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A Cost-Driven Top-K Queries Optimization
Approach on Federated RDF Systems
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Abstract—RDF (Resource Description Framework) is a model widely used to construct knowledge bases, while SPARQL (SPARQL
Protocol and RDF Query Language) is the standardized structured query language to manipulate RDF data. Recently, many data
providers have published their RDF datasets in their own autonomous sites and provided SPARQL query interfaces, called RDF
sources. In order to integrate multiple RDF sources, researchers put forward the federated RDF system to support the federated
SPARQL queries. However, existing studies can only support efficient basic queries but not top-k queries. Toward this end, we propose
a cost-driven top-k queries optimization approach in federated RDF systems, which can support both top-k queries for single variable
ordering and expression ordering. Firstly, we propose an optimized query decomposition method to decompose the federated query
into multiple subqueries. Secondly, while considering the top-k operator, we propose a cost model to evaluate the query cost and join
cost of subqueries. The optimal query plan can be obtained by the costed-based query plan generation algorithm. Finally, combined
with the characteristics of top-k queries, an incremental query plan execution strategy is developed to minimize the total query cost.
Experimental results show that the proposed method is effective, efficient and scalable.

Index Terms—Federated RDF systems, Query optimization, SPARQL, Top-k.
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1 INTRODUCTION

A S the standard organization model for Web of Linked
Data, RDF (Resource Description Framework) [9] has

been widely used in various fields. RDF represents data
as a triple in the form of <subject, predicate, object> or
<subject, attribute, value>. To manipulate RDF data, the
standardized structured query language, SPARQL (SPARQL
Protocol and RDF Query Language) [29], is released by
W3C (World Wide Web Consortium). In recent years, an
increasing number of data providers have published their
datasets using the RDF model. These datasets are often
maintained at their own sites, which provide the SPARQL
interfaces to support users to submit SPARQL queries. An
autonomous site with a SPARQL interface is called an RDF
source in this paper.

The federated RDF systems [8], [23], [33] are put for-
ward to integrate multiple RDF sources. Up to now, many
federated RDF systems [4], [19], [24] have been developed
and implemented the federated queries. In a federated RDF
system, different RDF sources cannot communicate with
each other directly. Thus, it is desired to develop a control
site to manipulate these RDF autonomous sources. The
famous federal RDF systems include the biological infor-
mation federal RDF systems with 57 RDF sources issued by
the European Molecular Biology Laboratory1.
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Since SPARQL is the query language designed for cen-
tralized RDF system, it cannot be directly executed on
federated RDF system. In a general method, for a federated
SPARQL query submitted by user, it is first decomposed
into multiple subqueries, which can be executed on the
corresponding RDF sources separately. Then, the results of
subqueries are joined together to obtain the final result.
Now, many works have been put forward to optimize the
SPARQL processing in federated RDF systems, but most
of them mainly focus on implementing and optimizing
the basic queries [13], [24], [32], [34] in federated SPARQL
systems. Few of them discuss how to evaluate the top-k
queries, which are queries returning k answers with the
highest rank order by utilizing a ranking function. There
are two common types of ranking functions, namely, single
variable and expression. For SPARQL, top-k queries can be
expressed by including the ORDER BY and LIMIT clauses,
as shown in Fig. 1 and Fig. 2.

Example 1.1. A top-k query example with single variable
ordering is shown in Fig. 1.

Fig. 1: A top-k query example with single variable
ordering: find the top three neighboring cities and its

attributes with the largest population for writers.
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Example 1.2. A top-k query example with expression order-
ing is shown in Fig. 2.

SELECT * WHERE{

?place  org:type <http://dbpedia.org/ontology/Place>.

?place dbpedia:areaLand ?areaLand.

?place dbpedia:areaWater ?areaWater.

?place owl:sameAs ?nytplace.

?nytplace nyt:associated_article_count ?newscount.

}ORDER BY DESC (?areaLand+?areaWater) LIMIT 3

Fig. 2: A top-k query example with expression ordering:
find the top three places and the count of its news with the

largest sum of land area and sea area.

Compared with the basic query, top-k query can quickly
provide users with the most concerned information. Espe-
cially, in the federated RDF system with a large amount of
data, efficient top-k query is more important. There exist a
few previous work [13], [32] can support top-k federated
SPARQL query, but they only support single variable or-
dering queries in a materialize-then-sort processing scheme,
which computes all the matching solutions (e.g. thousands)
even if only a limited number k (e.g. ten) are requested. It
leads to the huge query cost and network communication
overhead, especially for large federated RDF systems.

To support efficient top-k SPARQL queries for the single
variable ordering on federated RDF systems, an effective
top-k query optimization scheme is developed in the con-
ference version of this paper [12]. This paper extends our
previous work, and adopts a new optimization method
to support both single variable ordering and expression
ordering top-k SPARQL queries.

In summary, the proposed scheme has following mainly
contributions:

• We propose a query decomposition and source se-
lection optimization strategy, which allow to merge
some triple patterns with the same multiple sources
into one subquery. It can improve query efficiency by
reducing the number of remote requests.

• We construct a cost model and design a cost-driven
optimal query plan generation algorithm with dy-
namic programming, which can optimize the join or-
der by controlling the execution order and execution
strategy (serial and parallel) of top-k queries.

• We propose an incremental query plan execution
strategy to support efficient evaluation of top-k
queries. The strategy can effectively improve the
query efficiency by avoiding many unnecessary re-
sults.

• We implement a federated RDF system, named
FedTopKPro, which can support both top-k queries
for single variable ordering and expression ordering.
The experimental results on FedTopKPro show that
our method is much better than previous works with
effectiveness and total run time.

