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ABSTRACT
Estimating the accuracy of an automatically constructed knowledge

graph (KG) becomes a challenging task as the KG often contains

a large number of entities and triples. Generally, two major com-

ponents information extraction (IE) and entity linking (EL) are

involved in KG construction. However, the existing approaches just

focus on evaluating the triple accuracy that indicates the IE quality,

completely ignoring the entity accuracy. Motivated by the fact that

the major advance of machines is the strong computing power

while humans are skilled in correctness verification, we propose an

efficient interactive method to reduce the overall cost for evaluating

the KG quality, which produces accuracy estimates with a statistical

guarantee for both triples and entities. Instead of annotating triples

and entities separately, we design a general annotation cost that

blends triples and entities generated from the identical source text.

During human verification, the machine can pre-compute and infer

triples to be annotated in the next round by speculating human

feedback. The human-machine collaborative mechanism is opti-

mized by formulating an order selection problem of triples which is

NP-hard. Thus, a Monte Carlo Tree Search is proposed to guide the

annotation process by finding an approximate solution. Extensive

experiments demonstrate that our method takes less annotation

cost while yielding higher accuracy estimation quality compared

to the state-of-the-art approaches.

CCS CONCEPTS
• Information systems→ Data cleaning; • Human-centered
computing → Human computer interaction (HCI).
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1 INTRODUCTION
Knowledge graphs (KGs), also known as knowledge bases, have

become important repositories for structured knowledge that are

automatically extracted from web contents or text documents. An

increasing number of large-scale knowledge graphs are constantly

emerging, e.g., NELL (Never-Ending Language Learner) [21], Deep-

Dive [22], Knowledge-Vault [7], Social-Impact Funding [18], and

E-commerce [20]. Typically, automatic KG construction involves

two critical tasks, i.e., information extraction (IE) and entity linking

(EL). The task IE conducts named entity recognition and relation

extraction to extract entities and triples, representing relations be-

tween entity mentions, from textual corpus or semi-structured data.

To integrate these triples and build a structured knowledge graph,

it is necessary to identify mentions which refer to the same en-

tity in the real world (i.e., a node in the KG), which is the task EL.

Although lots of efforts have been made to build such knowledge

graphs from a large corpus automatically, the quality of knowledge

graphs may be still far from perfect. Due to the notorious variability

of natural language, neither of the two tasks above is guaranteed

to never make mistakes. The mistakes made by the machine are

hard to be identified by the machine itself, reducing the utility of

the constructed knowledge graph in the downstream applications

such as question answering [6] and personalized recommendation

[14]. However, how to evaluate the accuracy (including both triple

accuracy and entity linking accuracy) efficiently and accurately has

not yet received much attention and research.

1.1 Previous Approaches and Limitations
Considering the large scale of automatically constructed KGs, it

is prohibitively expensive to conduct manual evaluation over the

whole KG. Hence, a practical approach is to randomly sample a

small set of triples and check themmanually. Then the accuracy can

be estimated based on these annotations. Instead of randomly sam-

pling triples, two representative methods KGEval [23] and TWCS

[11] have been proposed recently. KGEval estimates the correctness

of as many triples as possible by exploiting dependencies among

triples. Meanwhile, it suffers from expensive time cost to achieve
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𝑡!: (California(1), country, United States(1)) 0.89
𝑡": (Nevada(1), located in, California(2)) 0.49
𝑡#: (Bee(1), country, United States(1)) 0.74

Paragraph 1
Since its foundation in 1857, The Bee(1) has become the largest newspaper in Sacramento, the fifth
largest newspaper in California(1), and the 27th largest paper in the United States(1). It is
distributed in the upper Sacramento Valley, with a total circulation area that spans about 12,000
square miles (31,000 km2): south to Stockton, California(2), north to the Oregon border, east to
Reno, Nevada(1), and west to the San Francisco Bay Area.

Paragraph 2
California(3) is a state in the Pacific Region of theUnited States(2).

Paragraph 3
Briggs Terrace(1), also known as Evergreen Lane, is a nationally recognized historic district located in
Nevada(2), Iowa, United States(3). It was listed on the National Register of Historic Places in 1998.

X

𝑡$: (California(3), located in, United States(2)) 0.88

𝑡%:		(Nevada(2), located in, United States(3)) 0.85
𝑡&: (Briggs Terrace(1), located in, Nevada(2)) 1.00
𝑡': (United States(3), contains, Nevada(2)) 0.92

Figure 1: Example of an automatic constructed KG with its source texts. Seven triples are extracted from three paragraphs,
where each triple is assigned a confidence score. Mentions with the same color are linked as an entity.

convergence of accuracy estimates. Moreover, it does not provide

any statistical guarantee. TWCS applies cluster sampling with un-

equal probability theory that enables efficient manual evaluations

[11]. Nonetheless, the potential computing power of machines is

not fully exerted, thereby degrading the performance of the system.

Both KGEval and TWCS work under the assumption that the

entity linking is infallible, which is impossible for the current KG

construction process. Thus, both of the two methods fail to provide

reliable and accurate KG quality estimation. Specifically, as KGEval

makes inferences on the basis of the dependencies among triples,

neglecting mistakes from entity linking will result in false estima-

tion inevitably. Beyond that, incorrect linking of head entities may

lead to false clusters in TWCS, misleading the annotators. Unreli-

able inference and annotation make the triple accuracy estimate

deviate from the true value, resulting in an immeasurable bias.

Since most triples are automatically extracted from text, anno-

tating triples or mentions from the same text in succession can

further reduce the overall annotation cost because the user does

not need to read the same text repeatedly. Furthermore, a triple is

often assigned a score showing the confidence of the system. Both

KGEval and TWCS neglect the associated text sources and triple

confidence which can be used to reduce the annotation cost.

1.2 Motivating Example and Contributions
Example 1.1. Figure 1 presents a set of triples which are extracted

from three paragraphs fromDocRed [29], where all the triples but 𝑡2
are correct. The numbers followingmentions are used to distinguish

entity mentions with the same string surface. In this example, we

assume that the entity linking process does not make any mistakes,

meaning that entity mentions with the same color refer to the same

entity indeed in the real world. For each triple, the annotator reads

the corresponding text to make a judgement. When we sample 𝑡1,

𝑡2 and 𝑡4, there are several possible orders to annotate them. If these

three triples are annotated in an order of 𝑡1, 𝑡2 and 𝑡4, the user can

conclude the correctness of 𝑡2 quickly after annotating 𝑡1 because

the source text of 𝑡1 and 𝑡2 is the same one (i.e., the paragraph

1), and the user just reads this paragraph when annotating 𝑡1. In

contrast, if the user annotates them in an order of 𝑡1, 𝑡4 and 𝑡2,

the user may be less familiar with paragraph 1 when annotating

𝑡2, which desires more time to re-read this paragraph and make a

judgement. Therefore, considering the associated source texts of

triples in annotation order contribute to annotation cost reduction.

In this example, the triple accuracy is 85.7%. Notice that the

correctness distributions differ between two confidence ranges if we

divide these triples into two groups according to triple confidence.

Triples with confidence ranging from 0.4 to 0.7 are considered as

group 1, and those from 0.7 to 1.0 form group 2. Assume we sample

three triples 𝑡1, 𝑡2 and 𝑡4 with manual annotations true, false and

true, respectively. The estimated accuracy is
1

3
× (1 + 0 + 1) = 66.7%

by simply computing the mean of the labels. If triples in group 1

and group 2 are assigned distinct weights
1

7
and

6

7
, respectively,

we can compute an estimate as a weighted mean of triple labels as

1

7
× 0 + 6

7
× 1 = 85.7%. Furthermore, the sample variance of 𝑡1, 𝑡2,

and 𝑡3 is 0. As a result, taking confidence into consideration helps

in improving the quality estimation.

