process.

IV. PREFCACHE: USER-INDEPENDENT INFORMATION
COLLECTOR

To admit videos based on users’ preferences, the first
problem is: given a video request or a video object, how can an
edge node find its preference-related features. Based on current
video streaming architectures (e.g., DASH [54], HLS [1]), we
can only get a video’s technical information from their media
description files, such as resolution, duration, available bitrate,
the number of soundtracks. However, preference-related fea-
tures (e.g., author, topic) are not available.

To collect these preference-related features, existing ap-
proaches build an information collector to communicate with
end-users. When end users send a video request, it also
provides the necessary features coupled with the video (e.g.,
category) and users (e.g., age, gender). However, this requires
the modification of client-side logic. They are difficult to be
deployed in the real world due to compatibility and privacy
problems [24].

Our intuition is that users’ preferences can be well-
expressed only by information about videos, which can be
fetched from video providers. It provides PrefCache an oppor-
tunity to work independently from end-users. In this section,
we show that there are available video features on the video
provider, which can be utilized to learn users’ preferences
(§IV-A). Then we present our process for an edge cache to
proactively collect them (§IV-B).
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Fig. 6: Users’ preferences for videos grouped by different
features. We apply popularity (Pop. for short in the figures)
to represent users’ average preferences to videos in a group,
which is calculated by the number of requests to videos in the
group divided by the number of different videos in the group.

……
<a class="yt-simple-endpoint style-scope yt-formatted-string" spellcheck="false" 
href="/channel/UCupvZG-5ko_eiXAupbDfxWw" dir="auto">CNN</a>
……
<yt-formatted-string id="text" class="style-scope ytd-toggle-button-renderer style-text" 
aria-label="30,729 likes">30K</yt-formatted-string>
……
<a class="yt-simple-endpoint style-scope yt-formatted-string" spellcheck="false" 
href="/results?search_query=%23News" dir="auto">#News</a>
……

AuthorLikes

Category

Fig. 7: A piece of HTML file from a video information page
on Youtube.

A. Available preference-related features on video providers

For almost all video providers, given a video, there are
some tags on the video page, representing some features of the
video. For example, in Youtube [5], each video has information
like uploading date, author, duration, times of view in history,
the number of comments, subscribers, likes, and dislikes on
the video information page. In Bilibili [3], other than the above
tags, there are some more tags that can reflect the category of
the video, such as games, education, music.

Figure 6 shows that these tags are highly related to users’
preferences. We use the same dataset as that in §II in this
analysis. In Figure 6(a), we group all video objects by cate-
gories. We can see that in the most popular category, a video
object has 356 requests in our traces on average, while in
the least popular category, a video has only two requests on
average. Also, the video author is an important factor of users’
preferences. The most preferred video author has over 104

requests for each video, while the most unpreferred author
has only one. Similar conclusions can be derived from the
result of video duration.

Given a video request, we can find these preference-related
features in the following steps:

• First, there is a simple relationship between the URL
of the video object and the video information page. For
example, on Youtube, a video has the following URL:

https://youtu.be/qbrKzpwZSRo

With a simple URL transformation, its corresponding
information page (an HTML file) can be fetched by
requesting a similar URL:

https://www.youtube.com/watch?v=qbrKzpwZSRo

• Second, on the video information page, the HTML file,
all the preference-related features can be found. With a
keyword extraction, it is possible to get all of them, as
shown in Figure 7.

B. Process flow of information collector

With the above insights, we design our information collector
which fetches the preference-related features from the remote
video provider. It works in the following process:

• A listener is set in the edge cache. Once the edge cache
receives a video request, the listener generates a copy of
the requested URL.

• Based on a string transformation, a request sender gen-
erates the URL of the corresponding video information
page, and then sends the HTTP request for this video
page to the video provider.

• When the video page is back, a keyword extractor gets
all the video features related to this video.

The design of our information collector has two benefits.
(1) Since the size of a video information page (usually less
than 100 KB, we put a sample in [2]) is much smaller
than that of a video object (usually 100 MB to 3000 MB),
this method does not produce more network traffics. (2) Our
method is transparent to both end-users and video providers.
For end-users, they request a video just by sending HTTP
requests, which is the same as they request a video without our
architecture. For a video provider, it needs nothing more than a
web server which can response HTTP requests. Therefore, our
method is light-weight and naturally compatible with existing
video streaming architectures.