2 RELATED WORK

Top-k Query Optimization. Top-k query optimization is a
practical research, which has been well studied in relational

databases. For SPARQL, it is expressed by ORDER BY
and LIMIT clauses. The existing research studies [6], [22],
[26], [35] mainly focus on top-k query optimization over
centralized RDF system. Bozzon et al. [6], [22] improved
the efficiency of top-k query on RDF graph by extending
the SPARQL algebra and SPARQL-RANK. Wang et al. [35]
utilized the graph-exploration to further improve the query
efficiency instead of the join method. The works of Wang et
al. [37] and Yang et al. [38] are aimed at specific query types
(such as star query). Ihm et al. [18] improved the query
efficiency of top-k by building partition index. Jiang et al.
[20] quickly obtained query results by adopting heuristic
pruning and incremental algorithm.

SPARQL Query Evaluation in Federated RDF Systems.
According to the standard of W3C, SPARQL is only valid for
centralized RDF system. It can be running over federated
RDF system with some extra design. At present, there are
many federation RDF system [28], [30], [36] which can
support SPARQL basic queries. Harth et al. [14] and Prasser
et al. [28] converted a SPARQL query into a minimum
bounding boxes connection by using an index similar to the
R-Tree [7], named QTree, and then the RDF sources of each
triple in the SPARQL query can be obtained. DARQ [30]
obtained the relevant RDF sources according to an index
called service description, which describes which triple pat-
terns can be answered. Different from DARQ [30], HiBISCuS
[32] constructed the query graph into a directed labeled
hypergraph in the stage of determining RDF sources, which
further reduces the number of candidate RDF sources for
each subquery. SPLENDID [13] built an inverted index
based on the VOID (vocabulary of interlinked datasets)
of each RDF source. FMQO [25] further discussed how to
optimize multiple queries evaluation by rewriting the set of
input queries into a smaller set of rewritten queries. FedX
[34] transfered all triples in the query statement to all RDF
sources, and determine the relevant RDF sources through
ASK in SPARQL syntax.

These above methods were only efficient for basic
queries, but not for top-k queries. The conference version
of this paper, FedTopK [12], implemented a federated RDF
system to support efficient top-k SPARQL queries for the
single variable ordering, but it does not consider expression
ordering top-k SPARQL queries. In this paper, the opti-
mization and expansion are made to further improve the
efficiency of top-k query with single variable ordering based
on FedTopK. In addition, the incremental query scheme
proposed in this paper can also effectively support top-k
query with expression ordering.

3 BACKGROUND

In Section 1, we introduce the information of federated
RDF systems. The Web resources are expressed by unique
identification IDs in RDF, which are called Internationalized
Resource Identifiers (IRIs). SPARQL is a standardized query
language used to query RDF datasets. In the context of
federated RDF system, we extend the idea of authoritative
source in [17]. In order to facilitate readers’ understanding
of the follow-up content, this section will give definitions
of related terms and research issues in this paper. The
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Fig. 3: Example RDF graph over federated RDF systems.

definitions of related terms are similar as found in [5], [15],
[16], [24], [27].
Definition 3.1. (RDF Graph). An RDF dateset is a set of

triples. Triple patterns are the description of subjects,
predicates and objects, can be expressed as: T P =
(I∪N )×I×(I∪N ∪L). Among that, I is the set of IRIs,
N is the set of blank elements and L the set of literals. An
RDF graph is a graphical description of triple patterns.
In RDF graph, the vertexes are transformed from subjects
and objects of T P and predicates are the label of edges.

Definition 3.2. (Federated RDF System) A federated RDF
system can be expressed as F = (S, g, d), where (1) S
is a set of source sites that can be obtained by looking
up IRIs in an implementation of F ; (2) g : S → 2T P is
a mapping that associates each source with a subgraph
of RDF graph T P ; and (3) d : I → S is a partial,
surjective mapping that models the fact that looking up
IRI of resource u matches in the retrieval of the source
represented by d(V ) ∈ S. d(V ) is called the host source
of V , and is unique for a given URL of vertex V .

Example 3.1. Fig. 3 shows a federated RDF system as a
graph distributed among four different sources. Given
a resource with the IRI “dp:Ireland”, where “dp” is
abbreviation of “DBpedia”. d(“dp:Ireland”)=DBpedia,
this means that “dp:Ireland” is dereferenced by the host
DBpedia.

Definition 3.3. (Basic Graph Pattern) SPARQL is a struc-
tured query language to manage RDF dataset, and the
basic graph pattern (BGP) is its basic query block. We
use V to express the variables set of a SPARQL query,
and those variables all bind to RDF triple patterns from
I ∪ N ∪ L. triple patterns are consisted with some triples
ts ∈ (I ∪N )×(I ∪N )×(I ∪N ∪L). For convenience of
explanation, we neglect the blank element of each triple

pattern. Let T P be the set of all triple patterns. Then, a
basic graph pattern (BGP) is a set Q ⊂ T P , and the set
of queries is Q ⊂ 2T P .

In this paper, we support top-k queries in SPARQL with
an ORDER BY clause that can be formulated as a ranking
criterion on a variable.
Definition 3.4. (Top-k SPARQL Query). A top-k SPARQL

query can be expressed as: TSQ =< Q, f, k >, where
Q is a BGP pattern, f is the ranking function, including
single variable ordering and express ordering. And k is
the maximum number of results.

Figure 1 shows the single variable ordering example top-
k SPARQL query, where f is the single variable ?population
and k is 3. Figure 2 shows the express ordering example
top-k SPARQL query, where (?areaLand+?areaWater) is
the express f and k is 3. A match of BGP Q may involve
different RDF sources over a federated RDF system. Specif-
ically, a match distributed over a set of sources S′ ⊆ S is a
function µ from variables in Q to RDF terms in

⋃
τ∈S′ g(τ).