For the task of evaluating KG accuracy, an ideal system mini-
mizes the total cost of sampling and human annotation to produce
accuracy estimates with statistical guarantees. The major strength of

the computer is its extraordinary computing power, while humans

perform better than machines on tasks like the semantic interpre-

tation of natural language and knowledge reasoning. It is desired

to take full advantage of both strengths of computers and humans

rather than just optimizing one of them. Therefore, we propose an

interactive framework that interleaves triple sampling and human

annotation. In other words, the machine performs sampling and

pre-computation during human annotation.

Specifically, we build inference graphs (IGs) by integrating triples,

entity linking results (i.e., whether two mentions refer to the same

entity), and dependency rules together. To estimate the triple ac-

curacy and entity linking accuracy, we just need to sample a small

set of IGs rather than annotating all triples and entity linkings in

the KG. Considering the benefit of annotating triples and mentions

from the same source text in succession, we define a general anno-

tation cost function. We formalize an optimization problem, namely

finding the optimal order of annotating triples (and linkings) to

minimize the cost of annotations, which is NP-hard as proved in

the paper. Thus we exploit a Monte Carlo Tree Search (MCTS) to

determine the “best” triples (or linking) for the annotator each time.

Instead of being idle during human verification, the computer can

pre-compute and infer triples and linkings to be annotated in the

next round by considering possible feedback from annotators. The

computer can immediately deliver the triple or linking which needs

to be further annotated once it receives feedback from annotators.

It is clear that the overall time cost will be reduced because of

the overlap of machine computation time and human annotation

time. The system can produce triple accuracy and linking accuracy

estimates with statistical guarantees after each round of annotation.
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To summarize, we make the following contributions in the paper.

• To the best of our knowledge, we are the first to evaluate KG

quality comprehensively by estimating both triple accuracy

and entity linking accuracy;

• By optimizing the human-machine collaborative mechanism,

we propose an efficient interactive method to reduce the

overall cost for evaluating the KG accuracy, which produces

accuracy estimates with statistical guarantees;

• We integrate triples, entity linking results, and dependency

rules to facilitate triple and linking sampling, which can

reduce the burden of annotators;

• We formalize an optimization problem of order selection for

triple and linking annotations and prove its NP-hardness.

MCTS is applied to find an approximate solution and guide

the annotation process;

• Extensive experiments have been conducted over both real

and synthetic datasets. The empirical results confirm that

the proposed method outperforms the state-of-the-art ap-

proaches significantly by taking less annotation cost while

yielding higher accuracy estimate quality.

2 PROBLEM DEFINITION AND FRAMEWORK
We formulate the problem and present the framework of our ap-

proach. Table 5 (Appendix A) lists the frequently used notations.

2.1 Problem Formulation
As discussed above, automatic KG construction involves two tasks,

i.e., information extraction (IE) and entity linking (EL). The result

of IE is represented as a quadruple (𝑇, 𝑆,Φ, 𝜌), in which 𝑇 is a set

of subject-predicate-object (SPO) triples𝑇 = {𝑡1, 𝑡2, ..., 𝑡𝑛}, 𝑆 is a set

of source text 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑚}, and Φ and 𝜌 map a triple 𝑡𝑖 ∈ 𝑇 to

its source text 𝑠 𝑗 ∈ 𝑆 and a confidence score in [0, 1], respectively.
Each triple 𝑡𝑖 is in the form of (𝑒𝑖1, 𝑟𝑖 , 𝑒𝑖2), where 𝑒𝑖1 and 𝑒𝑖2 are

entity mentions (specially, 𝑒𝑖2 can also be a literal), and 𝑟𝑖 is the

relation between the two mentions. Since several triples may be

extracted from the same text, we have𝑚 ≤ 𝑛 in general.

All head and tail entity mentions from 𝑇 compose the set E.
Entity linking is a process that given any two entity mentions

𝑒𝑖 , 𝑒 𝑗 ∈ E, 𝑖 ≠ 𝑗 , determining whether these two mentions refer to

the same entity. Formally, entity linking is defined as a mapping

L : E × E → {0, 1}, where 0 means two entity mentions refer to

different entities and 1 represents that two mentions are linked.

Definition 2.1. (Mention Cluster). A mention cluster is a set of

mentions that refer to the same entity.

For each pair of mentions from E, we conduct entity linking and
obtain the result E𝑠 = {{𝑒11, 𝑒12, ..., 𝑒1𝑛1

}, ..., {𝑒𝑘1
, 𝑒𝑘2

, ..., 𝑒𝑘𝑛𝑘 }}.
Each element {𝑒𝑖1, 𝑒𝑖2, ..., 𝑒𝑖𝑛𝑖 } in E𝑠 is a mention cluster. For ease

of presentation, let E represent all the real-world entities that

mentions in E may refer to. A mapping from entity mentions

to real-world entities is defined as 𝐿 : E → E . Let 𝑇𝐿 denote

the set of triples after performing entity linking, where 𝑡𝐿𝑖 =

(𝐿(𝑒𝑖1), 𝑟𝑖 , 𝐿(𝑒𝑖2)) ∈ 𝑇𝐿 . The knowledge graph we finally obtain

is 𝐺 = (𝑇𝐿, 𝑆,Φ𝐿, 𝜌𝐿). If entity linking is not required in the con-

struction, we have 𝑇𝐿 = 𝑇 , leading to 𝐺 = (𝑇, 𝑆,Φ, 𝜌).

Let 𝜇1 (𝐺) and 𝜇2 (𝐺) denote the real triple accuracy and entity

linking accuracy of 𝐺 , respectively. Formally, 𝜇1 (𝐺) =
𝜏

𝑀
and

𝜇2 (𝐺) =
𝛾

𝐻
, where𝑀 and 𝐻 represent the total number of triples

and linked entities, respectively, 𝜏 and 𝛾 represent the number of

correct triples and linked entities, respectively. Accuracy estimate

is calculated by a set of sampled triples and their correctness. Let us

denote a sample of𝐺 as𝐺 ′ = S(𝐺) = (𝑇 ′
𝐿
, 𝑆 ′,Φ′

𝐿
, 𝜌 ′

𝐿
) with 𝑇 ′

𝐿
⊆ 𝑇𝐿

and 𝑆 ′ ⊆ 𝑆 . S is a method designed to select triples to annotate. As

associated to 𝐺 ′
, we have a set of entity mentions E ′

and a set of

linked entities E ′
𝑠 .

Cost Function. The overall cost is comprised of machine time

and human cost (i.e. annotation time), which have not been well

investigated in prior research. Since machines and humans have

complementary advantages as we discussed in Section 1, the human-

machine collaborative mechanism enables an annotator and a com-

puter to work together, and thus reduces the overall time cost. As

a result, in view of possible overlap between machine time and

annotation time, the overall cost function is defined as

𝐶𝑜𝑠𝑡 (𝐺 ′) = 𝐶𝑜𝑠𝑡𝑚 (𝐺 ′) +𝐶𝑜𝑠𝑡ℎ (𝐺 ′) −𝐶𝑜𝑠𝑡𝑜 (𝐺 ′), (1)

where 𝐶𝑜𝑠𝑡𝑚 , 𝐶𝑜𝑠𝑡ℎ , and 𝐶𝑜𝑠𝑡𝑜 represent the machine cost, human

annotation cost, and overlap part between the first two, respectively.

