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Abstract. Knowledge graph (KG) completion has been long studied on
link prediction task to infer missing relations, while literals are paid less
attention due to the non-discrete and rich-semantic challenges. Numeri-
cal attributes such as height, age and birthday are different from other
literals that they can be calculated and estimated, thus have huge poten-
tial to be predicted and play important roles in a series of tasks. However,
only a few researches have made preliminary attempts to predict numer-
ical attributes on KGs with the help of the structural information or the
development of embedding techniques. In this paper, we re-examine the
numerical attribute prediction task over KGs, and introduce several novel
methods to explore and utilize the rich semantic knowledge of language
models (LMs) for this task. An effective combination strategy is also pro-
posed to take full advantage of both structural and semantic information.
Extensive experiments are conducted to show the great effectiveness of
both the semantic methods and the combination strategy.

Keywords: Numerical attribute prediction · Knowledge graph comple-
tion· Language model · Ensemble learning.

1 Introduction

Knowledge graphs (KGs) store structural data typically in the form of (sub-
ject, predicate, object) triples, and have become the backbone of various AI
applications such as information retrieval, question answering and recommender
systems. Some well known encyclopedia KGs include DBpedia [21], Yago [29]
and Wikidata [43], devoting to covering as much factual knowledge as possible.
As incompleteness is inherent in all KGs and largely restricts the effectiveness,
knowledge graph completion is becoming a topic of extensive research, among
which link prediction is the most concerned task and knowledge graph embed-
ding (KGE) methods play an important role.

The core idea behind KGE techniques is to map nodes and edges of KGs into
a low dimensional space. The learned representation can then be used to find
missing links between entities in link prediction as well as other reasoning tasks.

! The corresponding author of this paper is Lei Zou (zoulei@pku.edu.cn).
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Fig. 1. A small part of a KG, where circles stand for entities and rectangles are literals.
The colored text is to describe the different types of literals and the red ones are missing.

According to the different mapping functions, they are roughly classified into
tensor decomposition models, geometric models, and deep learning models [35].
Embedding-based methods have shown great potential in efficiently mining and
analyzing on large-scale graphs, and are becoming the mainstream for knowledge
graph completion task.

However, relationships among entities are not the only elements in KGs and
knowledge graph completion should not be confined to just relations. For in-
stance, various types of literal attributes also exist with rich semantics, and face
the same incomplete issue. An example is depicted in Fig. 1, where an entity
has not only relations with other entities, but also literal attributes in the form
of text, numeric, image, etc., and all of them may be missing. In this paper, we
focus on the prediction of numerical attributes over knowledge graphs, which we
believe is valuable and potential but challenging as well. The motivations and
intuitions are elaborated below.

1.1 Motivation

In this subsection we want to clarify our motivation by answering two questions:
(1) why it is necessary to predict missing numerical attributes, and (2) why it is
potential to do such a task.

1.1.1 Why do we want to predict numerical attributes? The importance of
numerical attribute prediction lies in at least three aspects. Firstly, numerical at-
tributes are widespread in KGs [39] to enrich entity characteristics from different
perspectives, especially in cases of product graphs [5] and Internet of Things [12].
Like relational triplets to be completed in link prediction task, the prediction
of numerical attributes itself is part of knowledge graph completion and qual-
ity management [51]. Secondly, though embedding methods have shown great
potential in many reasoning tasks, traditional KGE techniques consider only re-
lational edges and largely suffer from the sparsity problem. Introducing various
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literals is a powerful way to alleviate sparsity [13] and many recent researches
[11, 20, 39, 48] have shown the effectiveness to incorporate numerical attributes
into the process of embedding learning. But the same incomplete problem of
numerical attributes will limit the application [19]. Last but not least, numer-
ical values can serve as the prediction targets in a chunk of standard machine
learning tasks to distinguish the performance of relation representation [39], as
well as language models [2, 36] recently.

1.1.2 Why can numerical attributes be predicted? Different from other literals,
numerical value shows the uniqueness in its ability to be compared and calcu-
lated. It is usually meaningless to approximate attribute values like an actor’s
name or portrait, though [32] did some attempt to decode multimodal objects
with auxiliary reference inputs. But numerical attributes can be estimated even
if they are not explicitly mentioned [8]. The prediction can be derived from two
sources: one is the relational structure and correlation of the graph, e.g., two
entities with spouse relation tend to have similar ages, and the other is various
language models that hopefully capture and store numerical and common sense
in the large-scale pre-training processes. It is our basic foothold that both the
explicit structural and the implicit semantic information can produce a marked
effect and experiments in Section 4 have demonstrated this hypothesis.