Definition 3.5. (Match of Top-k SPARQL Query over
Federated RDF System) Firstly, we need to denote two
functions. The first function is µ : V → I ∪N ∪L. It is a
mapping µ from V to I ∪ N ∪ L. For a triple pattern t of
a SPARQL query, we denote by µ(t) the triple obtained
by replacing the variables in t according to µ. Secondly,
for a federated RDF system F = (S, g, d) and a BGP Q.
Given S′ ⊆ S, a mapping µ is said to be a match of Q if
and only if µ(tp) ∈

⋃
τ∈S′ g(τ) for each triple pattern e

in Q. Finally, the match result of a top-k SPARQL query
TSQ =< Q, f, k > is a no-more-than-k-sized list of
matches of Q, with the highest rank order by the ranking
function f .

The problem to be studied in this paper is defined as
follows:
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Given a federated RDF system F = (S, g, d) and a top-k
SPARQL query TSQ =< Q, f, k >, the problem to be researched
is to obtain the query result of TSQ.

4 FRAMEWORK

As shown in Fig. 4, the framework of top-k query processing
mainly consists of three parts: query decomposition and source
localization, cost-driven query plan generation and incremental
query plan execution. For a top-k SPARQL query submitted
by a user, we propose an auxiliary index to decompose the
query into subqueries according to its RDF sources (see Sec-
tion 5). Then, the optimal query plan can be obtained by a
cost-driven query plan generation algorithm with dynamic
programming (see Section 6). Finally, according to the query
plan, these decomposed subqueries are sequentially sent to
their corresponding RDF sources for execution in serial or
parallel. Among that, combined with the characteristics of
top-k query, an incremental query plan execution optimiza-
tions strategy is carried out. It can further reduce the cost
of subqueries execution to ensure that the overall cost and
network communication are minimized (see Section 7).
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Cost Model

Query Plan

Offline
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Query Result

RDF Sources

Data Statistics

Subqueries 

ExecutionIncremental Query Plan 

Execution  Strategy
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LargeRDFBench
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+ 

Fig. 4: The scheme of top-k query processing in federated
RDF systems.

5 QUERY DECOMPOSITION AND SOURCE LOCAL-
IZATION

SPARQL is the query language designed for centralized
RDF system, and cannot be directly executed on federated
RDF system. In order to evaluate a SPARQL query over
federated RDF systems, it needs to be decomposed into a
series of subqueries, which can be executed on single RDF
source. Basically, each triple pattern in the BGP of a SPARQL
query maps to a set of RDF sources based on the constant
values of subject, predicate and object. If a triple pattern is
variables-only, it maps to all RDF sources in the federated
RDF system. For the top-k SPARQL query Example 1.1,
the mapping between triple patterns and its relevant RDF
sources is shown in Fig. 5.

The basic query decomposition and source localization
methods combine the triple patterns with the same single
RDF source into one subquery. For the example query in
Fig. 1, it should be decomposed into seven subqueries,
as shown in Figure 6. The subquery q1 is composed of
the triple patterns <?role swc : heldBy ?writer > and
<?writer foaf : based_near ?geonameplace >, because

select  * where {?role swc:heldBy ?writer.

?writer foaf:based_near ?geonameplace.

?geonameplace dp:capital ?capital.

?geonameplace dp:foundingDate ?foundingDate.

?place g:countryCode ?countryCode.

?place g:population  ?population.

?place g:long   ?longitude.

?place g:lat     ?latitude.

?place owl:sameAs   ?geonameplace.

} order by desc (?population) limit 3

Swdfood

Swdfood

DBpedia

DBpedia

Geonames, Nyt

Geonames, Nyt

Geonames, Nyt, DBpedia

Geonames, Nyt, DBpedia

Geonames, DBpedia, Swdfood, Nyt

RDF SourcesTop-K  SPARQL Query

Fig. 5: Relevant RDF sources for each triple pattern in top-k
query Example 1.1.

they have the same single RDF source {Swdfood}. Note
that, because the relevant RDF sources of <?place g :
long ?longitude > and <?place g : lat ?latitude > are
not single, they cannot be merged into one subquery even if
their RDF sources are the same.

q1@{swdfood}select  * where {

?role swc:heldBy ?writer.

?writer foaf:based_near ?geonameplace}

q2@{dbpedia}select  * where {

?geonameplace dbpedia:capital ?capital.

?geonameplace dbpedia:foundingDate 

?foundingDate.}

q3@{gnames, nyt}select  * where {

?place geonames:countryCode ?countryCode}

q4@{gnames, nyt}select  * where {

?place geonames:population  ?population}

q6@{gnames, nyt, dbpedia}

select  * where {?place geo:lat     ?latitude}

q5@{gnames, nyt, dbpedia}

select  * where {?place geo:long   ?longitude}

q7@{gnames, dbpedia, swdfood, nyt}

select  * where {?place owl:sameAs   

?geonameplace}

Fig. 6: Basic query decomposition and source localization
result for Example 1.1.

However, triple patterns <?place g : long ?longitude >
and <?place g : lat ?latitude > can be merged into one
subquery in reality, because they always appear in pairs
over each RDF source. The number of subqueries affects the
number of remote accesses, which will take up a lot of time
overhead in distributed environment. Thus, we propose
an index-based optimized query decomposition and source
localiztion optimization strategy to reduce the number of
subqueries, which allow to merge some triple patterns with
the same multi-sources into one subquery.