𝐶𝑜𝑠𝑡𝑚 (𝐺 ′) is composed of the pre-computation cost and inference

cost, which will be introduced in detail in Section 5. We define a

general annotation cost function considering entity linking veri-

fication and the benefit of conducting annotations based on the

associated source text in Equation (6).

The paper aims to produce 𝜇1 (S(𝐺)) and 𝜇2 (S(𝐺)) (abbreviated
as 𝜇1 and 𝜇2 for simplicity), estimates of 𝜇1 (𝐺) and 𝜇2 (𝐺) according
to correctness of the sampled triples 𝑇 ′

𝐿
and linked entities E ′

𝑠 . The

half width of a confidence interval, also called Margin of Error

(MoE), is used to represent the precision of estimate.

Problem Statement 1. Given a knowledge graph 𝐺 , the goal is
formulated as:

min

S
𝐶𝑜𝑠𝑡 (S(𝐺))

𝑠 .𝑡 . E[𝜇1] = 𝜇1 (𝐺), 𝑀𝑜𝐸 (𝜇1, 𝛼) ≤ 𝜖1,

E[𝜇2] = 𝜇2 (𝐺), 𝑀𝑜𝐸 (𝜇2, 𝛼) ≤ 𝜖2 .

where 𝜖1 and 𝜖2 are thresholds of MoE at confidence level 1-𝛼 . The
parameters 𝜖1, 𝜖2, and 𝛼 can be specified by the user on demand.

2.2 Framework of Our Approach
As shown in Figure 2, we develop a systematic framework for KG

accuracy estimation. It consists of four components as follows.

• IG Constructor combines triples, linked entities, and de-

pendencies together to build Inference Graphs (IGs);

• Sampler draws a subset of IGs by utilizing the sampling

method S;
• AnnotationHelper assists the annotator by pre-computing

proper triples and mentions to annotate and performing

inference after receiving feedback from the annotator;

• Collector collects all the annotated IGs, calculates two esti-

mates with their confidence intervals (CIs) using the anno-

tated IGs, and determines when to stop the process.
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IG Constructor

IG

Estimators of triple accuracy and 
linking accuracy with CIs

Human AnnotatorIG

Annotation HelperTask Selection
and Inference

Task Annotation

Sampler

Collector

IGIGIGIGIG

Figure 2: Accuracy evaluation framework. On the right side,
rectangles colored with blue and green represent text anno-
tation sequence and machine pre-computation respectively.

Before the whole accuracy estimation process, we provide IG

Constructor with 𝑇𝐿 , the set of triples after performing entity link-

ing. Then a set of IGs are generated to facilitate the annotation. The

Sampler draws a subset of IGs and delivers them to the annotator.

Receiving an IG, the Annotation Helper exploits MCTS to select

the first triple or mention and provides it together with source text

to the annotator. The annotator reads the source text and checks

the correctness of the triples or linked mentions. Instead of being

idle, the Annotator Helper pre-computes the next triple or mention

to annotate by considering possible feedback from annotators. As

soon as the annotator accomplishes the annotation, a new annota-

tion task (i.e., a triple or a mention) to annotate will be offered to

the annotator immediately. When an IG has been annotated, the

Collector uses the annotated IG to calculate the estimates and their

MoEs. The whole process terminates if the MoEs meet the user’s

demand. Otherwise, the component Sampler draws a new IG again

and the steps above are repeated.

3 INFERENCE GRAPH CONSTRUCTION
Before entering the sampling-annotation loop, we employ inference

graphs (IGs) to facilitate human-machine collaboration later.

3.1 Triple Inference Graph
To reduce the number of triples to annotate, an effective approach is

to automatically infer correctness from annotated triples by employ-

ing the dependencies (also called rules) among triples’ correctness.

A rule used in the paper can be defined using a Horn Clause, whose

premises and conclusions are all triples. For example, when a 𝐴 is

the spouse of 𝐵, 𝐵 must be the spouse of 𝐴, represented with Horn

Clause as (𝐴, spouse of, 𝐵)→ (𝐵, spouse of, 𝐴). It is clear that such a

rule can facilitate the correctness verification of triples. There have

been some researches about automatic construction of rules, such

as PRA [17] and AMIE [10]. To guarantee the validity of inference,

the automatically extracted rules need to be refined by humans.

We design the triple inference graph, a heterogeneous directed

graph combining scattered triples together with rules. Notice that

a rule can be applied to several sets of triples, so multiple rule

instances are built to distinguish each other.

Definition 3.1. (Triple Inference Graph, shorted as TIG). A triple

inference graph 𝐺𝐼 = (𝑉𝐼 , 𝐸𝐼 ) is a directed graph, where 𝑉𝐼 =

	𝑡!	𝑡" 	𝑡#

	𝑡$	𝑡%

𝑹𝟏: (a, country, b) → (a, located in, b)

𝑹𝟐: (a, country, b) → (a, located in, b)

𝑹𝟑: (a, contains, b) → (b, located in, a)

𝑹𝟒: (a, located in, b) ∧ (b, country, c) → (a, located in, c)

Triple Inference Graph

Figure 3: An example of TIG for the knowledge graph in
Figure 1, where triples 𝑡1, · · · , 𝑡7 are defined in Figure 1. Circles
represent triple nodes, and squares represent rule nodes. For
simplicity, only a subset of rule instances are presented.

𝑉𝐼1 ∪ 𝑉𝐼2 and 𝐸𝐼 are the node and edge sets, respectively. 𝑉𝐼1 is a

set of nodes corresponding triples (called triple nodes) and 𝑉𝐼2 is a

set of rule nodes representing rule instances. For one rule node 𝑣 ,

its premise triple nodes have edges pointing to 𝑣 , and 𝑣 points to

its conclusion node. Each rule node 𝑣 takes 𝑣 ’s in-neighbors as its

premises, and takes 𝑣 ’s out-neighbors as its conclusion.

A TIG has two characteristics: (1) edges only exist between triple

nodes and rule nodes; (2) the out-degree of each rule node is one,

which means that one rule only has one conclusion. This constraint

does not limit the variety of rules because rules with multiple

conclusions can be split into several single-conclusion rules.

Example 3.2. A TIG for triples in Figure 1 is presented in Figure 3,

where 4 dependency rules (𝑅1, 𝑅2, 𝑅3, and 𝑅4) are defined among

triples. If an annotator labels triple 𝑡1 as “true”, the correctness of

triple 𝑡4 is easily inferred as “true” based on rule 𝑅1.

3.2 Inference Graph
One entity in a KG is often linked by several entity mentions in

corpus. Take the rule (𝐴, spouse of, 𝐵) → (𝐵, spouse of, 𝐴) as an
example, we assume that the head entity 𝐴 is linked by mentions

𝐴1 and 𝐴2, and the tail entity 𝐵 is linked by mentions 𝐵1 and 𝐵2. If

𝐴1 and 𝐴2 are linked incorrectly, i.e., they refer to different entities,

this inference rule will not work anymore. As a result, this rule

works under the premise that (𝐴1 = 𝐴2) ∧ (𝐵1 = 𝐵2) ∧ (𝐴, spouse
of, 𝐵)→ (𝐵, spouse of, 𝐴), where (𝐴1 = 𝐴2) and (𝐵1 = 𝐵2) mean that

mentions𝐴1 and𝐴2, 𝐵1 and 𝐵2 refer to the same entity, respectively.

