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Abstract—Subgraph isomorphism is a well-known NP-hard
problem that is widely used in many applications, such as social
network analysis and querying over the knowledge graph. Due
to the inherent hardness, its performance is often a bottleneck
in various real-world applications. We address this by designing
an efficient subgraph isomorphism algorithm leveraging features
of GPU architecture, such as massive parallelism and memory
hierarchy. Existing GPU-based solutions adopt two-step output
scheme, performing the same join twice in order to write inter-
mediate results concurrently. They also lack GPU architecture-
aware optimizations that allow scaling to large graphs. In
this paper, we propose a GPU-friendly subgraph isomorphism
algorithm, GSI. Different from existing edge join-based GPU
solutions, we propose a Prealloc-Combine strategy based on
the vertex-oriented framework, which avoids joining-twice in
existing solutions. Also, a GPU-friendly data structure (called
PCSR) is proposed to represent an edge-labeled graph. Extensive
experiments on both synthetic and real graphs show that GSI
outperforms the state-of-the-art algorithms by up to several
orders of magnitude and has good scalability with graph size
scaling to hundreds of millions of edges.
Index Terms—GSI, GPU, Subgraph Isomorphism

I. INTRODUCTION

Graphs have become increasingly important in modeling

complicated structures and schema-less data such as chemical

compounds, social networks and RDF datasets. The growing

popularity of graphs has generated many interesting data

management problems. Among these, subgraph search is a

fundamental problem: how to efficiently enumerate all sub-

graph isomorphism-based matches of a query graph over a

data graph. This is the focus of this work. Subgraph search

has many applications, e.g., chemical compound search [1] and

search over a knowledge graph [2]–[4]. A running example

(query graph Q and data graph G) is given in Figure 1 and
Figure 1(c) illustrates the matches of Q over G.

Subgraph isomorphism is a well-known NP-hard problem
[5] and most solutions follow some form of tree search with

backtracking [6]. Figure 2 illustrates the search space for

Q over G of Figure 1. Although existing algorithms propose

many pruning techniques to filter out unpromising search paths

[7], [8], due to the inherent NP-hardness, the search space

is still exponential. Therefore, scaling to large graphs with

millions of nodes is challenging. One way to address this

challenge is to employ hardware assist.

In this paper, we propose an efficient GPU-based sub-

graph isomorphism algorithm to speed up subgraph search by

leveraging massively parallel processing capability of GPU to

explore the search space in parallel. Note that our proposed

accelerative solution is orthogonal to pruning techniques in

existing algorithms [7]–[14].
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Fig. 1. An example of Query Graph and Data Graph
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Fig. 2. An example of searching tree of Q in G

To the best of our knowledge, two state-of-the-art GPU-

based subgraph isomorphism algorithms exist in the literature:

GpSM [15] and GunrockSM [16]. In order to avoid the bottle-

necks of backtracking [17], they both adopt the breadth-first

exploration strategy. They perform edge-oriented computation,

where they collect candidates for each edge of Q and join them
to find all matches. The edge-based join strategy suffers from

high volume of work when implemented on GPU. A key issue

is how to write join results to GPU memory in a massively

parallel manner. GpSM and GunrockSM employ the “two-step

output scheme” [18], as illustrated in Example 1.

Example 1 Consider Q and G in Figure 1. Tables T1 and
T2 in Figure 3 show the matching edges of u0u1 and u1u3,
respectively. In order to obtain matches of the subgraph
induced by vertices u0, u1 and u3, GpSM performs the edge
join T1 �� T2. Assume that each processor handles one row in
T1 for joining. Writing the join results to memory in parallel
may lead to a conflict, since different processors may write to
the same address.
To avoid this, the naive solution is locking, but that reduces

the parallelism. GpSM and GunrockSM use “two-step output
scheme” instead. In the first step, each processor joins one row
in T1 with the entire table T2 and counts valid matches (Figure
3(a)). Then, based on the prefix-sum, the output addresses
for each processor are calculated. In the second step, each
processor performs the same join again and writes the join
results to the calculated memory address in parallel (Figure
3(b)).
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Fig. 3. An example of “two-step output scheme”

The two-step output scheme performs the same join twice,

doubling the amount of work, and thus suffers performance is-

sues when GPU is short of threads on large graphs. In order to

avoid joining twice, we propose a Prealloc-Combine approach,
which is based on joining candidate vertices instead of edges.
During each iteration, we always join the intermediate results

with a candidate vertex set. To write the join results to memory

in parallel, we pre-allocate enough memory space for each row

of M and perform the vertex join only once. We use vertex

rather than edge as the basic join unit, because we cannot

estimate memory space for edge join results, which is easy

for vertex join. More details are given in Section V.