There are two stages during our optimized query decom-
position and source localization for a top-k SPARQL query.
In the first stage, all the predicates of each RDF source are
maintained as the meta data. Then an auxiliary index can be
built by utilizing meta data. The auxiliary index can be used
to determine whether triple patterns with the same multi-
sources can be merged into one subquery. In the second
stage, for each triple pattern of a top-k SPARQL query: if
its predicate is a constant, its RDF sources can be located
by meta data. Otherwise, all the RDF sources of federated
RDF system are its RDF sources. Furthermore, if the subject
or object of the triple pattern is a constant, we can use
ASK query of SPARQL to prune irrelevant RDF sources. For
triple patterns with the same multi-sources, it needs to judge
whether they can be merged into one subquery by auxiliary
index. For other triple patterns, it adopts the basic query
decomposition method.
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As the core of the optimization method, the first stage
can also be called the auxiliary index building stage. We
need to get meta data at the control site as key-value pairs
< P, S > first, where S is the RDF sources set of a constant
predicate P . The time complexity of generating the meta
data is O(|E|), which E represent the set of edges in the
federated RDF system. Then, the auxiliary index is built by
utilizing the meta data, as shown in Algorithm 1.

Algorithm 1: Auxiliary Index Generation

Input: The meta data Map = {< P, S >}
Output: Auxiliary index Mul_merge

1 for i = 1 to |Map| do
2 if |Si| == 1 then
3 Map.remove(Pi, Si);
4 Initialize an empty query result map Map_R;
5 for i = 1 to |Map| − 1 do
6 getResult(Pi,Map_R);
7 for j = i+ 1 to |Map| do
8 if Si == Sj then
9 getResult(Pj ,Map_R);

10 Rtmp = query(Pi ◦ Pj);
11 if Ri on Rj == Rtmp then
12 Mul_merge.put(Pi ◦ Pj , true);
13 else
14 Mul_merge.put(Pi ◦ Pj , false);
15 Return mul_merge

The key-value pairs with single RDF source are removed
from meta data (Lines 1-3 in Algorithm 1). Generally, the or-
der of magnitude of remaining key-value pairs with multi-
sources is in the hundred, and the number of predicates
pairs < Pi, Pj > with same multi-sources is not much,
donated as M . For a predicate pair < Pi, Pj > with the
same multi-sources, we obtain the query results of Pi, Pj
and Pi ◦Pj respectively (Lines 4-10 in Algorithm 1). Finally,
the auxiliary index is obtained by comparing the join results
of Pi and Pj with query result of Pi ◦ Pj (Lines 11-14 in
Algorithm 1). Among them, we utilize the strategy of space
for time to reduce the time cost caused by multiple queries
on the same predicate, as shown in Algorithm 2. LetC and J
express the execution times of function query() and joining
operation respectively, the time complexity of Algorithm 1
is O(M × (2C + J)).

Algorithm 2: Function getResult(P,Map_R)

1 if Map_R.getKeySet().contain(P ) then
2 R =Map_R.get(P );
3 else
4 R = query(P );
5 Map_R.put(P,R);
6 Return R

Generally, the federated RDF system consists of pub-
lished RDF datasets. A version of RDF dataset will not
change unless the version is updated. When a new version
of an RDF dataset is released, rigorous organizations usually
publish data update logs. In this case, we can update the
auxiliary index incrementally by analyzing the data update

log. In the worst case, if the index needs to be reconstructed
when the update log cannot be obtained. Because the index
construction is completed in the offline stage before the
system is used. this is acceptable in the process of federated
RDF system upgrade.

For the top-k SPARQL query Example 1.1, five sub-
queries can be obtained by utilizing the proposed method,
as shown in Fig. 7. We useQ to express the set of subqueries.

q1@{swdfood} select  * where {

?role swc:heldBy ?writer.

?writer foaf:based_near ?geonameplace}

q2@{dbpedia} select  * where {

?geonameplace dbpedia:capital ?capital.

?geonameplace dbpedia:foundingDate 

?foundingDate}

q3@{gnames, nyt}select * where{

?place geonames:countryCode ?countryCode.

?place geonames:population  ?population}

q4@{gnames, nyt, dbpedia}select  * where {

?place geo:long   ?longitude.

?place geo:lat     ?latitude}

q5@{gnames,  dbpedia, swdfood, nyt}

select  * where {?place owl:sameAs   

?geonameplace}

Fig. 7: Optimized query decomposition and source
localization result for Example 1.1.

6 COST-DRIVEN QUERY PLAN GENERATION

There are huge differences of query overhead between dif-
ferent subqueries execution orders. A subqueries execution
order is called a query plan. In order to evaluate the query
cost of a query plan, we designed a cost model. The query
cost and join cost of each subquery can be evaluated by this
model.
6.1 Cost Model Design
According to the definition of distributed database system
books [11], the total execution time for a database query can
be expressed as follows:

Total_time =TCPU ×#insts+ TI/O ×#I/Os

+ TMSG ×#msgs+ TTR ×#bytes
(1)

The first two terms of the Equation (1) express the query
execution times of server. They depend on the performance
of the server. The data transmission time is determined by
the two last terms. In the distributed database system, the
data communication often occupies a large amount of over-
head and it is the goal that needs to be optimized. In order
to evaluate and optimize that communication overhead, this
paper designs a cost model.