V. PREFCACHE: REAL-TIME PREFERENCE LEARNING BY
PREFERENCE LEARNING TREE

In this section, we present the design of our Preference
Learning Tree (PLT). PLT utilizes some content features
collected by Information Collector (§IV) to represent users’
preference for videos (we call them preference-related fea-
tures), and learns which features are under users’ preference.
First, we introduce how PLT learns users’ preferences (§V-A).
Then, we introduce our method to compress the huge feature
space (§V-B).

A. Learn user preference by PLT

PLT proposes a tree model to group similar videos by
preference-related features, and learn users’ preferences for
each group of videos. PLT utilizes three features: (1) category,
(2) author, and (3) video duration. An example of PLT is
shown in Figure 8. PLT is a tree with four levels. Level 0 (root)
represents the video service provider. Level 1, 2, and 3 group
videos with different categories, authors, and durations. In this
tree, each node represents a feature combination. Especially,
each leaf node (we mark them in red in Figure 8) represents
a group of videos.

For each node i (which corresponds to a feature combina-
tion), three key values are maintained as the node information:
(1) the number of requests for videos under this feature com-
bination in current time-slot t, denoted by fi,t, (2) the number
of cache-hit requests (the requested video is locally stored in
the edge cache) for videos under this feature combination in
current time-slot t, denoted by hi,t, and (3) average hit ratio of
all videos under this feature combination in current time-slot
t, denoted by ri,t.
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<10min 10-30min >30min

Alice Bob Alice Bob Cathy

Level 0: root

Level 1: category

Level 2: duration

Level 3: author

Leaf node
Non-leaf node

Fig. 8: Structure of PLT.

Request frequency fi,t

Hit ratio ri,t

R

F

User preferred

Not 
user preferred Unsure

Fig. 9: Definition of whether a group of videos is under users’
preference.

For each node i, the above information is updated using a
moving average algorithm [21]. When a new time-slot t + 1
arrives, the value of fi,t+1 is updated as the weighted average
of two parts: the previous request frequency fi,t, and newly
increased requests in the new time-slot ∆fi,t+1:

fi,t+1 = αfi,t + β∆fi,t+1 (1)

Similarly, we update the value of hi,t+1 by:

hi,t+1 = αhi,t + β∆hi,t+1 (2)

Then, ri,t+1 can be computed by the ratio of cache-hit requests
to all requests:

ri,t+1 =
hi,t+1

fi,t+1
(3)

We notice that when computing fi,t+1 and hi,t+1, there
exists a trade-off between sensitivity and smoothness when
users’ preferences change, and this trade-off depends on the
value of α and β. When the value of α is larger, the value of
fi,t+1 and hi,t+1 react slowly when the users’ preferences are
actually changed. When the value of β is larger, they are more
sensitive to preference change, but it may suffer from bursts
and random fluctuations. In this paper, α is set to 0.33, and β
is set to 0.67, which is a common setting to keep a balance
of sensitivity and smoothness. The duration of each time-slot
is defined as 30 minutes.

Finally, given the above information of a leaf node i in PLT
(which corresponds to a video group), we can judge whether
videos in this group are under users’ preference (Figure 9).
Generally, there are three cases:

• User-preferred: ri,t ≥ R. A high hit ratio indicates that
the same videos are requested by users many times, thus
it is reasonable to believe that most videos in this group
are preferred by users.

• Not user-preferred: ri,t < R and fi,t < F . Low hit
ratio and request frequency indicate that few people are
interested in videos in this group.

• Unsure: ri,t < R and fi,t ≥ F . In this case, videos in
this group are requested many times but the overall hit
ratio is limited. This indicates that in this group, some
videos are really preferred by users, but others are not.
Therefore, users’ preference for this group of videos is
unknown.

where R and F are two constants that denote the threshold
of users’ preference. The parameter settings of these two
constants will be discussed in §VIII-E. Moreover, we further
discuss these three cases in §X.

B. PLT branching and pruning

In the real-world deployment on a power-constrained edge
node, the huge number of feature combinations make the size
of PLT unscalable. According to our investigation, Bilibili
has 69 different categories and more than 1.5 × 108 active
authors in 2017. To express all the feature combinations, PLT
needs more than 1010 nodes. Maintaining and updating the
information (e.g., cache hit ratio, request frequency) for such a
number of nodes leads to huge overhead. Therefore, we need
to provide this tree model the ability to compress the huge
number of feature combinations.