We extend TIGs by connecting entity linking results with rule

nodes as premises for inference. Besides, some new rules can be also

derived from existing rules to strengthen the inference ability of

TIG. Specifically, when a set of triples whose correctness contradicts

a rule, there must exist some incorrectly linked entities.

Not only the correctness of triple-triple and triple-entity linking

can infer each other, but also entity linkings can use inference

techniques. Thus, we build an entity linking graph for each group

of entity mentions which are linked together to assist inference.

Definition 3.3. (Entity Linking Graph). Given a set of entity men-

tions 𝑉𝑒 = {𝑒𝑖 }, an entity linking graph, shorted as ELG, is an

undirected complete graph 𝑔𝑒 = (𝑉𝑒 , 𝐸𝑒 ), where each two nodes in

𝑉𝑒 has an edge in 𝐸𝑒 , meaning that two entity mentions are linked.

ELG is designed to infer linkings among any three mentions.

The straightforward rule is that when two pairs of mentions are

checked and at least one of them is truly linked, the correctness of
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	𝑡!	𝑡"

	𝑡#

Part of Triple Inference Graph

	𝑡!	𝑡"

	𝑡#(1) (2)

(3)

Entity Linking Graph of California

InferenceGraph

California

𝒕𝟏: (California(1), country, United States(1))
𝒕𝟐: (Nevada(1), located in, California(2))
𝒕𝟓: (Nevada(2), located in, United States(3))

US(1)=(3)

California 
(1)=(2)

Nevada
(1)=(2)

TIG with Entity Linking

Linking Node

Figure 4: An example of IG. For simplicity, only a part of TIG
in Figure 3 is shown in this example.

the remaining mention pair is determined. For example, in the ELG

part of Figure 4, if the user finds that the mention California(1) and
California(2) refer to one state of the United States, andCalifornia(1),
California(3) are also linked truly, it can be inferred that the linking

between California(2) and California(3) is also correct.

We add an auxiliary node (the dotted circles as shown in Figure 4)

on each edge of an ELG, whose label represents the correctness of

EL between the two end nodes. The auxiliary nodes are used to

make connections with the TIG, leading to the inference graph.

Definition 3.4. (Inference Graph). Given a TIG 𝐺𝐼 = (𝑉𝐼 , 𝐸𝐼 ), an
inference graph𝐺𝐶 , shorted by IG, is defined as the graph obtained

by connecting each rule node 𝑢 ∈ 𝑉𝐼 with auxiliary nodes of the

ELGs {𝑔𝑒 } through newly added nodes, also called linking nodes,

where {𝑔𝑒 } is the set of ELGs built for all the entities in the triples

adjacent to 𝑢.

Example 3.5. The right part of Figure 4 is an example of IG which

is built based on Figure 3.We just present the result of adding linking

nodes as the premise for rule node 𝑅4 and one entity linking graph

for the entity California for simplification.

After obtaining an IG, all the correctness of triple nodes and

auxiliary nodes are waiting for annotation. The annotation process

is assisted by the proposed annotation helper to reduce human

annotation cost. Details of annotation are shown in Section 5.

4 SELF-ADJUSTED STRATIFIED SAMPLING
Stratified sampling [4] is often used to reduce the variance of esti-

mates. The key idea of this sample approach is splitting the popu-

lation into several homogeneous subpopulations (called stratum).

Motivated by the example in Section 1, confidence scores of triples

can be used to guide the stratification because triples with similar

confidences are more likely to have a similar probability of being

correct. To generalize the concept of confidence to IG, we compute

the median of all triples’ confidences in an IG as its confidence.

In each stratum we use an estimate from weighted sampling

𝜇𝑤𝑖,ℎ . The weight of the ℎ-th stratum is𝑊ℎ . The unbiased estimate

of triple accuracy 𝜇1 with 1 − 𝛼 CI is defined as follows:

𝜇𝑠1 = Σℎ𝑊ℎ𝜇𝑤1,ℎ (2)

𝜇𝑠1 ± 𝑧𝛼/2

√︂
1

𝑛(𝑛 − 1) Σℎ𝑊
2

ℎ
𝑉𝑎𝑟 (𝜇𝑤1,ℎ) (3)

The unbiased estimate of entity linking accuracy 𝜇2 with 1 − 𝛼

CI is defined as follows:

𝜇𝑠2 = Σℎ𝑊ℎ𝜇𝑤2,ℎ (4)

𝜇𝑠2 ± 𝑧𝛼/2

√︂
1

𝑛(𝑛 − 1) Σℎ𝑊
2

ℎ
𝑉𝑎𝑟 (𝜇𝑤2,ℎ) (5)

Generally, it is difficult for the user to determine how to split the

confidence range [0,1] into several sub-intervals. Thus, we propose

to adjust stratum automatically as follows.

(1) Initialization: Confidence range is divided into 𝑘 equal sub-

intervals, where 𝑘 is a user-specified parameter.

(2) Combination Simulation: After some TIGs have been anno-

tated and the MoE of the estimate is recomputed, we try

to combine neighborhood strata as a new stratification and

calculate the new MoE under these new strata. If the new

MoE is smaller than the previous MoE, we believe the new

stratification is better than the unadjusted one.

(3) Adjustment: If there exist combinations that can result in

better stratification, we choose the one which minimizes

MoE to adjust stratification.

(4) Stable State: If an adjustment cannot be made for more than

ℎ times or the number of strata is less than 𝑡 , the stable state

of stratification is achieved and no more adjustment will be

made later. Both ℎ and 𝑡 can be determined by the user.

5 OPTIMIZING INTERACTIVE ANNOTATION
5.1 Annotation Cost
For one entity (i.e., a set of entity mentions referring to the same

entity), instead of checking eachmention pair one by one, we ask the

annotator to identify each mention individually. When identifying

a mention 𝑒𝑖 from the mention clusters 𝐹 , the user is asked to

review mentions in 𝐹 which have been identified. If 𝑒𝑖 refers to

the same entity with one of them called 𝑒 𝑗 , the user just needs to

classify 𝑒𝑖 and 𝑒 𝑗 as the same class. This design reduces the time

for recording the identification result of 𝑒𝑖 . Therefore, annotating a

set of mentions (i.e. checking if any pairs of them refer to the same

entity) is divided into two situations:

• Entity classification: if current mention refers to the same

entity with any mention which has been identified, classify

them as the same class;

• Entity creation: if current mention refers to a new entity,

record current identification result.

As discussed in Section 1, annotating triples or mentions from

the same source text in succession can reduce time cost. We define

the annotation cost next:

𝐶𝑜𝑠𝑡ℎ (𝐺 ′) = 𝑐1 · 𝑣 + (𝑐2 · 𝛼 + 𝑐3 · 𝛽) − 𝛾 · 𝑠, (6)

where 𝑣 is the number of triples checked by the user, and 𝛼 and 𝛽 are

the number of entity classification and entity creation, respectively.

𝑠 is the number of situations that the adjacent annotation tasks

share the same source text. 𝑐1, 𝑐2, 𝑐3, and 𝛾 are set by the user.

5.2 Annotation Order Problem
Annotating an IG is a process that a human labels correctness of

triples and identifies entity mentions according to the source texts
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with the help of Annotation Helper. As one IG may contain several

triples and mentions, the order in which the triples and mentions

are annotated may affect the annotation cost.