1.2 Challenges and Opportunities

Numerical attributes are much more difficult to be predicted compared with
relations. Unlike the in-KG entities that are within a limited set, the values of
numerical attributes are typically non-discrete, leading to the fact that if we
try to encode the values into vectors for the inference, we are very likely to
face a serious sparsity problem. As [39] says, the literal attributes seem to cast
KGs out of its comfort zone of a bounded space. Besides, rich semantics and
dependencies are hidden in the literal values that we cannot treat them as simple
relational triples. And the numerical characteristics require extra calculation and
comparison capabilities. If we just reduce the literals into identifiers as entity
nodes, most of the information will be lost [46].

But at the same time, there are many opportunities. On the one hand, the
continuous development of knowledge graph embedding techniques has shown
impressive capacity for different reasoning tasks. And on the other hand, pre-
trained language models (PLMs) are proved to have the potential to serve as
alternative knowledge bases [31, 33]. And efforts on numerical reasoning in the
field of natural language processing [41, 52] further enhance their ability to cap-
ture and store numerical and common sense knowledge. Both the structural
information behind KGs and the implicit knowledge in PLMs are promising to
play a role and the integration of these two kinds of resources is in the ascendant.
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1.3 Contributions

In this paper, we re-examine the less-explored numerical attribute prediction
task over knowledge graphs and introduce semantic information for it. The main
contributions are summarized as follows:

– We provide several novel strategies to capture the implicit knowledge behind
pre-trained language models for numerical attribute prediction over KGs. To
the best of our knowledge, we are the first to do such a transfer from text to
graph. Compared to traditional structural methods, this line of techniques
are able to capture the semantics behind literals and keep stable in zero-shot
scenes, which can serve as a powerful supplement.

– After an in-depth analysis on the applicability of graph- and semantic-based
methods, we design an effective combination strategy to make full use of both
structural and semantic information, where base models are automatically
selected for different prediction targets to achieve the best performance.

– Based on rich experimental results, we demonstrate the great effectiveness of
both the semantic methods and the combination strategy. Extensive ablation
studies are also conducted to show the impact of different components.

2 Preliminaries

2.1 Problem Formalization

In this subsection, we formalize the numerical attribute prediction task over KGs
by first defining several key terms.

Definition 1. Knowledge Graph, denoted as G = (E,P, L), is a collection
of structured facts typically in the form of (subject, predicate, object) triples
⊆ E × P × (E

!
L), where E is a set of entities, P a set of predicates and L

a set of literals. A fact whose object ∈ E is called a relational fact, and the
corresponding predicate is called a relation, while a fact with a literal object is
called an attributive fact whose predicate is known as an attribute.

Definition 2. Types of Literals are first presented in [13]. Like those
depicted in Fig. 1, they generally fall under four kinds: (1) text literals of short
text like names and labels, and long text such as comments and descriptions,
all of which may be expressed in multiple languages; (2) numeric literals that
are encoded as integers, float and so on, e.g., height and date; (3) discrete
types like occupation and class, which can also be regarded as entities in some
KGs, and (4) other modalities including images, videos and etc.

Definition 3. Numerical Attributes are a specific type of attributes
whose objects are numeric literals, or in other words, numbers. They can en-
rich entity features in terms of quantity (like height and population), time (like
birthday) and identification (like phone number and zip code).
Problem Definition. The task of numerical attribute prediction over KGs is
first explored in [39] and formalized in [19]. Compared with link prediction that
is to complete a missing entity for a given relation and a corresponding entity,
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numerical attribute prediction aims to predict the numeric value of a given entity
and a given attribute. The non-discrete numerical values make it intuitively more
suitable to be regarded as a regression rather than a classification problem. The
task is under the context of knowledge graphs, i.e., a KG composed of a set
of relational and attributive facts is given. To avoid the interference of various
types of literals, the attributive facts here are limited to numerical ones. And
nominal attributes [40] like the identifications are filtered out as it is typically
meaningless to predict such numeric identifiers but only brings noise.

More formally, given a group of relational facts and numerical attributive
facts, the task is to predict the missing numerical attribute values for a batch of
entities, where the attributes are appointed and limited to non-nominal ones.