Fortunately, we do not need to branch all nodes in PLT
to level 3: PLT can be designed as an incomplete tree. For
example, suppose node “Sports + 10-30min” is under users’
preference according to our definition in §V-A, then all videos
with this feature combination are considered user-preferred
videos. Therefore, “Sports + 10-30min” already expresses
users’ preferences accurately. We do not need to branch this
node to the author level since it does not matter whether the
video comes from Alive or Bob.

We present our real-time PLT compression algorithm, which
only branches a node to the next level when users’ preference
is unsure, which corresponding to the third case we listed in
§V-A. In the beginning, the root is the only node in PLT. PLT
compression consists of only two rules: (a) node branching
and (b) node pruning.

• Node branching: For a node i in PLT, if the users’
preference on it is unsure (the third case in §V-A) and
the node i does not have child nodes, then i is expanded
to the next level.

• Node pruning: For a node i in PLT, if the users’ prefer-
ence on it is known (first two cases in §V-A) and i has
child nodes, then all child nodes of i are deleted.

These two rules are executed for each node in PLT period-
ically. In this way, PLT compresses the original 1010 video
groups to only 800 to 1900 video groups (see our discussion
in §VIII-E).
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VI. PREFCACHE: REAL-TIME CACHE ADMISSION BY
WEIGHTED-EXPLORATION ADMISSION MODEL

In PrefCache’s cache admission phase, given the users’
current preference for each group of videos we learned by PLT,
PrefCache is able to admit video objects under user-preferred
groups. However, although users’ preference does not change
dramatically, we can not regard it as a constant. Directly
admitting videos under users’ current preferences may lead to
cache performance degradation [33]. Moreover, to accurately
compute users’ preference for all groups of videos, we need to
admit them all into the cache to update the information (e.g.,
hit ratio) of corresponding nodes in PLT.

In this section, we present how existing approaches solve
the problem, as well as issues they have (§VI-A). Then we
present our Weighted-Exploration Admission Model (WEAM)
to explore the potential users’ preference in real-time (§VI-B).

A. Cache replacement problem in user preference exploration

In our cache admission scenario, given N video groups, we
need to choose K out of N groups and admit them to the
cache. Since users’ preference for video groups are changing,
the cache admission choices should be adjusted in real-time.
This has been well-modeled as the classical multi-armed
bandit problem [8], where each group is an arm of the bandit
and the cache hit ratio is the reward. In its basic form, top-
K groups are selected by an explore-exploit process, where a
fraction of groups is chosen to explore different options and
the rest exploit the best decision. To optimize the performance
in a dynamic network environment, some advanced methods
like UCB1 [12] are proposed which does not require explicitly
specifying the fraction of samples for exploration. Instead, it
transparently combines both the exploration as well as the
exploitation decisions.

Unfortunately, these classical methods lead to serious cache
replacement problem during the exploration. This usually
happens when the exploration process decides to choose a
video group that contains a huge number of video objects.
For example, once PrefCache decides to explore the “movie”
group, the cache will admit all movie videos. Naturally, the
group “movie” includes a lot of different video objects, and
not all movies are under users’ preference. After a short period
of time, PLT will find that not all movie videos are under
users’ preference, and PrefCache will make another admission
decision. In this process, most video objects in the movie
category are first admitted and then evicted, leading to a
serious cache replacement.

Our insight to solve the problem is that, in the exploration
phase, we should give priority to video groups which contain a
smaller number of different video objects. In PLT tree, a node
of high depth (e.g., “movie + Alice + 10-30min” is a level-
3 node) usually contains fewer different videos than a node
of low depth (e.g., “movie” is a level-1 node). As a result,
the depth in PLT can be regarded as an estimation of the
number of video objects included in a group. We can utilize
this information to weight the priority of each video group in
the explore & exploit process.

B. Weighted-Exploration Admission Model

We present Weighted-Exploration Admission Model
(WEAM), a new solution for the multi-arm bandit problem,
especially for the edge caching scenario. WEAM computes a
reward for each video group. Values of rewards are weighted
by not only the expected hit ratio of videos in the group
which represents users’ preference, but also the depth of the
corresponding node in PLT which represents the number of
videos in the group. Then, WEAM decides whether to admit
a video group to the cache according to its reward.