For a federated RDF system with m RDF sources,
the set of RDF sources can be represented as S =
{s1, s2, s3, ..., sm}. For each RDF source si of S, the set of its
predicates is denoted as Pi = {Pi1, Pi2, Pi3, ...Pin}, where
n is the number of distinct predicates. In RDF source si, the
number of triple patterns containing the predicate Pij can
be expressed as follows:

Sum(Pij) = card(σP=Pij
(si)) (2)

where σ represents the selection operation of database, and
card() is a counting function. Among that, the number of
distinct subjects and objects of triple patterns containing the
predicate Pij is denoted as follows:

Subject(Pij) = card(dom[πS(σP=Pij (si))]) (3)

Object(Pij) = card(dom[πO(σP=Pij (si))]) (4)

where π represents the projection operation of database, and
dom() is a deduplication function. On this basic, we define
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the front join factor and rear join factor for the predicate Pij ,
donated as βS(Pij) and βO(Pij). They can be calculated as
follows:

βS(Pij) =
Sum(Pij)

Subject(Pij)
(5)

βO(Pij) =
Sum(Pij)

Object(Pij)
(6)

The above five parameters will be calculated statistically
in the offline stage to form the meta data of the cost
model. They need to calculate only once until the RDF
data is updated. For a subquery with two triple patterns,
their predicates are P1 and P2 respectively, if they have no
common vertex, then the query cost of the subquery is as
follows:

cost(q) = Sum(P1)× Sum(P2) (7)

Otherwise, there are three types of connection: subject −
subject, subject − object and object − object between the
two triple patterns. Here we assume that the connection
type is subject − subject, the query cost of the subquery
can be calculated as follows:

cost(q) = βS(P1)×βS(P2)×Min

{
Sum(P1)

βS(P1)
,
Sum(P2)

βS(P2)

}
(8)

For other connection types, it is only necessary to change
βS(P ) in the Equation (8) into βO(P ). All the query costs
of subquery collection Q will be calculated by Equation (7)
and (8).

For two subqueries q1 and q2, the query cost of them
are cost(q1) and cost(q2) respectively. If there is no common
column between the query result of them, the join cost of
their query result is as follows:

cost(q1 on q2) = cost(q1)× cost(q2) (9)

Otherwise, their execution order determines the join cost of
their query result. Because SPARQL has a common char-
acteristic, which allows adding VALUES clause after the
current query to narrow the matching range of subgraph.
The content of VALUES clause is the results of the previous
query. We assume that the q1 is executed first, and the
common column between the query result of them is the
subject of a triple pattern P in q2. The join cost of their
query result is as follows:

cost(q1 on q2) = cost(q1)× βS(P ) (10)

If the common column between the query result of them is
the object of the triple pattern P , it needs to change βS(P ) in
the Equation (10) into βO(P ). Similarly, if the q2 is executed
first, and the common column between the query result of
them is the subject of a triple pattern P in q1. The join cost
of their query result is as follows:

cost(q2 on q1) = cost(q2)× βS(P ) (11)

6.2 Optimal Query Plan Generation

A query plan represents an execution order and execution
mode (serial or parallel) of subqueriesQ. There are huge dif-
ferences in query efficiency between different query plans.
Given a subquery setQ, how to find the optimal query plan
which can minimize the query cost. This problem has been

solved well in relational database [11], and it is a typical
dynamic programming problem.

Therefore, based on the cost model in Subsection 6.1,
we design an optimal query plan generation algorithm with
dynamic programming as shown in Algorithm 3. If the cost
of optimal query plan with i subqueries is expressed by
C[dp[i]], and its recurrence is as follows:

C[dp[i]] =Min{C[dp[i− 2] on (ql on qi)],

C[(qi on qr) on dp[i− 2]]}
(12)

Algorithm 3: Cost-Driven Optimal Query Plan
Generation Algorithm

Input: A set of subqueries Q
Output: A query plan QP , which owning the min

total cost
1 Initialize an empty hash map dp;
2 Initialize an empty set QP and TC(total cost) =

Double.MAX_VALUES;
3 for i = 1 to |Q| do
4 Q′ = Q− {qi}, S = {qi};
5 while Q′ 6= ∅ do
6 Qj = Select(Q′, S);//See Algorithm 4
7 while Qj exists do
8 S = S

⋃
{Qj}, Q′ = Q− {Qj};

9 if !dp.keyset().contains(S) then
10 SC = cost(S), dp.put(S, SC);
11 if SC > TC then
12 Go to the next repetition of the

foor-loop;
13 Qj = Select(Q′, S);
14 if dp.get(S) < TC then
15 TC = SC, QP = S;
16 Return QP

where ql and qr are subqueries in dp[i − 1], which can
be left joint and right joint with qi, respectively. Among
that, C[dp[1]] = cost(q1), C[dp[2]] = min{cost(q1 on
q2), cost(q2 on q1)}. The time complexity of Algorithm 3
is O(n3), where n is the size of the subqueries set Q.

Algorithm 4: Function Select(Q, S)
1 Initialize an empty set R;
2 // Get result columns collection of subqueries S.
3 Column_S = getColumns(S);
4 for i = 1 to |Q| do
5 // Get result columns collection of subquery qi.
6 Column_qi = getColumn(qi);
7 if Column_qi.retainAll(Column_S).size() > 0

then
8 R.add(qi);
9 Return R

Example 6.1. As shown in Fig. 7, the set of subqueries
for the input query, Q, contain five elements from q1
to q5. The optimal query plan corresponds to S when
i = 2 in line 3 of Algorithm 3. Firstly, Q′ = Q − {q2},
S = {q2} in line 4. Then, the subquery {q1, q5} is
selected as Qj in line 6, because the result columns of
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them can intersect with result columns of S, as shown
in Algorithm 4. The cost SC for S = {{q2}, {q1, q5}}
can be calculated by the Equation (10) and (11), and
put < S, SC > to the hash map dp in line 10. If the
cost of the current partial query plan SC is bigger than
the cost of an overall query plan generated before, it
means that the current query plan is not optimal, and
the loop should be out in line 12. Otherwise, continue
the above operations until Q′ = ∅ in line 5. Finally,
the optimal query plan of the top-k query Example 1.1
can be obtained as: QP = {{q2}, {q1, q5}, {q3, q4}}. It
represents the execution order and execution model as
shown in Fig. 8.

q2@{dbpedia}
q1@{swdfood}

q5@{gnames, dbpedia,swdfood, nyt} q3@{gnames, nyt}

q4@{gnames, nyt, dbpedia}

Parallel Execution Parallel Execution

Fig. 8: The view of query plan QP .