2.2 Existing Graph-based Methods

Three preliminary jobs [1, 19, 39] have been done to predict numerical attributes
over KGs and they are all based solely on graph structures. We summarize these
graph-based methods below.

GLOBAL and LOCAL are two natural baselines formalized in [19]. For
each type of attribute, GLOBAL predicts the missing values by the average (or
median) of all the known ones, for example, all missing values of population will
be predicted equally as the average (or median) of all the known population
values in a given KG. And similarly, LOCAL considers the average (or median)
of the same known attributes in only the neighbor nodes, and thus could get
different predictions for different entities.

MRAP [1] is based on the hypothesis that a numerical attribute of entity
ea can be estimated according to ea’s other attributes as well as the attributes
of ea’s surrounding entities. For instance, the birth year of a man seems to
have some correlations with his death year as well as his wife’s birth year. The
correlations are modeled as regression weights iteratively estimated from the
known structures, which can also be seen as a message passing scheme.

The prediction of non-discrete attributes can also be regarded as a standard
regression task, where regression classifiers are trained for each attribute with
some input features of the entities. The learned representations of KGE models
can play a role here, and we use KGE-reg to stand for such a method with the
learned entity embeddings serving as the features, similar to those proposed in
[19, 39]. The details of different KGE features are talked in Section 4.

3 Our Methods

3.1 Limitations of Existing Methods

Existing graph-based methods mainly depend on the interaction of the rela-
tional structures of the graph, as well as the correlations among attributes.
They ignore the semantics behind numerical values and are usually incapable of
handling unseen and isolated entities. GLOBAL treats all entities equally and
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generally cannot obtain valuable results; LOCAL distinguishes entities based on
the neighborhood structures but the simple aggregation strategy is likely to be
disturbed by irrelevant noise. MRAP considers the complex interactions among
various attributes and relations, which is prone to sparsity and skewness when
there is a surge in the predicates number. And the message passing scheme is
unfriendly to isolated entities. KGE-reg benefits from the development of various
KGE methods. However, these embedding techniques are quite sensitive to the
large hyper-parameter space and training strategies [4]. Though some works have
published their training results, they are not always available and retraining is
needed for new datasets. Also, we cannot expect to obtain good prediction re-
sults for those unseen entities during the training processes. And intuitively, not
all attributes can be inferred solely from the graph structures, like the population
of a country, which demands for some common sense and memory.

3.2 Semantic-based Methods

We believe different types of language models, such as Bert [9], have captured and
stored rich knowledge during the large-scale pre-training processes, which have
been demonstrated in various natural language processing tasks. We propose
semantic-based methods here to introduce the implicit semantic information
of PLMs to predict missing attributes. And to better use them for our scene,
we should solve two main problems: (1) how to apply them to the context of
graphs, and (2) how to fully extract and utilize the implicit semantic knowledge,
especially about the numerics.

Transfer for Graphs For the first problem, we use a simple but general way
to transform KG triples into meaningful texts. For a relational fact (s, p, o) in
a knowledge graph, the relation predicate is converted to a natural language
segment by published paraphrase dictionaries [50] or by simple heuristic rules
(e.g., the predicate happenedOnDate is split to happened on date). Entities are
changed from their identifications to names, and sometimes to descriptions for
more semantics. Similar way runs on attributive facts, except that literal values
are reserved as what they are.

Two Paradigms For the second problem, we propose two different paradigms.
The first one refers to one of the classical pre-training tasks called masked lan-
guage modeling, also known as a fill-mask task. That is to say, we can change
an attributive triple to be predicted into a sentence as mentioned above, leaving
the missing numerical value as a masked token, which is then input to a pre-
trained language model to predict a masked word. The output word is restricted
to the numerical vocabulary of the model here. It actually degenerates the non-
discrete numerical prediction task into a classification problem on finite digital
tokens, and the models have no idea with the numbers, but to be tested on the
implicit memory and classification abilities. And to enhance the performance of
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Fig. 2. Methods used in this work. The left four are based on graphs, and the right
two on semantics, all of which can serve as the input to get the combination results.

the models on specific domain tasks, fine-tuning and prompt [23] are two help-
ful learning techniques. The former injects domain knowledge into the model
parameters, and the latter into the probe missions, which are exactly the input
sentences in our task. The term MLM is used throughout this paper to refer
to such a prediction method like cloze test, and MLM-tuning and MLM-prompt
are for the two enhancement technologies respectively.