WEAM is executed at the beginning of each time-slot. It
has two main steps:

1. Reward computation for each video group. Given a
leaf node i (corresponding to a video group) in PLT, hi,t is the
recent hit ratio of videos under this group (we defined in §V),
then we define li as the depth of node i in PLT, and define ci
as the number of times i has been admitted in history. Then we
define the reward function F (hi,t, li, ci) of i as the following:

F (hi,t, li, ci) =
log(hi,t + δ1) log(li + δ2)

log(ci + δ3)
(4)

where δ1, δ2 and δ3 are three constant offsets. Notice that if a
leaf node i has never been chosen before, PrefCache sets its
hit ratio hi to its parent’s hit ratio by default. Based on this
reward function, WEAM prefers to admit videos group with
higher hit ratio, fewer times of being admitted before, and
higher depth in PLT. Compared with classic explore & exploit
process which only considers each group’s hit ratio and the
times of being chosen before, in WEAM, depth of a node in
PLT is considered as a new factor of the reward function. For
example, “sports + <10min + Alice” has a higher priority
for exploration than “movies”. This prevents WEAM from
admitting a huge group of videos at one time, thus prevent
the potential cache replacement.

2. Admitting video groups with the highest reward.
WEAM chooses K video groups with the highest rewards
defined in equation (4), and admit them to enter the cache.

The duration of each time-slot is set to 30 minutes, the same
as that of PLT (§V).

VII. IMPLEMENTATION: PREFCACHE WORKFLOW

We implement PrefCache based on C++ without requiring
any extensions. Our implementation is publicly available with
open access at its GitHub repository [2].

PrefCache is implemented as a finite-state machine which
has four stages (Figure 10):

Stage 0: Initialization. In the initialization phase, Pref-
Cache needs to set up the initial settings for both PLT and
WEAM. For PLT, the root is the only node of the tree,
representing the only one group which contains all videos of
the video provider. Node information like request frequency,
times of cache hit are all set to zero. For WEAM, it will admit
the group contains all videos to enter the cache.

Stage 1: PLT update. After initialization, PLT checks each
node in the tree with the branching rule and the pruning rule
(§V). Then PLT updates the set of all leaf nodes, each of them
representing a group of videos.
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Fig. 10: Four-stage workflow of PrefCache.

Stage 2: WEAM update. Once PLT finishes an update,
WEAM will update its admission decision. Given all groups
of videos provided by PLT, WEAM chooses K of them. All
videos under these nodes will be admitted to the cache, others
are not. (§VI)

Stage 3: Cache admission while waiting for the next
time-slot. Finally, we provide real-time cache admission to
each video object, by simply checking if its feature combina-
tion is chosen by PrefCache. These operations are simple and
can be executed very fast. When the next time-slot arrives,
PrefCache goes back to Stage 1 to update PLT (and then goes
to Stage 2 to update WEAM). In practice, the duration of one
time-slot is set to 30 minutes.

VIII. PERFORMANCE EVALUATION

In this section, we show that:

• In simulated request traces, PrefCache improves the cache
hit ratio by 1.4% to 12%.

• In real request traces, PrefCache improves the cache hit
ratio by 2.5% to 11.6%.

• PrefCache requires 92% less computational and 98%
less memory overhead than state-of-the-art learning-based
cache algorithms.

• The parameter settings of PrefCache can be different to
adapt to different scenarios. And we discuss the principle
of edge caching according to our parameter optimization.

A. Methodology

We build a test-bed to evaluate the performance of an edge
cache with different admission strategies. In our scenario, all
requests are video requests, and they will be all sent to this
edge node. If a cache hit happens, the request will be satisfied
immediately. If a cache miss happens, the request will be
forwarded to the video provider, and the file is sent back with
the same path, passing by the edge caching node. The edge
cache node decides whether to admit the video object based
on its admission policy.

Baselines: We compare PrefCache with two caching poli-
cies: (1) Second hit [44], a frequency-based caching policy,
which admits a video object when the video arrives at the
cache at the second time. (2) RL-Cache [33], a state-of-
the-art deep-learning-based cache policy, which is proposed

in 20191. This approach applies a reinforcement learning
algorithm to learn the probability of cache admission to each
video object based on the recent request history. All the above
methods apply classic LRU as the eviction policy. To make
a fair comparison, we apply LRU as the eviction policy for
PrefCache as well. To illustrate our potential gain, we also
evaluate the performance of pure LRU policy (which admits
all video objects to enter the cache, only running an LRU
replacement) as a reference point. Notice that we mention
several cache policies based on individual preference learning.
The performance of these algorithms highly depends on users’
private information (like gender, age). However, as far as we
know, there is no technical way to fetch this information by
an edge cache. So they are not evaluated in this comparison.