Example 5.1. As shown in Figure 3, if 𝑡1 is annotated as “true”

before 𝑡4, the correctness of 𝑡4 can be inferred as “true” using 𝑅1

without extra human efforts. As a result, it is required to select the

optimal order for triple annotation.

To minimize the human annotation cost in Equation (6), we can

define the annotation order problem next.

Definition 5.2. (Annotation Order Problem, shorted by AOP).

Given an inference graph𝐺𝐶 , the goal of AOP is to find the optimal

order O∗
such that

O∗ = arg min

O
𝐶𝑜𝑠𝑡ℎ (O(𝑉𝑒 ∪𝑉𝐼1 )),

where 𝑉𝐼1 is a set of triples waiting for verification, 𝑉𝑒 is the set of

entity mentions needed to be identified by the user, and O is an

order of annotation.

Theorem 5.3. The Annotation Order Problem is NP-Hard.

Proof. The proof can be achieved by reducing from the NP-hard

Information Maximization problem [15]. For more details, please

refer to Appendix B. □

Because the annotation process is indeterminate (for example,

one triple can be true or false), we use expectation of𝐶𝑜𝑠𝑡ℎ (O(𝑉𝑒 ∪
𝑉𝐼1 )) as the measure of human efforts. The most simple idea is

to enumerate all possible orders and calculate their expectations,

however, the time cost is prohibitively expensive. To utilize the

computation power of machines, we use a simulation-based method

to obtain the approximate solution.

5.3 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) is a simulation-based method to

find a better decision [3], becoming more and more widely used

after its success in AlphaGo [9]. It is employed to find an optimal

policy (i.e., a function maps each state to action) of large state-

space Markov Decision Process (MDP). The MDPmodels sequential

decision problems in fully observable environments with state space

𝑆 , action space 𝐴, transition probability 𝑃𝑎 (𝑠, 𝑠 ′), reward 𝑅𝑎 (𝑠, 𝑠 ′),
and a terminal state.

We can take the IG annotation as anMDP and greedily choose the

near-optimal text to verify dynamically based onMCTS. Specifically,

our IG annotation process is also a sequential decision problem, by

considering IG’s annotation condition as states and unannotated

triples and unidentified mentions as actions. Choosing one triple to

verify or one entity mention to identify is the same as choosing an

action. Annotating one triple as true or false or linking one mention

to one entity makes the state of MDP change. The terminal state

is an annotation condition that all the triples in IG (i.e., 𝑉𝐼 ) and

all entity linkings i.e., {𝑉𝑎}) have been annotated. 𝑃𝑎 (𝑠, 𝑠 ′) is the
probability of transferring from state 𝑠 to 𝑠 ′ when taking action 𝑎.

When the action is a triple, the translation probability is estimated

by the triple accuracy estimate 𝜇1 and 1− 𝜇1. When the action is an

entity mention, the probability of entity classification and creation

can be estimated by frequency during the annotation process.

The reward 𝑅𝑎 (𝑠, 𝑠 ′) is defined according to the annotation cost

Equation (6). When 𝑎 is a triple, the reward is −𝑐1. When 𝑎 is an

entity mention, rewards are −𝑐2 and −𝑐3 for entity classification

and entity creation, respectively. If the current action’s source text

is the same as the last action, current reward is added with 𝛽 . A

policy is a mapping from states to actions. Given a policy 𝜋 , a utility

score of a state 𝑠 is defined as follows:

𝑈 𝜋 (𝑠) = 𝐸𝑃 ( [𝑠0,𝑠1,...] |𝑠0=𝑠,𝜋 ) [Σ
𝑇
𝑡=0

𝑅(𝑠𝑡 )]

Therefore, an optimal policy is given by 𝜋∗𝑠 = 𝑈 𝜋 (𝑠) = 𝜋∗. If from
state 𝑠 , all actions are selected according to 𝜋∗, a utility score under
the optimal policy is𝑈 (𝑠) = 𝑈 𝜋∗ (𝑠). In this case, the optimal policy

of a state 𝑠 is given by

𝜋∗ (𝑠) =𝑎 Σ𝑠′𝑃 (𝑠 ′ |𝑠, 𝑎)𝑈 (𝑠 ′)

It is clear that the optimal policy of 𝑠 is the action with the maximal

expected accumulated utilities, called expected reward of an action.
This expectation can be estimated using simulation, which is the

key idea of MCTS.

UCB is a common metric used by MCTS which balances the

probability of choosing the action with a good accumulated reward

and choosing the action with fewer simulations [1].

𝑈𝐶𝐵(𝑎𝑖 ) = 𝑅𝑖 +𝐶

√︄
2𝑙𝑛(𝑛)
𝑛(𝑎𝑖 )

,

where 𝑛(𝑎𝑖 ) is the time of simulations beginning with 𝑎𝑖 and 𝑛 is

the total number of simulations.

To choose this policy of a given state, in other words, the best

text in a given annotation condition for the annotator, MCTS is

performed. Monte Carlo Tree (MCT) is built with the current state

as the root node. Each possible action (i.e., unverified triple or

unidentified entity mention) will become one child of the root node.

Given a state, the MCTS works as follows:

(1) Expansion: If there are still actions not been added into MCT,

randomly choose one and the root node expands a child node

for it with an initial UCB score of 0.

(2) Selection: Choose the child of the root node with the largest

UCB score for simulation.

(3) Simulation: Simulate the iteration of choosing an action, an-

notating a triple or identifying a mention, making inferences

until the terminal state is reached. During simulation, choices

of the subsequent actions are random. The probability of an-

notating a triple as “true” equals the accuracy estimator 𝜇1

we have, and entity classification and entity identification

are simulated with probabilities estimated from frequencies

of all the annotated IGs. The reward of this action is achieved

by adding rewards of states during the simulation.

(4) Update: Update the UCB score of the chosen child node using

the reward of it from simulation.

(5) Termination: Repeat steps 1-4 iteratively until the termina-

tion condition, e.g., limit of elapsed time and limit of simula-

tion times, is reached. The child node with the maximum 𝑅𝑖
is chosen as the next triple or mention to annotate.

The optimality of MCTS is discussed in Appendix C.
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5.4 Interactive Mechanism
If we want to choose the optimal annotation task in each round for

the annotator, plenty of simulations are needed to guarantee the

quality of MCTS, which will consume much time. To relieve such a

problem, an effective interactive mechanism is desired.

Let us recall the cost function defined in Equation (1), the total

cost can be reduced by reducing 𝐶𝑜𝑠𝑡𝑜 , the overlapping of time

shared by the machine and annotator. Notice that reading a text to

verify a set of triples usually takes tens of seconds, which is time-

consuming as well. The principle of the interactive mechanism is

interleaving both human annotation and order selection. Instead

of being idle, the Annotation Helper progressively performs two

tasks, such that the system can immediately deliver the next task

to annotate upon receiving the label returned by the annotator.

(1) It pre-computes the next annotation task by taking into consid-
eration the possible feedback from the annotator. Suppose the user
is verifying a triple, the label of the triple will be “true” or “false”,
leading to two possible states (i.e. the annotation condition of the IG).
The annotation helper begins MCTS processes with states as root nodes
and chooses the next annotation task separately.
(2) For each pre-computed annotation task, it pre-computes the infer-
ence results based on possible responses from the user.