7 INCREMENTAL QUERY PLAN EXECUTION

The query plan generated by Algorithm 3 can minimize the
query cost when querying all the results that satisfy the
triple patterns condition. However, as we all know, for top-
k queries, an efficient query approach does not need to get
all the intermediate results that meet the triple patterns con-
dition. Therefore, we put forward to an incremental query
plan execution optimization strategy to further improve the
query efficiency of a top-k query.

7.1 Execution for Single Variable Ordering Top-k Query
For the query plan QP of single variable ordering example
top-3 query in Example 1.1, we assume that its query exe-
cution plan can be shown in Fig. 9. Before the final result is
selected, all the results of each subquery need to be queried,
even if only top three results need to be returned to users.

q2@{dbpedia}
q1@{swdfood}

q5@{gnames, dbpedia,swdfood, nyt}

Join

?geonameplace = ?geonameplace
q3@{gnames, nyt}

q4@{gnames, nyt, dbpedia}

Rank Join
?place = ?place

Select[0,3]

Fig. 9: The basic execution process of query plan QP .
In order to reduce the unnecessary intermediate results,

we adopt an incremental query plan execution method, and
the query plan execution process of this method is shown
in Fig. 10. Its idea is to execute the subquery with ordering
variable first under the same priority. The rank join will be
done for the current results, and then some pieces of data
are incrementally selected from the ordered results as the
VALUES clause of the subsequent subqueries. During the
incremental selection process, we assume that the data is
evenly distributed.

Algorithm 5 gives the detail incremental execution al-
gorithm of query plan. In the first stage, the query executor

q2@{dbpedia}
q1@{swdfood}

q5@{gnames, dbpedia,swdfood, nyt}

Join

?geonameplace = ?geonameplace

q3@{gnames, nyt}

q4@{gnames, nyt, dbpedia}
Rank Join

?place = ?place

Select[0,3]

Join
?place = ?place

Incremental

Fig. 10: The incremental execution process of query plan
QP .

Algorithm 5: Incremental Execution Algorithm of
Query Plan

Input: A query plan QP
Output: The results R of the query plan QP

1 Initialize an empty result set R;
2 Initialize INDEX = 0, COUNT = 0,M = 0, N =

0, SUM = 0;
3 for i = 0 to |QP | do
4 for j = 0 to |QPi| do
5 Execute subquery QPij in parallel, update set

R;
6 if QPij contains the ordering variable then
7 Backup current query status as T ;
8 SUM = |R|, INDEX = i, M =

K, N = 1;
9 Remove QPij from QPi;

10 Sort and select the first M results as the
current result;

11 Set the values clause of the next subquery;
12 COUNT = |R|;
13 while COUNT < K and N × M < SUM do
14 Restore query status T ;
15 if COUNT > 0 then
16 N = K/COUNT ;
17 else
18 N = 2×N ;
19 M =M ×N ;
20 Select the first M results as the current result;
21 for i = INDEX to |QP | do
22 for j = 0 to |QPi| do
23 Execute subquery QPij in parallel, update

set R;
24 Set the values clause of the next subquery;
25 COUNT = |R|;
26 Return R

executes one round for all subqueries according to the query
plan (lines 3 to 11). For the query plan QP in Example
6.1, the subquery q2 is executed first. Then, subqueries q1
and q5 is executed with a values clause that generated
from the result of q2 in parallel, and so on. Among them,
the subquery with ordering variable will be executed first
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under the same priority. Then, the current query results are
sorted immediately (lines 6 to 10). For QP , the subquery
with ordering variable, q3, is executed before q4. Let SUM
represent the number of query results after q3 is executed
(line 8), and let COUNT represent the number of results
after the first stage query (line 12). While COUNT < k and
M < SUM , it means that selecting M pieces of the sorting
results is not enough to generate the final top-k results.
Then, the query executor enter the second stage for the loop
query (lines 13 to 25) until the query end condition is met.

7.2 Execution for Expression Ordering Top-k Query
The expressions are usually the addition and subtraction of
several variables in expression ordering top-k queries. To
deal with the problem of ordering the calculation results
after addition and subtraction, there is a classical threshold
accepting algorithm [10]. On this basic, we propose a TA-
based rank join method to deal the intermediate results
that generating by subqueries with variables in expression.
For an expression ordering top-k query, the expression
usually contains two or more variables. According to the
distribution of variables, the basic execution process of
query plan can be divided into three categories: (1) The
ordering variables are distributed in subqueries set with
the same priority. (2) The ordering variables are distributed
in subqueries sets with adjacent priorities. (3) The ordering
variables are distributed in subqueries sets with nonadjacent
priorities.

q1 q2

Join
?v1 = ?v1

q3, q4, q5

q6, q7
Rank Join

?v2 = ?v2

Select[0,k]

Join
?v4 = ?v4

?v3 = ?v3

(a) The basic execution process

q1 q2

Join
?v1 = ?v1

q4, q5

q6, q7

TA-Based Rank Join
?v2 = ?v2

Select[0,k]

Join
?v4 = ?v4

Incremental
?v3 = ?v3
Join

q3

(b) The optimal execution process

Fig. 11: The ordering variables are distributed in subqueries
set with the same priority.