Simulated request traces: Six simulated request traces are
generated following Zipf distribution: pi = c

iα , where pi is the
popularity of the ith most popular video, c is a constant. We set
the value of α to six different values (0.2, 0.4, 0.6, 0.8, 1.0, 1.2)
for the corresponding six traces. Each trace contains 107

requests to 105 different videos.
Real request traces: We collected 24 hours of HTTP

request traces from Bilibili (including 1.5×106 requests to over
2.5 × 104 different videos). Details of the request collection
are presented in §A. The request traces are available at [2].

Default experiment settings: In our evaluation, we test
PrefCache’s performance under different scenarios, including
different storage ratio (the ratio of cache storage and the
total size of all videos) and request distribution (Zipf dis-
tribution with different α). In each experiment, we change
one dimension of setting and keep another dimension as
the default setting. The default storage ratio is 8%. In our
simulated experiments, the default request distribution is a Zipf
distribution with α = 0.8.

PrefCache parameter settings: We present the parameter
settings for §VIII-B, §VIII-C, and §VIII-D here. For the PLT
training phase (§V-A), suppose F0 is the request frequency of
all videos in the current time-slot, we set F = 0.01F0, and
set R = 60%. For the parameter K in the admission phase
(§VI-B), basically when the value increases, more videos will
be admitted to the cache but more cache replacements will
happen. The value of K is optimal when the admitted videos
can fulfill the cache space without causing frequent cache
replacement. We set K = 10% according to our practice. As
for the formula (4) in §VI-B, we set δ1 = 0.1, δ2 = 1 and
δ3 = 1. All the above settings will be discussed in §VIII-E.

B. Hit-ratio under simulated trace

Hit ratio v.s. cache storage ratio: Figure 11(a) shows the
performance comparison under different storage ratio (the ratio
of cache storage and the total size of all videos). PrefCache

1RL-Cache is an algorithm which requires extremely powerful devices (e.g.,
the authors evaluate its performance based on a computer with a 16-cores
CPU and a 3584-cores GPU). It is not practical to work on an edge or ad-hoc
device. Fortunately, we find that their training process can be highly optimized.
We re-implement their algorithm and apply K-means [27] clustering model
instead of back-propagation [35] model in the parameter training step. This
significantly reduces the device requirement and get even better performance
than its original implementation. Our implementation can be found in [2].
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Fig. 11: Performance comparison of LRU, Second Hit, RL-Cache and PrefCache under simulated request traces.
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Fig. 12: Performance comparison of LRU, Second Hit, RL-Cache and PrefCache under real request traces.

performs consistently better than other cache policies, improv-
ing the average cache hit ratio by 2.4% compared with RL-
Cache, by 2.5% compared with Second Hit and by 10.4%
compared with LRU.

Hit ratio v.s. the density of popularity distribution: Fig-
ure 11(b) shows the performance comparison under different
request distribution. Under a Zipf distribution pi = c

iα (we
defined in §VIII-A), when the alpha is large (a dense request
distribution), these four algorithms perform roughly the same.
PrefCache out-performs other admission policies when the
request distribution is sparse (e.g., α ∈ [0.2, 0.8]), just like the
real-world request distribution on the network edge [40], [6].
The performance of RL-Cache is on par with that of Second
Hit, and LRU is the worst.

Hit ratio v.s. time: Figure 11(c) compares the cache hit
ratio under the 24-hour simulated request traces. Among all
algorithms, LRU performs similarly all the time and the other
three algorithms have a very short learning process. This is
because a short period is required for Second hit to warm
up the BloomFilter table [52], for RL-Cache to learn the
parameters of cache admission, and for PrefCache to learn
the users’ preference. After the learning process, all admission
policies arrive at a stable performance level.

We also notice that given an arrival order of object requests,
it is possible to simulate different request arriving rates. For-
tunately, all cache policies we compared are event-driven, not
time-driven. Therefore, a cache admission or a cache eviction
only happens when a new video object arrives. As a result,

when the order of request arrival is fixed, the behavior of a
cache is fixed, regardless of whether all requests arrive within
1 minute or 10 minutes. Therefore, basically the arriving rate
does not influence the hit ratio.