Suppose the user is identifying an entity mention. For a mention,

possible actions include entity classification and entity creation. Be-

cause if there are several mentions which have been identified, the

entity classification may have many possible results. For example,

there is an entity𝐴 in the IG which is linked by mentions 𝑎1, 𝑎2, 𝑎3,

and 𝑎4. Assume that the first three mentions have been identified

that they refer to three different entities. Therefore, possible results

of mention 𝑎4 are creating a new entity or classifying it as 𝑎1, 𝑎2 or

𝑎3, 4 types in total. Because𝐶𝑜𝑠𝑡𝑜 has an upper bound of𝐶𝑜𝑠𝑡ℎ , we

want a more instructive pre-computation result when the number

of feedback is large in a limited time. In other words, for more likely

feedback, we want a more precise pre-computation, for MCTS, a

longer simulation. Therefore, we estimate the probabilities of all the

possible feedback and use these probabilities as weights to arrange

the pre-computation time, which leads to that in most cases the

real feedback from the user has been simulated with enough time

and the choice of the next task is instructive.

6 EXPERIMENTS
6.1 Experiment Setup
Datasets. As listed in Table 6 (see Appendix D) , three real-world

datasets including NELL [23], YAGO [23], and OPIEC [12] and three

synthetic datasets SYN-IGs with different sizes are used to evaluate

the performance of our framework.

Cost Function. To reduce the uncertainty of measuring time for

each experiment, we estimate the annotation time factors 𝑐1, 𝑐2

and 𝑐3 and cost reduction factor 𝛾 to calculate the cost by the

cost function 6 instead of measuring time cost directly. Parame-

ters are estimated by measuring real human annotation time and

the result is presented in Table 1. When just considering triple

accuracy in YAGO and NELL, we use the same cost function as

TWCS [11] (introduced in detail in Appendix D.2) to make a fair

comparison with it. They divide the annotation process into en-

tity identification and relationship validation, leading to the cost

Table 1: Parameters of annotation cost function.

Triple Verification Cost 𝑐1 5.7s

Entity Creation Cost 𝑐2 11.0s

Entity Classification Cost 𝑐3 10.0s

Cost Reduction 𝛾 1.2s

function𝐶𝑜𝑠𝑡ℎ (𝐺 ′) = 45|𝐸 ′ | + 25|𝐺 ′ |, where |𝐸 ′ | and |𝐺 ′ | represent
the number of entity identification and the number of relationship

validation, respectively. In OPIEC, we use the cost function 6 for

both TWCS and our method, setting 𝑐2, 𝑐3 as 0. When estimating

triple accuracy and entity linking accuracy at the same time, we

use the complete version of our cost function.

Implementations. We repeat triple accuracy estimation in YAGO

and NELL for 1,000 times and report the mean estimate with stan-

dard deviation. We set the minimum number of annotated triples to

20 because the accuracies of these two datasets are high. Otherwise,

it is at serious risk of drawing one IG whose triples are all correct,

getting an estimate of 1 and 0 MoE. Parameters of the cost function

are estimated by measuring real human annotation time and the

result is presented in Table 1.

Both of upper bounds of MoEs 𝜖1, 𝜖2 are set as 5%, and 𝛼 is set as

5%. We implemented our method in Python3 and all experiments

were performed on Ubuntu 16.04.7 using Intel Xeon E5-2678 v3 @

2.50GHz processor with 220 GB of memory.

Evaluation Metric. The number of IGs and the number of triples

drawn by the sampler are used to reflect the efficiency of sampling

methods. Besides, we call the ratio of the number of annotated

triples and the number of triples annotated by humans as the triple
inference rate, measuring the inference ability of our framework.

Similarly, we can also define the entity inference rate.

6.2 Evaluation on Datasets
6.2.1 Triple Evaluation. An efficiency improvement to TWCS can

be seen in Table 2 using our framework. Compared with TWCS,

our method reduces 46.88%, 52.35%, and 42.11% number of manual

annotations in YAGO,NELL, andOPIEC, respectively. The reduction

of the overall time cost is 25.00%, 25.4% and 37%. OPIEC has the

greatest improvement on overall time because this dataset provides

source texts and our framework can use them to reduce annotation

time, i.e., 𝐶𝑜𝑠𝑡ℎ . Our method has a tiny 𝐶𝑜𝑠𝑡𝑚 − 𝐶𝑜𝑠𝑡𝑜 , i.e., extra

time of the machine, for the need of MCTS to select the first triple

to annotate, and this burden does not have a negative effect on𝐶𝑜𝑠𝑡 ,

while the use of MCTS boosts inference mechanism as Section 6.3.2.

The effect of inference is presented by the triple inference rates

43.33%, 12.35%, and 31.19%.

6.2.2 Entity Linking Evaluation. Table 3 presents the result of esti-
mating triple accuracy and entity linking accuracy simultaneously

in OPIEC and SYN-IG-10m. It can be found that for large graphs

with 100,000 and 10,000,000 triples, our method can find estimates

satisfying the user’s demand within 1 hour. We can find that only

estimating triple accuracy of NELL in Table 2 takes more time than

getting triple and entity linking accuracies of OPIEC, meaning that

our framework is suitable for giving a complete accuracy evaluation

of an automatically constructed KG from texts with crowdsourcing.

6.2.3 Effect of Entity Linking. In the knowledge graph construction,
entity linking is impossible to be perfect, leading to wrong clusters
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Table 2: Performance of triple evaluation.

YAGO NELL OPIEC

TWCS Ours TWCS Ours TWCS Ours

#Annotated triples 32 ± 5 26 ± 16 149 ± 47 75 ± 31 171 146

#Manually annotated triples 32 ± 5 16 ± 10 149 ± 47 60 ± 24 171 99
Triple inference rate 0 38.46% 0 20.00% 0 32.19%

𝐶𝑜𝑠𝑡ℎ (second) 1584 ± 252 1116 ± 684 6660 ± 2160 4212 ± 1692 972 540

𝐶𝑜𝑠𝑡𝑚 −𝐶𝑜𝑠𝑡𝑜 (second) < 0.1 36 ± 24 < 0.1 102 ± 45 < 0.1 64.30

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐶𝑜𝑠𝑡 (second) 1584 ± 252 1152 ± 744 6660 ± 2160 4314 ± 1737 972 612
Triple accuracy estimate 99.20%(96.70% − 100%) 99.61%(98.63% − 100%) 91.63%(89.33% − 93.93%) 95.62%(88.8% − 100%) 92.17% 94.85%

Table 3: Performance of entity linking evaluation.

OPIEC SYN-IG-10m

#Annotated triples 181 140

#Manually annotated triples 169 122

#Triple inference rate 6.63% 12.86%

#Annotated mentions 260 155

#Manually annotated mentions 238 138

#Entity inference rate 8.46% 10.97%

𝐶𝑜𝑠𝑡ℎ (second) 3420 1944

𝐶𝑜𝑠𝑡𝑚 −𝐶𝑜𝑠𝑡𝑜 (second) 164 130

𝐶𝑜𝑠𝑡 (second) 3584 2074

Triple accuracy estimate 93.24% 58.71%

Entity linking accuracy estimate 11.12% 23.78%

Table 4: Accuracy evaluation of SYN-IG-100k.

TWCS Ours

Triple accuracy estimate 39.91% ± 4.99% 59.51% ± 4.21%
Entity linking accuracy estimate - 24.25% ± 4.99%

of triples for TWCS. Entity identification is hard when several head

entity mentions are linked together falsely, and the correctness of

triple verification is not guaranteed, making the triple accuracy

estimate deviate from the true value. In our experiment, we simulate

the process of annotating triple clusters considering the mistakes

made by entity linking in our synthetic datasets. When we get a

cluster, we identify the entity as the one most head entity mentions

refer to according to the real entity linking results we generate

artificially. After entity identification, those triples whose head

entity mentions are wrongly linked are annotated as false directly.