As shown in Fig. 11(a), the subqueries q3, q4 and q5
are at the same execution priority set and the ordering

variables are distributed in subqueries q4 and q5. For this
category, it optimization strategy is shown in Fig. 11(b), the
subqueries with ordering variables q4 and q5 are executed
together firstly. Then, the TA-Based rank join will be used
to order the current query results. Finally, for the remaining
subqueries, the incremental execution method is adopted,
just like single variable ordering top-k query. Among that,
if there are other subqueries in the same priority subqueries
set that contain order variables. Those subqueries (here is q3)
should be executed between the current priority subqueries
set (q4 and q5) and the next priority subqueries set (q6 and
q7).

q1 q2, q3, q4

Join
?v1 = ?v1 q5, q6

q7, q8
Rank Join

?v2 = ?v2

Select[0,k]

Join
?v4 = ?v4

?v3 = ?v3

(a) The basic execution process

q1 q2, q3

Join
?v1 = ?v1

q5

q7, q8

?v2 = ?v2

Select[0,k]

Join
?v4 = ?v4

TA-Based 

Rank Join

Incremental

q4, q6

Join

?v1 = ?v1

?v3 = ?v3

(b) The optimal execution process

Fig. 12: The ordering variables are distributed in subqueries
sets with adjacent priorities.

For the second category, as shown in Fig. 12(a), the
subqueries with ordering variables q2 and q5 are distributed
in subqueries sets with adjacent priorities. It optimization
strategy is shown in Fig. 12(b), the subquery q2 and the
subquery q3 with the same variables as q5 will be executed
firstly. In particular, if q2 and q5 have the same variables,
the q3 will be remove from the subqueries set {q2, q3} to
{q4, q6}. Then, after the execution of q5, the TA-Based rank
join method will be used to ordering the current query
results. Finally, the remaining subqueries in the two adjacent
priority subqueries sets are merged together, and the incre-
mental execution method is adopted until the remaining
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query plan execution is completed. Among that, if the
variable ?v3 is contained in q4 but not q2 and q3, the q6
will be executed after q4.

q1 q2, q3

Join
?v1 = ?v1 q4, q5

q6, q7

Rank Join

?v2 = ?v2

Select[0,k]

Join

?v4 = ?v4

?v3 = ?v3

(a) The basic execution process

q1 q2, q3

Join
?v1 = ?v1

q4

q5, q7

?v2 = ?v2

Select[0,k]

Join
?v3 = ?v3

?v4 = ?v4

TA-Based Rank Join

Incremental

q6
Join

?v4 = ?v4

(b) The optimal execution process

Fig. 13: The ordering variables are distributed in subqueries
sets with different and nonadjacent priorities.

For the last category, as shown in Fig. 13(a), the sub-
queries with ordering variables q2 and q6 are distributed
in subqueries sets with different and nonadjacent priorities.
As shown in Fig. 12(b), the subquery q4 will be selected and
executed from the subqueries set {q4, q5}. Because q4 has
the same variables with q6. Then, after the execution of q6,
the TA-Based rank join method will be used to ordering the
current query results. The rest of the execution process is the
same as the second category.

8 EXPERIMENTS

In this section, we evaluate our proposed federated top-
k queries evaluation method (denoted as FedTopKPro)
over both synthetic and real RDF benchmarks, WatDiv
and LargeRDFBench. In the comparative experiment, we
build up four indicators from previous work [1], [2], [39]:
#SST, #QET, #NRA and #TRT. #SST is the time of source
selection, and #QET represent the time of query execution.
The number of remote accesses is denoted as #NRA, and
#TRT denote the total run time from the beginning to the
end of a query evaluation, which contains resource initial-
ization time, source selection time, query execution time and
resource release time.

8.1 Setting
LargeRDFBench. LargeRDFBench [31] is a comprehensive
benchmark for evaluating and analyzing both the effective-
ness and performance of federated RDF systems. It contains
13 datasets, involving Life Sciences, Cross Domain and
Large Data. There are more than a billion triple patterns.

WatDiv. WatDiv [3] is a benchmark that enables diversi-
fied stress testing of RDF data management systems. In Wat-
Div, instances of the same type can have the different sets of
attributes. We generate three datasets varying sizes from 100
million to 300 million triples and divide the schema graph of
the collection into several connected subgraphs with METIS
[21].

We conduct all experiments on a cluster of six machines
running Linux. Five machines are used as RDF sources, and
the other one is used as control site. There is 16GB memory
and 150GB disk storage for each site, and each machine has
one CPU with four-cores of 3.06GHz. Our top-k query opti-
mization method code implemented by Java is deployed on
the control site. To assess the performance of our approach,
we design ten top-k queries for LargeRDFBench and WatDiv
(F1 − F10 for LargeRDFBench and W1 − W10 for WatDiv.
Among that, F1, F3, F5, F7, F9 andW1, W3, W5, W7, W9

are top-k queries with single variable and the others are top-
k queries with expression), respectively.

8.2 Evaluation of Proposed Optimization Strategies
In this experiment, we verify the effective of our proposed
optimization strategies.

8.2.1 Evaluation of Auxiliary Index Construction
we analyze the time complexity of the auxiliary index con-
struction Algorithm 1, which is a polynomial time. We do
some relevant experiments on WatDiv, and the experiments
show that with the increase of the dataset size, the con-
struction time cost of the auxiliary index increases linearly.
It is worth noting that in time complexity M represents
the number of same multi-source predicate combination.
Therefore, only C and J increase the time cost of auxiliary
index construction when the predicate is fixed and only
the triples of datasets increase, as shown in the Fig. 14.
Therefore, the auxiliary indexing algorithm is efficient.
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Fig. 14: Index construction times on different sizes of
datasets.