C. Hit-ratio under real trace

Hit ratio v.s. cache storage ratio: Figure 12(a) shows
the performance comparison under different cache storage.
Compared with the result in Figure 11(a), the hit ratio for all
the compared algorithms becomes slightly lower. The reason is
that on the network edge, the request pattern becomes irregular
and dynamic. So the video popularity is more difficult for
algorithms to learn.

Hit ratio v.s. time: Figure 12(b) shows the CDF gram
of the hit ratio under 24-hour real-world request traces. Pre-
fCache reaches 2.5% higher hit ratio than RL-Cache, 6%
higher than Second Hit and 11.6% higher than LRU. We
also notice that RL-Cache performs better than Second hit
(which is on par with Second hit in our simulated traces)
because the users’ request frequency becomes more dynamic,
traditional frequency-based admission approaches are not able
to accurately estimate the popularity of videos. According to
the evaluation in [33], RL-Cache has outstanding performance
in web content caching scenario, but its performance gain is
relatively smaller in video caching scenario, compared with
AdmitAll and Second Hit, especially in small cache storage.
This result is consistent with our evaluation.
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Fig. 13: Comparison of average CPU occupancy when running
cache admission policies.
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Fig. 14: Comparison of average memory usage when running
cache admission policies.

Component-wise improvement: Figure 12(c) runs a
component-wise analysis to evaluate the contribution of each
technique in PrefCache by adding one of them at a time to
the LRU baseline (with LRU eviction policy). Conceptually,
one can get to PrefCache from the baseline in two steps.

First, we add our proposed user preference modeling (§V),
and directly admitting the top K% video groups (without the
explore & exploit process we present in §VI). This improves
the cache hit ratio by 4.8% to 7.1%.

Then, we add our proposed explore & exploit based cache
admission policy (§VI). This further improves the cache hit
ratio by 3.0% to 4.5%.

D. System Overhead

Next, we examine the overheads of LRU, Second Hit, RL-
Cache, and PrefCache. Here, we use a laptop to perform as
an edge cache (MacOS Mojave version 10.14.5, 2.7 GHz Intel
Core i5 CPU, 16 GB 1867 MHz DDR3 Memory, Intel Iris
Graphics 6100 1536 MB).

CPU overhead: Figure 13 shows the CPU overhead of four
algorithms. LRU is the most efficient one because it does not
need to do any extra computation other than admitting all
videos and executing LRU replacement. Second Hit requires
a real-time update to the BloomFilter table. PrefCache is a
learning-based algorithm but it proposes a light-weight PLT
and WEAM training process. RL-Cache is a Monte-Carlo-
based algorithm [46] which requires a lot of sampling and
computation.

Memory overhead: Figure 14 shows the memory overhead
of four algorithms. LRU only needs to record the recency
of each video object in the cache. Second Hit requires a
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Fig. 15: The optimal number of leaf nodes in PLT (which can
achieve the highest cache hit ratio) under Zipf distribution with
different values of α. We highlight the optimal number of leaf
nodes in each case. Cache storage ratio = 8%

BloomFilter table to record the request frequency for each
video object (regardless of whether it is currently in the cache
or not). PrefCache’s storage overhead mainly comes from PLT.
Since PLT compress the feature combinations to a limited
number of leaf nodes, it does not require much memory
to store the model. RL-Cache requires significantly higher
memory allocation for its admission model.

From the above overhead evaluation, we can see that
although PrefCache is a learning-based cache policy, its com-
putation and storage overhead is just on par with classic
algorithms. It is much more deployable on the network edge
than existing learning-based algorithms.

E. Parameter analysis of PrefCache

Now, as the final part of our evaluation, we present how
parameters of PrefCache influence the cache performance.

The optimal number of leaf nodes in PLT: As is shown
in §V, the number of leaf nodes in PLT can be controlled by
two parameters: R and F . By decreasing the value of F and
increasing the value of R, the node branching can be more
aggressive and the node pruning can be more defensive, thus
the number of leaf nodes is increased. Similarly, adapting these
parameters in another direction, we can decrease the number
of leaf nodes. A PLT with inadequate leaf nodes is not enough
to express users’ preference, but too many leaf nodes may lead
to over-fitting of users’ preference. Both situations degrade the
performance of PrefCache.