The second paradigm similar to KGE-reg, which we call PLM-reg, also
trains attribute-specific regression classifiers for different attributes. And the
difference lies in the input features, which are obtained with the help of the
encoding abilities of pre-trained language models for rich semantics. We have
attempted to input entity names and descriptions into PLMs and received dif-
ferent results, see the experimental parts for more details.

Semantic-based methods are hopeful to obtain valuable results for any input
entity. And with the rapid and continuous development of language models,
the ability to capture numerical semantics and predict missing values of such
methods can keep growing. But all the results tend to be influenced by the
paraphrasing patterns and we actually don’t know exactly what the PLMs really
know. Morever, MLM is limited to a fixed vocabulary and PLM-reg needs some
extra resources like entity names and descriptions.

3.3 Combination Strategy

Both the graph- and semantic-based methods have some strengths and weak-
nesses. And a combination procedure is capable to achieve better results, where
both the explicit structural and the implicit semantic knowledge are working.

As depicted in Fig. 2, we now have four graph-based methods and two
semantic-based methods, which can be regarded as different base learners in
the idea of ensemble learning [10]. Different models may be good at different
numerical attributes, and when we put them together, the advantages of various
methods can be brought into full play. We propose three combination strategies
Mean, Median and Best respectively. In the Mean and Median strategies, the
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Table 1. Statistics of the datasets.

# Ent # Rel # Rel fact # Attr # Attr fact # Train # Valid # Test

FB15K 14,951 1,345 592,213 116 29,395 23,516 2,939 2,940

YAGO15K 15,404 32 122,886 7 23,5321 18,825 2,353 2,354

Table 2. Quantities of the focused attributes following [1, 19]. The upper block includes
numerical attributes about time and the lower one contains all others. A dash (-)
indicates that the corresponding attribute is not in the dataset.

FB15K YAGO15K
# Train # Valid # Test # Train # Valid # Test

date of birth 3,528 425 475 6,555 826 837
date of death 988 117 115 1,490 163 169
film release 1,479 204 184 - - -
organization founded 988 126 123 - - -
location founded 737 103 83 - - -
date created - - - 5,244 693 651
date destroyed - - - 425 55 58
date happened - - - 311 41 36

latitude 2,545 317 349 2,401 279 309
longitude 2,614 292 302 2,399 296 294
area 1,741 204 221 - - -
population 1,532 199 199 - - -
height 2,309 305 257 - - -
weight 182 20 24 - - -

combination results are obtained as the mean and median predictions of all base
models. As for the Best strategy, each attribute will choose the prediction re-
sults of the best model for it, which is measured based on the validation results.
These are all model-level combination strategies, and we leave more fine-grained
schemes in the future work.

4 Experiments

4.1 Experimental Setup

Datasets We use two benchmark datasets: FB15K and YAGO15K, where the
relational and numerical triples are all from MMKG [24]. We randomly divide
the numerical facts into an 80/10/10 split of train/valid/test and the statistics
are shown in Table 1. We follow [1, 19] to focus on 11 and 7 major attributes of
FB15K and YAGO15K respectively and the quantities are listed in Table 2.

Metrics We adopt three evaluation metrics widely used in similar tasks to
assess the performance: MAE (Mean Absolute Error), RMSE (Root Mean Square
Error) and R2 (R Squared), which are defined as follows:

1 There are 48,406 numerical facts at https://github.com/mniepert/mmkb for
YAGO15K, and 23,532 are the actually left ones after removing duplicates.
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where n is the sample size, yi the ground truth of the i-th sample, ŷi the pred-
icated one and y the mean of all y values. The metrics are calculated on each
type of attribute, and when evaluated on the whole, we introduce the calculation
thought of micro- and macro- from the F1 metric, where the former gives the
same weight to each sample and the latter to each category. MAE and RMSE
reflect the deviation degree from the predictions to the true values, where smaller
scores mean better. R2 represents the proportion of variance that has been ex-
plained by the independent variables in the model and is a measure of how well
unseen samples are likely to be predicted. The best possible score for R2 is 1.0
and negative values imply the model fits much worse.