8.2.2 Evaluation of Query Decomposition and Source Lo-
calization
In this experiment, we evaluate the effect of our pro-
posed query decomposition and source localization using
LargeRDFBench. We use FedTopK_NoSS to denote the
first baseline method without the optimization of source
localization strategy in Section 5. The difference between
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FedTopKPro and FedTopK_NoSS is the number of su-
queries, so the performance comparison between them can
be evaluated by #NRA and #TRT. As shown in Fig. 15,
experimental results show that the number of remote access
of FedTopKPro are reduced by 50% on average compared
with FedTopK_NoSS, and the total runtime can be reduced
by 20% on average.
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Fig. 15: Effectiveness comparison between FedTopKPro
and FedTopK_NoSS.

8.2.3 Evaluation of Cost-based Query Plan Generation

Here, we also use LargeRDFBench to test the cost-based
query plan generation method. We propose a baseline
named FedTopK_NoOQP to represent a baseline method
without optimal query plan generation strategy in Section
6. It is the baseline method that does not adopt the cost-
based optimal query plan strategy. As shown in Fig. 16, the
average #NRA and #TRT of FedTopKPro is less 33% on
average than FedTopK_NoOQP. The reason for this result is
that the optimal query plan can preferentially execute other
subqueries with lower cost before executing subqueries
containing sorting variables, avoiding the unnecessary over-
head in the circular execution strategy.
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Fig. 16: Effectiveness comparison between FedTopKPro
and FedTopK_NoOQP.

8.2.4 Evaluation of Incremental Query Plan Execution

We design a baseline method FedTopK_NoQPEO, which
does not include this query execution optimization strategy
in Section 7, and also use LargeRDFBench to evaluate our
incremental query plan execution method. As shown in Fig.
17, the average remote access times of FedTopKPro in-
crease slightly compared with FedTopK_NoQPEO, because
the query plan execution optimization strategy exists cir-
cular execution process. However, the incremental execu-
tion method can effectively reduce the range of subgraphs
matching of subqueries to improve the query efficiency of
subqueries. Therefore, the average #QET of FedTopKPro is
less 50% on average than FedTopK_NoQPEO.
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Fig. 17: Effectiveness comparison between FedTopKPro
and FedTopK_NoQPEO.

8.3 Comparison with Existing Methods

Previous researchers have implemented several federated
RDF systems, such as FedX, HiBISCuS, SPLENDID. By
comparing our proposed method with three previous meth-
ods, we can verify the efficiency of our proposed method.
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Fig. 18: Efficiency comparison with existing methods.

Fig. 18 shows that the comparison results among FedX,
HiBISCuS, SPLENDID and FedTopKPro on four indicators
over LargeRDFBench. In Figure 18(a), SPLENDID has the
highest average #SST because it does not optimize the
source selection. Both FedX and HiBISCuS regard source
selection as one of their main optimization objective, so the
results of these two methods on this indicator are excellent
and slightly better than our method. Our method outper-
forms the previous three methods on the other three per-
formance indicators in Figure 18(b), Figure 18(c) and Figure
18(d). The #QET of our method is 10 times faster than FedX
and 18 times faster than SPLENDID on average. Because we
build a cost model and propose an algorithm to generate
the optimal query plan based on this model. Similarly,
HiBISCuS proposed a hypergraph-based source selection
approach, which reduced the number of RDF sources in
the query process, thus reducing its query time. It can be
found that the trend of performance comparison results of
#NRA is roughly the same as that of #QET. Therefore, we
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think that the number of remote access is proportional to the
query execution time. At the beginning of FedTopKPro, we
put forward an optimization idea focusing on shortening
communication overhead of remote access, and this result
can verify the correctness of our idea. Finally, the #TRT of
our method is 10 times faster than FedX, 18 times faster than
HiBISCuS and 22 times faster than SPLENDID on average.
It is worth noting that the total query time of HiBISCuS is
obviously abnormal. Its source selection time, remote access
times and query execution time are short, but the total query
time is long. The reason for this result is that the resource
initialization and resource release of this method occupy a
large overhead.

8.4 Evaluation of Scalability

In order to further explore the superiority of our method,
we compare the robustness of our approach with previ-
ous methods on synthetic datasets, WatDiv, with different
scales. We generate three datasets varying sizes from 100
million to 300 million triples, and Fig. 19 shows the result.
We can find that with the larger of datasets’ scales, the total
runtime of four method all increases. However, the query
cost of our method is always better than other methods,
and the rate of increasing for our method is the smallest.
Therefore, we think our method has strong robustness.
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Fig. 19: Scalability comparison on different sizes of datasets.

8.5 Evaluation of K

In order to evaluate the query efficiency of optimization
schemes under different values of k, we have conducted
experiments on WatDiv. A total of 10 top-k queries are set
up in the experiment, among which 5 queries are single
variable top-k query with k values from 10 to 80. The other
five queries are expression top-k queries, and the values of
k also vary from 10 to 80. The 10 top-k queries are executed
10 times respectively, and the performances of different k
values obtained by averaging them are shown in the Fig. 20.
The experimental results show that with the increase of k,
the query time can increases linearly.
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Fig. 20: Efficiency on different values of k.

9 CONCLUSION

In this paper, we have studied the optimization both for sin-
gle variable ordering and expression ordering top-k queries
over federated RDF systems. The proposed scheme mainly
involves query decomposition and source localization, the
construction of cost model, the cost-based optimal query
plan generation and the incremental query plan execu-
tion. In order to evaluate the reliability of the proposed
scheme, we have done a lot of experiments. Firstly, through
the horizontally comparison experiment between the three
baselines. The effectiveness of the various optimization
strategies have been verified. Secondly, compared with the
previous three typical query methods in the real datasets,
the efficiency of our proposed optimal method have been
verified. Finally, the robustness and scalability of proposed
scheme have been verified by comparing with the previous
three methods on synthetic datasets with different scales.
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