Figure 15 shows the optimal number of leaf nodes with
different request distributions. A dense request distribution
indicates that users’ preference falls in a limit number of
videos, so their preference is easy to be modeled. On the
contrary, a sparse request distribution indicates that users’
preference is difficult to model, which requires a large model
size.

The order of PLT levels: In all the performance evaluation
parts (§VIII-B, §VIII-C, and §VIII-D), PLT is structured as the
following order: level 1 - category, level 2 - duration and level
3- authors. Now we also try all the other orders.

Table I shows the number of leaf nodes and the hit ratio
under different orders of video grouping. We keep the value
of R and F as default (§VIII-A). The result shows that the
order generally does not matter with the cache performance,
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L1 L2 L3 Leaf nodes Hit ratio (%)
Category Duration Author 832 52.4
Category Author Duration 905 52.3
Duration Category Author 982 52.3
Duration Author Category 1839 51.8
Author Category Duration 840 52.4
Author Duration Category 1788 51.9

TABLE I: The number of leaf nodes and hit ratio of different
PLT structures.
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Fig. 16: The optimal admission ratio K (admitting K video
groups into the cache) under different cache storage. (Video
requests follow a Zipf distribution with α = 0.8)

0.2 0.4 0.6 0.8 1.0 1.2
Alpha

10

15

20

25

30

Th
e 
op

tim
al
 a
dm

iss
io
n 
ra
tio

 (%
)

Fig. 17: The optimal admission ratio K (admitting K video
groups into the cache) under request distribution of different
values of α. (Cache storage ratio = 8%)

but some orders require more memory (e.g., to store more leaf
nodes) than other orders.

Admission ratio: In the admission phase (§VI), videos
under top K video groups are admitted to enter the cache.
The selection of the value K depends on both cache storage
and the density of popularity distribution.

Figure 16 shows the relationship between cache storage
and the optimal setting of K. The result indicates that when
the cache storage becomes larger, the optimal value of K
increases. This is because a cache with larger storage is
capable to satisfy the preference of more users. An additional
observation is that the growth of K is a little faster than the
growth of the cache storage. When the cache storage increases,
it begins to admit some not-so-popular videos. Our PLT’s
preference modeling to these videos is of less accuracy, so
it admits more videos to be robust.

Figure 17 shows the relationship between the value of α
and the optimal setting of K. The result indicates that when
the video request distribution becomes sparse, the optimal
value of K increases. This is because, in this situation, users’

preference falls in more different video groups, rather than
focusing on only a few top video groups.

What we learned from our parameter optimization:
According to our parameter settings for PrefCache, we get
the following insights.

• Different levels of model complexity are required by
different request distribution. Generally, when users’ pref-
erences focus on a few popular videos, a simple model
performs better than a complex model. A complex model
has advantages usually when the users’ preference is
on more topics. As a result, in the future design of
cache policies, analyzing the request distribution can be
useful for designing an appropriate cache algorithm for a
specific scenario.

• Users’ preferences can be modeled in different ways. As
shown in Table I, different orders of video grouping do
not matter to the overall cache performance. Although
some of them require more memory, the difference is not
significant. This indicates that there should be methods
other than our proposed PLT to model user preference on
an edge cache. How to describe users’ preference remains
an open problem.

IX. RELATED WORK

Video Caching Network: Since video traffic becomes the
dominant traffic in the network, an increasing number of
researches focus on optimizing cache policies specifically for
video delivery. [43], [30], [11], [37] discussed some key
factors which influence cache performance (user mobility,
content popularity, cache capacity, cache strategy, geographic
regions, and scenarios). [55], [38], [56] surveyed how to design
a cache policy that can improve the quality of adaptive video
streaming. Most of them are based on CDN caches. Compared
with these works, we focus on designing a cache policy for
video objects on the network edge.

Cache Admission policy: A complete cache policy usu-
ally consists of two modules: cache admission and cache
replacement. Cache admission for general content items is
well studied by researchers since 1994. They utilize item-wise
request patterns to admit content objects in different ways.
(1) frequency-based cache admission (2Q [32], TLFU [22]
and BloomFilter [44]) admit objects based on their request
frequency, and (2) size-based cache admission (Threshold [6],
LRU-S [53], AdaptSize [17]) admit objects based on their size.
Their difference is mainly on the implementation and their
cache tuning methods ([45], [36], [29], [59], [13], [16]). Com-
pared with these approaches, PrefCache has two differences
in design choices. First, PrefCache is optimized for video
caching, not for general content object caching. Second, all
the above methods are based on item-wise request patterns.
PrefCache learns users’ preference for video groups rather than
individual video objects.