Implementation Details As shown in Fig. 2, the methods to be compared
generally fall under three headings: graph-based, semantic-based, and combina-
tion ways. For all the methods, the performances are evaluated on the test set
and the validation set is used for hyper-parameters and model selection. The im-
plementations of GLOBAL, LOCAL and MRAP methods refer to MRAP2. For
both KGE-reg and PLM-reg, we choose three classical regression models, namely
linear, ridge and lasso, from scikit-learn [28], with the complexity parameter α
among [0.1, 1.0, 10.0]. We use the published KGE embeddings from LibKGE [4]
and PLM models from Transformers [47], where TransE3 and bert-base-uncased4

are the default respectively and more other models are experimented in Section
4.3. The fine-tuning parameters of MLM-tuning are set by reference to [2], with a
batch-size of 32 for 10 epochs and two learning rates {3e−5, 1e−2}, and we found
empirically that more epochs would not bring further improvement. Besides,
the name and description texts of FB15K entities are from DKRL [49], and the
lack resources for YAGO15K are supplemented by aligning to FB15K entities
according to the published sameAs links5. Experiments are all conducted on a
Linux machine with two NVIDIA Tesla P100 GPUs. We make all our datasets
and implementations publicly available6.

2 https://github.com/bayrameda/MrAP
3 http://web.informatik.uni-mannheim.de/pi1/iclr2020-models/fb15k-237-transe.pt
4 https://huggingface.co/bert-base-uncased
5 https://github.com/nle-ml/mmkb/blob/master/YAGO15K/
6 https://github.com/xbc0112/NumericalPrediction
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Table 3. Main results of different methods. For each dataset, the three blocks top to
bottom contain graph-based, semantic-based and combination methods respectively.
Best results in each block are underlined and the best ones of all methods are in
boldface. Text in parentheses behind PLM-reg indicates the type of inputs to PLMs.

Methods
micro- macro-

MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑

FB15K7

GLOBAL 35.7281 85.5691 -0.0031 46.8625 114.6660 -0.0061

LOCAL 21.8207 90.9444 0.3755 37.5387 138.3979 0.1270

MRAP 17.5514 81.9242 -6.9458 30.9281 118.6432 -5.9687

KGE-reg 28.2156 70.6051 0.4492 41.4302 99.8194 0.3773

MLM 312.6412 698.1551 -772.3746 265.0596 625.1898 -502.4600

MLM-tuning 32.1816 78.7322 -0.3053 35.4254 94.1896 -0.1929

PLM-reg (name) 28.6963 73.3825 0.2947 40.9169 101.8967 0.2481

PLM-reg (desc) 22.5595 55.8076 0.6072 33.3209 80.5485 0.5647

Combination Mean 19.8698 54.3243 0.3508 29.4875 78.9829 0.3188

Combination Median 16.0400 51.4285 0.6591 26.1637 76.7629 0.5729

Combination Best 12.7935 53.0444 0.6267 21.3944 78.9087 0.5717

YAGO15K

GLOBAL 49.5822 102.8896 -0.0045 49.0409 100.5088 -0.0157

LOCAL 56.4510 123.1791 0.1312 47.9265 104.5093 0.1999

MRAP 31.5875 86.7825 0.4539 33.1130 89.2587 0.0045

KGE-reg 36.9135 87.7188 0.3423 37.6362 86.6269 0.3398

MLM 187.0013 496.7505 -749.3612 217.3499 563.1464 -821.1300

MLM-tuning 36.8188 93.1231 0.0596 34.2217 80.9421 0.1579

PLM-reg (name) 37.9548 89.5944 0.2997 37.2637 88.0866 0.3060

PLM-reg (desc) 32.4495 81.3838 0.4894 33.1313 80.0946 0.4755

Combination Mean 28.8185 76.3485 0.5699 28.4325 68.3501 0.6087

Combination Median 26.2166 79.9005 0.5445 25.2935 75.1677 0.5937

Combination Best 25.2432 82.8491 0.5218 21.1966 69.3299 0.6584

4.2 Main Results

Table 3 reports the results of different methods for the two datasets, from which
we can get the following observations. Firstly, for graph-based methods, MRAP
and KGE-reg generally outperform GLOBAL and LOCAL in almost all metrics,
showing the learning processes for both the interaction weights and the graph
embeddings have capture valuable information for numerical attribute predic-
tion. MRAP performs quite good on the MAE metrics, but when it comes to
RMSE and R2, it often loses to KGE-reg.