As shown in Table 4, we use our method in SYN-IG-100k and

compare the triple accuracy estimates given by TWCS and our

method, where the true value is 61.49%. Our unbiased triple ac-

curacy estimate is much closer to the true accuracy than TWCS.

Ignoring entity linking leads to TWCS’s underestimate of accu-

racy. Besides, our method also provides the user with an entity

linking accuracy which is close to the true value 28.34%, making

the evaluation result more complete.

6.3 Ablation Experiments
6.3.1 Sampler. To compare the efficiency of different sampling

methods sufficiently, we run weighted sampling (WS) and stratified
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Figure 5: Relation between IG confidence and accuracy.

sampling (SS) 20 times in four graphs and record the number of IGs

and triples in Figure 7. Because confidence score is a key standard

for stratified sampling, we visualize the relation between confidence

and accuracy of IGs in two datasets in Figure 5. For clarity, only

100 IGs are chosen randomly and demonstrated for each dataset.

We make a comparison between the weighted sampling (Ap-

pendix D.3) and the stratified sampling introduced in Section 4.

To verify the effect of stratified sampling adequately, we run our

framework with both sampling methods on a real graph NELL and

SYN-IGs with three different sizes each for 20 times and record

the number of IGs and triples sampled by the sampler in Figure 7.

The difference between the effects of the two sampling methods is

obvious. Under the premise of obtaining an estimate of the same ac-

curacy, stratified sampling needs much fewer triples, which proves

that the confidence score of a triple is related to its correctness as

we mentioned above, and it can be used to guide the stratification.

Based on sampling methods, our framework has the ability to

deal with large datasets without unbearable human effort and time

cost. We can find in Figure 7 that the number of triples and IGs,

i.e., the efficiency, of our sampler (either using WS or SS) barely

changes when the graph size changes from 10k to 10m.

6.3.2 Helper. Inference ability is a key feature of our framework

which can reduce human annotation cost significantly, and MCTS

we use is an important technique to exert machine’s computing

power when human is annotating triples or mentions and select a

good order of them for humans to make the most use of inference.

Our helper use inference and MCTS to assist the annotation process

of an IG. To verify the effect of helper, we select IGs constructed

from YAGO whose size (i.e. the number of triples) is 3. Besides, we

generate a set of IGs whose sizes are 5, 6, 7 (ignoring entity linking)

to verify that our framework is also suitable for larger IGs. The
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Figure 6: The number of triples annotated by human in the IG set from YAGO and synthetic IG set under different setting of
choosing the next triple. The orange line shows the total number of triples waiting for annotation.
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Figure 7: Weighted sampling vs. stratified sampling.

number of triples annotated by humans of IGs from YAGO and

synthetic IGs is reported in Figure 6.

We compare MCTS with the simplest baseline: choose the next

annotation task randomly. At the same time, we explore how the end

condition (i.e. the limit of simulation time and simulation number)

of MCTS influences the inference ability. In each condition, we run

the annotation process 20 times and record the mean number of

triples annotated by humans. In Figure 6, we find that in spite of the

specificmethod of selecting the next triple, inference leads to at least

19.12% and 8.00% reduction of triples annotation cost. The MCTS

can lead to cost reduction even with just 0.01 seconds of simulation.

By increasing the limit of time and number of simulations in MCTS,

the helper tends to find better triples to reduce triples to annotate.

7 RELATEDWORK
Several automatic methods are designed to evaluate KGs in differ-

ent quality dimensions [5], using both of semantic and structural

information [28] and external information like other knowledge

graphs [19]. To relieve the quality issue, refinement methods fo-

cusing on correctness and completion of KG have been proposed

[26]. Some researchers use techniques like entity linking, common

sense reasoning, and linguistic analysis to find missing facts in KGs

[24], and use the multi-task model to remove inaccurate relations

[25]. How KG quality influences other tasks, e.g., KG embedding, is

also investigated [27]. In addition to automatic evaluation methods,

two recent approaches (KGEval [23] and TWCS [11]) import crowd-

sourcing into accuracy estimation of KG. Both the two methods

focus on designing effective strategies to select triples for annota-

tors. KGEval [23], points out that the labels (i.e. the correctness of

triples) in a KG can propagate. Dependencies like type consistency

and Horn-clause constraints between triples and their labels make

it possible to use Probabilistic Soft Logic [2] to achieve new labels

from labeled triples. However, it is time-consuming for large graphs

and does not have a statistical guarantee.

TWCS [11] studied several sampling methods, especially Two

Stage Weighted Cluster Sampling (TWCS). The authors divide the

time cost of annotating one triple into the time of entity identifica-

tion and relationship validation. They find that providing triples

about the same head entity (i.e. a cluster) to the annotator can

save the entity identification cost and design an unbiased estimator.

However, TWCS just focuses on optimizing the annotation cost of

a triple set, without optimizing the computing power of machines.

Both of these two methods above ignore the mistakes introduced

in the entity linking process. Lack of entity linking accuracy not

only leads to incompletion of KG quality evaluation but also influ-

ences the triple accuracy estimation negatively. In contrast, we aim

to evaluate both triple and linking accuracy and reduce the overall

cost by optimizing human-machine collaboration in this paper.

8 CONCLUSION
In this paper, we propose an interactive knowledge graph accuracy

evaluation framework considering IE and EL at the same time.

To estimate the triple accuracy and entity linking accuracy with

statistical guarantee efficiently, we introduce a human-machine

collaborative mechanism that utilizes the strong computing power

of computers and the correctness verification skills of humans. We

formulate an order selection problem which is NP-hard. Techniques

including inference, stratified sampling, and MCTS are proposed to

assist the human annotation process. Experiments in both real and

synthetic knowledge graphs confirm the efficiency, effectiveness,

and scalability of our method.
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A NOTATIONS

Table 5: Frequently used notations.

Notations Descriptions

E The set of all entity mentions

E𝑠 A set of mention clusters, i.e., sets of linked entities

𝑁 Total number of IGs

𝑀𝑖 Number of triples in the 𝑖-th IG, 𝑖 = 1, 2, ..., 𝑁

𝑀 = Σ𝑁
𝑖
𝑀𝑖 Number of triples in 𝑇𝐿

𝐻𝑖
Number of entity linking pairs in the 𝑖-th IG,

𝑖 = 1, 2, ..., 𝑁

𝐻 = Σ𝑁
𝑖
𝐻𝑖 Total number of entity linking pairs

𝜏𝑖 Number of correct triples in the 𝑖-th IG

𝜏 = Σ𝑁
𝑖
𝜏𝑖 Total number of correct triples

𝛾𝑖 Number of correct entity linking pairs in the 𝑖-th IG

𝛾 = Σ𝑁
𝑖
𝛾𝑖 Total number of correct entity linking pairs

𝜇1𝑖 Triple accuracy of the 𝑖-th IG

𝜇2𝑖 Entity linking accuracy of the 𝑖-th IG

𝑀[ℎ] Number of triples in the ℎ-th stratum

𝑊ℎ Weight of the ℎ-th stratum

𝑛 Total number of sampled IGs

B PROOF OF THEOREM 5.3
Proof. Consider an instance 𝑀 of the NP-hard Information

Maximization problem, defined by a linear threshold model with

fixed thresholds 𝜃𝑣 = 1,∀𝑣 and an integer 𝑘 , each currently inactive

node 𝑣 becomes active if and only if the total weight of its active

neighbors is at least 𝜃𝑣[15]:∑︁
𝑤→𝑣,𝑤 active

𝑏𝑣,𝑤 ≥ 𝜃𝑣,

where 𝑏𝑣,𝑤 ∈ [0, 1] is the weight assigned to each incoming neigh-

bor𝑤 and

∑
𝑤→𝑣 𝑏𝑣,𝑤 = 1; we want to know the maximum number

of nodes that can be totally activated by 𝑘 initially active nodes. We

show that this can be viewed as a special case of our 𝐴𝑂𝑃 problem.