Content-based recommendation: Content-related features
have been widely utilized in recommendation systems [48],
[34], [42], [15]. In these works, an algorithm first analyzes
the content-related features and learns the user’s preference
of them, then it recommends some content objects that the
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user may be interested in, or proactively requests content
objects and stores them in the cache on the client-side. If a
user requests an object which is pre-cached, the transmission
delay is much lower. However, in order to lower the delay,
the recommendation system needs much higher bandwidth
consumption and large cache storage to proactively request
content objects. It does not work on an edge caching system
because of the constrained bandwidth and cache resources. Our
work does not focus on how to request videos more than what
the user wants, but on how to block some unpopular videos to
save the cache space, which is fundamentally different from
the above works.

X. LIMITATIONS

PrefCache only considers static preference-related Fea-
tures: In PrefCache, all preference-related features are static
features (e.g., category, author, duration). In other words, once
the video is generated and uploaded to the video provider, its
features do not change. However, there do exist some other
preference-related features which are dynamically changing
for a given video object. For example, the number of “likes”
and “dislikes” (it will increase during the time), how long is the
time since it is uploaded (it also increases with the time passes
by). We believe these features are also helpful to learn users’
preferences for videos, so we do not claim that our model can
provide optimal preference modeling. Moreover, we will try
to model these dynamic features in our future work.

The side effect of the information collector: As stated in
§IV, PrefCache requires an Information Collector to download
metadata (e.g., preference-related features) from the video
provider. Although the bandwidth consumption is negligible
(the feature information is plain text, which is about 104

smaller than the video object itself), the technical complexity is
increased. As far as we know, the URL relationship of video
objects and video information pages is not the same for all
video providers. Moreover, a video provider may update its
URL naming rules for its video objects an information pages.
In this situation, PrefCache needs to be manually updated to
know the new URL relationship between video objects and
their information pages.

Limitations of preference learning by PLT: As described
in §V-A, PLT judges whether a group of videos is under users’
preferences by three heuristic rules. There is no guarantee
that following these rules can always find users’ preferences
accurately. For example, under a video group, both hit ratio
and request frequency is high, thus our PLT concludes that
this group of videos is under users’ preferences. However, a
counter-example is that there is a single video object with
extremely high popularity, and it increases the average hit
ratio and request frequency of the whole group, although other
videos under this group are not preferred by users.

Fortunately, our final goal is to improve the cache perfor-
mance, not to accurately find all users’ preferences. Our evalu-
ation results show that mis-accepting all videos in such a video
group does not significantly lower the cache performance, and
we do not claim our algorithm is an optimal method to do this.
We leave the refinement of our algorithm to our future work.

Source www.bilibili.com
Trace duration (h) 24

Total requests 1.5× 106

Videos being requested 2.5× 104

Video categories 69
Video authors 1.3× 104

Video duration (min) 1-189

TABLE II: Dataset summary

XI. CONCLUSION

In this paper, we revisit cache policies at the network edge.
Due to the irregular request distribution on the network edge,
current item-wise cache policies fail to predict the popularity
of videos, leading to a limited cache performance.

We find that compared with single video objects, the users’
preference for video topics is much more constant. We propose
PrefCache, which admits videos by users’ preference. Video
objects are divided into groups by preference-related features,
and a tree-structure learning algorithm is proposed to learn
users’ preferences. Moreover, an explore-and-exploit method
is applied to do cache admission in real-time. Experimental
results show the high performance of the proposed PrefCache.

APPENDIX A
DATA COLLECTION

Real HTTP request traces are collected from Bilibili [3], one
of the biggest video providers in China. We ran TCPdump on
two main routers in a large Internet Service Provider (ISP)
in China. Once a request arrives at the router, TCPdump
will listen and record it. Since we are aware of the network
topology of this ISP, we can figure out which edge router
a packet comes from according to its source and destination
IP address. Then we filtered all recorded requests to pick up
all HTTP requests for video contents of Bilibili (by checking
the protocol in TCP header and the URL in HTTP header).
Moreover, to collect preference-related information of these
videos, we also wrote a crawler program to download the
HTML files of video information pages coupled with these
videos. We collected 1.5 × 106 requests to over 2.5 × 104

different videos. The data summary is presented in Table I
and the dataset we collected can be found in [2].
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