Secondly, we can observe that, PLM-reg with entity descriptions consistently
achieves the best results on both datasets and all metrics in semantic-based
methods. And it also has comparable or better performances with the optimal
results of graph-based methods, demonstrating the huge potential of language

7 Experiments show that the results of two attributes, area and population, vary largely
with others. To have a better overview here, we omit these two attributes in the
micro- and macro- metrics. And the detailed results can be found in Section 4.4.
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Table 4. Ablation results on KGE models for KGE-reg.

Link Prediction FB15K YAGO15K
MRR↑ Hits@1↑ Hits@10↑ micro-MAE↓ macro-MAE↓ micro-MAE↓ macro-MAE↓

Random - - - 36.3266 48.4124 49.6527 49.6824
TransE 0.313 0.221 0.497 28.2156 41.4302 36.9135 37.6362
RESCAL 0.356 0.263 0.541 28.4982 41.7494 38.7561 41.5883
ComplEx 0.348 0.253 0.536 26.4450 37.9365 38.5046 39.2547
RotatE 0.333 0.240 0.522 25.5822 36.7313 36.3934 37.7898

models for this task. The advantages will be more prominent in zero-shot scenes,
since the PLMs can output stable results for any input, while other means are
vulnerable to unseen or isolated entities. It is not surprising that the pure MLM
performs much worse than all other methods, where it makes use of nothing but
the memory of the model to classify on a limited numeric vocabulary, having
no idea with the numbers as well as the input dataset. But we also find that
when we just fine-tune the PLMs with the known attributes, the performances
are significantly improved to be comparable with KGE-reg, which again proves
that the PLMs are quite helpful and appropriate ways to extract the implicit
knowledge matter much. Morever, in the implementation of PLM-reg, using
descriptions brings a further performance improvement compared with the entity
names, which conforms to the basic cognition that PLMs are good at capturing
information from contextual texts and longer descriptions function better.

Finally, the experimental results fully reflect the great advantages of the
combination methods. The combinations are conducted by excluding the three
austere baselines (GLOBAL, LOCAL and MLM) and the Best selection strategy
is measured on the MAE metrics. From Table 3 we can see that all of the three
combination strategies greatly improve the performances on all metrics, and
the Best strategy is generally the top performer, with the MAE a 20+% and a
30+% improvement on micro- and macro- metrics respectively. And similarly, if
we choose the best model according to the RMSE or R2, we could get further
improvements on these metrics as well.

In general, the main results have demonstrated that the semantic-based
methods are quite promising to predict numerical attributes over KGs and effec-
tive combination strategies making use of both structural and semantic knowl-
edge can significantly improve the performances, which confirm our original mo-
tivation and the efficacy of our methods.

4.3 Ablation Study

In this subsection we conduct several ablation studies to explore the impact that
the different variants of each module have on the performances, including KGE
models, language models, fine-tuning parameters and description texts.
Ablation on KGE Models. Four popular KGE techniques in link prediction
are chosen here for KGE-reg, namely, TransE [3], RESCAL [27], ComplEx [42]
and RotatE [38]. We use the published models for FB15K from LibKGE and
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Table 5. Ablation results on language models for MLM.

b-base b-large r-base r-large x-base x-large numBert

FB15K
micro-MAE↓ 312.64 106.87 593.10 730.29 889.76 320.48 1,158.64
macro-MAE↓ 265.06 101.81 853.13 802.97 947.71 416.67 968.25

YAGO15K
micro-MAE↓ 187.00 180.26 820.10 1,048.00 1,387.61 688.65 1,069.85
macro-MAE↓ 217.35 134.10 896.16 1,035.58 1,321.77 473.88 944.27

Table 6. Ablation results on fine-tuning parameters for MLM-tuning.

FB15K YAGO15K
micro-MAE↓ macro-MAE↓ micro-MAE↓ macro-MAE↓

no tuning 312.6412 265.0596 187.0013 217.3499
lr=3e-5 32.1816 35.4254 36.8188 34.2217
lr=1e-2 1,008.2838 1,081.8034 1,454.5918 1,408.1344

Table 7. Ablation results on multilingual description texts for PLM-reg. (E, F, G are
English, French and German for short.)