Assume that there is an IG without entity linking and all triples

have different source texts. In this case, the annotation cost function

𝐶𝑜𝑠𝑡ℎ is simplified to be in direct proportion to the number of triples

annotated by humans. Since rule nodes are employed to produce

the label of its successor node, and it doesn’t hold any information

about the label, neither affect the cost. Thus we can safely simplify

the graph to obtain a graph𝐺 ′
by removing them and reconnecting

its parent nodes with its successor node. Therefore, our target is

selecting a set of annotating triples in 𝐺 ′
such that the correctness

of all triples can be checked thereafter.

Recall that we set threshold 𝜃𝑣 = 1,∀𝑣 in𝑀 and

∑
𝑤→𝑣 𝑏𝑣,𝑤 = 1,

in which case a node 𝑣 can be activated if and only if each of 𝑣 ’s

incoming neighbor𝑤 is active. In this sense, we say that a node is

active when it is annotated initially and otherwise inactive, then a

label of a node can be inferred when all of its incoming nodes are

annotated (active). Then when we find an optimal solution 𝑆∗ of
our 𝐴𝑂𝑃 problem, 𝑆∗ is also the optima of𝑀 , that is, the solution

of our𝐴𝑂𝑃 problem can solve the 𝐼𝑀 problem. However, obviously

the 𝐼𝑀 problem is NP-hard, thus we can conclude that our 𝐴𝑂𝑃
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Table 6: Dataset features.

NELL YAGO OPIEC SYN-IG-10k SYN-IG-100k SYN-IG-10m

#Triples 1,860 1,386 100,000 10,000 100,000 10,000,000

#Rules 119 27 169 28 28 28

Triple Accuracy 91.34% 99.21% - 61.02% 61.49% 61.64%

#Mentions - - 193,235 12,953 129,351 12,892,741

#Linking Pairs - - 102,806 7,130 71,784 7,092,669

Entity Linking Accuracy - - - 25.79% 28.34% 27.91%

problem is at least as hard as the 𝐼𝑀 problem, which proves the

NP-hardness. □

C OPTIMALITY OF MCTS
Assume the reward of an action is 𝑅. As introduced before, the

optimal action is the one with the maximum E(𝑅). According to

Chernoff Bound, the gap between 𝑅 and real expectation E(𝑅) for
one action has an upper bound [16]:

𝑃 ( |𝐸 (𝑅) − 1

𝑤
Σ𝑖𝑅𝑖 |) ≥ 𝜖) ≤ 𝑒𝑥𝑝 (−( 𝜖

𝑍
)2𝑤),

where𝑤 is the simulation time of the action and 𝑍 is the maximum

of |𝑅 |. This equation indicates the statement that if𝑤 ≥ (𝑍𝜖 )
2𝑙𝑛 1

𝛿
,

we have at least 1 − 𝛿 probability of having |𝐸 (𝑅) − 1

𝑤 Σ𝑖𝑟𝑖 | ≤ 𝜖 ,

meaning the action chosen by MCTS is the optimal action.

D EXPERIMENTAL SETTINGS
D.1 Dataset
NELL and YAGO are sampled from NELL-Sport [21] and YAGO2

[8] with human annotation collected by [23]. NELL is sport-related

including relations like athlete, league, stadium, etc. YAGO contains

relations such as directed, actedIn and isMarriedTo, etc. We also

collect rules used for inference from [23], which are mined by PRA

[17] (for NELL) and AMIE [10] (for YAGO). Somemanually designed

rules are added to improve the inference ability.

We choose 100,000 triples from an open information extraction

dataset [12] with source text and confidence score, and unite some

relations together to build OPIEC. OPIEC includes domestic re-

lationships such as be mother of and be father of. A simple entity

linking method that entity mentions with the same string are linked

together is used. 169 rules are manually designed to construct IGs.

To verify the scalability of our framework, we generate three syn-

thetic graphs SYN-IGs containing 10,000, 100,000, and 10,000,000

triples, respectively. To ensure the diversity of rules, we generate

28 kinds of rules, covering all possible label situations with one to

three triples as the premise. For example, a synthetic rule with two

triples as premise can be like two correct premise triples infer that

the conclusion triple is also correct.

D.2 Baseline
We compare our framework with the SOTA method TWCS [11].

It finds that annotating a cluster of triples with the same head

entity, i.e., entity cluster, takes less time than annotating a group

of random triples. Therefore, it chooses triples for annotation by

sampling entity clusters. Specifically, TWCS contains two stages:

(1) sample entity clusters using weighted cluster sampling;

(2) only a small number of triples are sampled without replace-

ment from clusters from stage 1.

The unbiased estimator of triple accuracy 𝜇1 with 1−𝛼 CI is defined

as follows:

𝜇𝑤,𝑚 =
1

𝑛
Σ𝑘𝜇𝐼𝑘 (7)

𝜇𝑤,𝑚 ± 𝑧𝛼/2

√︂
1

𝑛(1 − 𝑛) Σ𝑘 (𝜇𝐼𝑘 − 𝜇𝑤,𝑚)2
(8)

where 𝜇𝐼𝑘 is the mean accuracy of the sampled triples in the 𝑘-th

sampled entity cluster, and 𝑛 is the number of sampled clusters.

D.3 Weighted Random Sampling
The size of IG can be used as a standard to guide the weighted

sampling. In other words, the 𝑖-th IG is drawn with a probability

of 𝑀𝑖/𝑀 . We use Hansen-Hurwitz estimator [13], a widely used

unbiased estimator for weighted sampling, to give an estimate of

triple accuracy 𝜇1 with 1 − 𝛼 CI as follow:

𝜇𝑤1 =
1

𝑛
Σ𝑛
𝑘=1

𝜇1𝐼𝑘 (9)

𝜇𝑤1 ± 𝑧𝛼/2

√︂
1

𝑛(𝑛 − 1) Σ
𝑛
𝑘=1

(𝜇1𝐼𝑘 − 𝜇𝑤1)2
(10)

The unbiased estimate of entity linking accuracy 𝜇2 with 1 − 𝛼

CI is defined as follows:

𝜇𝑤2 =
𝑀

𝑛𝐻
Σ𝑛
𝑘=1

𝐻𝐼 𝑘

𝑀𝐼 𝑘

𝜇2𝐼𝑘 (11)

𝜇𝑤2 ± 𝑧𝛼/2

𝑀

𝐻

√︂
1

𝑛(𝑛 − 1) Σ
𝑛
𝑘=1

(𝜇2𝐼𝑘 − 𝜇𝑤2)2
(12)

D.4 Reproducibility
The datasets used in the papar and source codes are available at:

https://github.com/KGQualityEvaluation/KG_Accuracy_Evaluation
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