E F G E+F E+G F+G E+F+G

micro-MAE↓ 22.4099 25.5759 26.0673 22.4126 21.7161 24.5054 22.1151
macro-MAE↓ 33.5482 35.8706 37.5044 32.9257 32.2438 35.4397 32.6784

YAGO15K entities are mapped by the SameAs links. The official link predic-
tion results from LibKGE as well as our KGE-reg results for two datasets are
listed in Table 4, where we use Random to represent the method with random
embeddings. From Table 4 we can see that the results of link prediction and nu-
merical attribute prediction vary among different models and datasets. Though
RESCAL performs best on link prediction, its performance on our task is off.
At the same time, TransE and RotatE have some satisfactory results on numer-
ical attribute predication but they are inconsistent on the two datasets. This
indicates that KGE models may also lose some useful information when just
focusing on certain tasks and capabilities, and numeric prediction can serve as
an additional assessment, as we have talked in Section 1.1.1.
Ablation on Language Models. We explore the MLM results with various
pre-trained language models here, including bert-base/large-uncased [9], roberta-
base/large [25], xlm-roberta-base/large [7], and numBert [52]. As shown in Table
5, bert-large-uncased performs best on the two datasets, but the results are still
far from satisfactory. And other carefully decorated variants of Bert even produce
much worse results, which again illustrates that a pure MLM is not suitable for
this task at all.
Ablation on Fine-tuning Parameters. The impact of fine-tuning parameters
(specifically learning rate here) is shown in Table 6. We can see that fine-tuning
pre-trained language models with appropriate parameters will significantly im-
prove the numerical prediction results, but on the contrary, poor configurations
may bring negative effects. This reveals an inherent defect of PLM-tuning that
the parameters can be difficult to choose.
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Table 8. Fine-grained MAE results of five methods and the chosen model according to
the Best strategy on FB15K. The numbers in bold indicate the best among all methods.

MRAP KGE-reg MLM-tuning PLM-reg(name) PLM-reg(desc) Best Model

date of birth 13.7524 27.0335 17.8177 28.0877 25.0356 MRAP

date of death 14.1559 67.0116 22.8152 59.8208 46.8587 MRAP

film release 5.5087 5.0874 14.3519 11.8329 4.9622 PLM-reg (desc)

organization founded 73.7679 55.7411 39.5332 46.5200 46.9082 PLM-reg (desc)

location founded 152.4245 172.2755 100.1074 172.2287 144.9887 MLM-tuning

latitude 2.2707 9.7633 5.9728 8.8821 5.6201 MRAP

longitude 4.8890 25.1610 106.7638 29.9472 16.2546 MRAP

area 3.01e+6 2.37e+6 5.77e+5 1.80e+6 1.54e+6 MLM-tuning

population 1.05e+7 2.22e+7 4.43e+6 8.52e+6 1.57e+7 MLM-tuning

height 0.4836 0.1916 0.1263 0.1967 0.1881 MLM-tuning

weight 11.1000 10.6064 11.3400 10.7358 9.0717 PLM-reg (desc)

Ablation on Description Texts. Gesese et al. [14] have explored the benefits
of multilingual descriptions for link prediction, and here we use their trilingual
datasets as well as the combinations for PLM-reg (desc) on FB15K. The re-
sults are listed in Table 7, by which we can generally conclude that combining
multilingual descriptions as the input for PLM-reg is promising to improve the
performance but the improvement is not quite significant.

4.4 Case Study

We now start a fine-grained analysis on the performances of the methods over
different attributes. The MAE results on FB15K of the five models used in the
combination method are listed in Table 8, where the last column is the chosen
model of the Best strategy. We can observe that the chosen model for each
attribute except organization founded exactly has the best performance among
the methods, showing the effectiveness of the selection strategy. By looking into
the bold numbers and the best models, it appears that only three methods,
i.e., MRAP, MLM-tuning, and PLM-reg (desc), are actually dominant in some
attributes and play a role in the combination process, where only the first one
is graph-based and the others are semantic-based. This can serve as additional
evidence to demonstrate the potential of the semantic methods from the fine-
grained aspect.

And a more interesting finding comes when we analyze the relations asso-
ciated with each attribute. We find that the attributes benefit most from the
graph-based methods, such as latitude and longitude, typically have strong rela-
tions making the value derivation from the graph structures possible. A practical
example is that many entities with latitude often have the relation isLocatedIn
with other entities that they typically have similar latitude values. While other
attributes, like the height of a person, intuitively have little to do with the graph
structures, but are probably contained in the common sense knowledge behind
the language models, as people’s heights are actually in a small range. This
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observation partly explains why both structural and semantic information can
play a role in the numerical attribute prediction task. And on the other hand, it
inspires that we may obtain useful rules from the performance differences of the
two paradigms. For instance, we may get an inference rule that if A is located in
B, then A’s latitude is similar to B here. Rule discovery is an important research
problem and we will explore it further in the future.

5 Related Work

Numerical Attributes on Knowledge Graphs. Up to now, three works in
total have paid attention to predicting numerical attributes over KGs. Tay et
al. [39] use the learned embeddings of relational representation approaches as
features to train attribute-specific regression models. It is the first to treat non-
discrete numeric values as a prediction target and evaluate the performance of
different models by the task of attribute value prediction. They also design a
novel multi-task neural network to jointly learn from relational and numerical
attribute information and experiments show that these two kinds of informa-
tion are complementary to each other. The work [19] formalizes the numerical
attribute prediction problem with the Global and Local baselines, and leverages
knowledge graph embedding vectors in a linear regression model to get a better
performance. And recently MRAP [1], a multi-relational attribute propagation
algorithm in the message passing scheme, is proposed to impute missing numer-
ical values by the learned regression model depending on the graph structure
and known attributes. These works are pioneers for numerical attribute predic-
tion over KGs and are regarded as baselines in our experiments. However, all of
them focus only on the graph structures and ignore rich semantic information
under numeric attributes or external resources like PLMs, and thus have a poor
performance, especially in cases of unseen and isolated entities.

Another research line concerns the use of numerical attributes for represen-
tation learning [11, 20, 48]. For example, LiteralE [20] extends existing latent
feature models with learnable parameters to incorporate numeric literals into
entity embeddings, and gets performance gains in several link prediction bench-
marks. These works show the utility of numerical attributes for KGE techniques,
which facilitate one of our motivations to predict missing numerics.

Numerical Reasoning in Text Context. Several research topics about nu-
merical prediction and reasoning are thriving in the field of natural language
processing in recent days. One line parallel with our task is to predict missing
numbers in the context of text. An early work [16] adopts Word2vec embeddings
[26] of entity names as input features to regression models for number prediction.
Recent empirical investigations [2, 37] devote to explore the effectiveness of dif-
ferent combinations of various encoders and regression models. Masked numeral
predication task is also used to evaluate language models’ ability to capture and
memorize numerical knowledge [36, 52]. These methods can not be directly ap-
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plied to numerical prediction over KGs and some effective ways are needed to
realize the transfer, which is one of our contributions.

Some probing work has noticed the limitations of existing pre-trained lan-
guage models on numerical reasoning [34, 44] and then several attempts follow to
inject such skills into the models by different pre-training or fine-tuning patterns,
such as numBert [52], genBert [15] and numGPT [17], which can be regarded
as substitutions of the basic Bert model and hopeful to further improve the
performance of our method.

PLM and KG. As two major sources of knowledge playing significant roles in
a series of AI applications, pre-trained language models and knowledge graphs
are recently considered to be complementary to each other and can sometimes
work together. On the one hand, pre-trained language models have shown po-
tential to serve as substitute for explicit knowledge bases [31, 33] or improve
the performance of knowledge representation [53]. And on the other hand, some
work [6, 30] tries to integrate structured knowledge of KGs into current language
models for better interpretability. Combining both explicit and implicit knowl-
edge also shows advantages in tasks like recommender systems [22] and graph
completion [18, 45]. We are the first to explore such intergation on numerical
attribute prediction and experimental results demonstrate the effectiveness of
our combination strategy.

6 Conclusion and Future Work

In this paper, we focus on the prediction of numerical attributes over knowl-
edge graphs and devote to introducing semantic information for it. Several novel
semantic methods as well as effective combination strategies are proposed, and
extensive experiments have shown that both the explicit structural knowledge
and the implicit semantic information can help the prediction and an effective
combination is of great potential.

Several interesting directions are left for the future. First, we plan to take
a deep look at the paraphrase method when converting KG triples into texts,
and attempt other paradigms for the use of PLMs, such as prompt. Second, fine-
grained combination strategies and the value of numerical attributes on other
tasks can be further explored. Last but not least, rule discovery by the compare
between PLM and KG seems quite promising.

Supplemental Material Statement: Source code, datasets and results are all avail-
able at https://github.com/xbc0112/NumericalPrediction.
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