Vertex join has two important primitive operations: access-

ing one vertex’s neighbors and set operations. To gain high per-

formance, we propose an efficient data structure (called PCSR,
in Section IV) to retrieve a vertex’s neighbors, especially for

an edge-labeled graph. Also, adapting to GPU architecture, we

design an efficient GPU-based algorithm for set operations.

Putting all these together, we obtain an efficient GPU-
friendly subgraph isomorphism solution (called GSI). Our
primary contributions are the following:

• We propose an efficient data structure (PCSR) to rep-

resent edge-labeled graphs, which helps reduce memory

latency.

• Using vertex-oriented join, we propose Prealloc-Combine
strategy instead of two-step output scheme, which is

significantly more performant.

• Leveraging GPU features, we discuss efficient implemen-

tation of set operations, as well as optimizations including

load balance and duplicate removal.

• Experiments on both synthetic and real large graph

datasets show that GSI outperforms the state-of-the-art

approaches (both CPU-based and GPU-based) by several

orders of magnitude. Also, GSI has good scalability with

graph size scaling to hundreds of millions of edges.

II. PRELIMINARIES

A. Problem Definition

Definition 1 (Graph) A graph is denoted as G = {V, E,
LV LE}, where V is a set of vertices; E ⊆ V × V is a set
of undirected edges in G; LV and LE are two functions that
assign labels for each vertex in V (G) and each edge in E(G),
respectively.

Definition 2 (Graph Isomorphism) Given two graphs H and
G, H is isomorphic to G if and only if there exists a bijective
function f between the vertex sets of G and H (denoted as
f : V (H) −→ V (G)), such that

• ∀u ∈ V (H), f(u) ∈ V (G) and LV (u) = LV (f(u)),
where V (H) and V (G) denote all vertices in graphs H
and G, respectively.

• ∀u1u2 ∈ E(H), f(u1)f(u2) ∈ E(G) and
LE(f(u1)f(u2)) = LE(u1u2), where E(H) and E(G)
denote all edges in graphs H and G, respectively.

Definition 3 (Subgraph Isomorphism Search) Given query
graph Q and data graph G, the subgraph isomorphism search
problem is to find all subgraphs G′ of G such that G′ is
isomorphic to Q. G′ is called a match of Q.

This paper proposes an efficient GPU-based solution for

subgraph isomorphism search. Without loss of generality, we

assume Q is connected and use v, u, N(v), N(v, l), num(L),
and |A| to denote a data vertex, a query vertex, all neighbors of
v, {v′|vv′ ∈ E(G) ∧ LE(vv′) = l}, the number of currently
valid elements in set L, and the size of set A, respectively.
Note that our method can also support other graph pattern

semantics, such as homomophism and edge isomorphism; and

can process multi-labeled graphs as well. We give the details

in the full version of this work [19] due to the space limit.

B. GPU Architecture

GPU is a discrete device that contains dozens of streaming

multiprocessors (SM) and its own memory hierarchy. Each

SM contains hundreds of cores and CUDA (Compute Unified

Device Architecture) programming model provides several

thread mapping abstractions, i.e., a thread hierarchy.

Thread Hierarchy. Each core is mapped to a thread and
a warp contains 32 consecutive threads running in Single
Instruction Multiple Data (SIMD) fashion. When a warp

executes a branch, it has to wait though only a portion of

the threads take a particular branch; this is termed as warp
divergence. A block consists of several consecutive warps and
each block resides in one SM. Each process launched on

GPU (called a kernel function) occupies a unique grid, which
includes several equal-sized blocks.

Memory Hierarchy. In Figure 4, global memory is the slowest
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and largest layer. Each SM owns a private programmable high-

speed cache, shared memory, that is accessible by all threads
in one block. Although the size of shared memory is quite

limited (Taking Titan XP as example, only 48KB per SM),

accessing shared memory is nearly as fast as thread-private

registers. Access to global memory is done through 128B-size

transactions and the latency of each transaction is hundreds

of times longer than access to shared memory. If threads in a

warp access the global memory in a consecutive and aligned

manner, fewer transactions are needed. For example, only 1

transaction is used in coalesced memory access (Figure 5) as

opposed to 3 in uncoalesced memory access (Figure 6).

Fig. 4. Memory Hierarchy of GPU

Fig. 5. An example of coalesced memory access

Fig. 6. An example of uncoalesced memory access

C. Challenges of GPU-based Subgraph Isomorphism

Although GPU is massively parallel, a naive use of GPU

may yield worse performance than highly-tuned CPU algo-

rithms. There are three challenges in designing GPU algo-

rithms for subgraph isomorphism that we discuss below.

Amount of Work. Let n and n′ be the number of vertices of
G and Q, the amount of work is nn

′
in Figure 2. If there are

sufficient number of threads, all paths can be fully parallelized.

But that is not always possible and too much redundant

work will degrade the performance. GpSM’s strategy (filtering

candidates and joining them) is better as it prunes invalid

matches early. However, Example 1 shows that the two-step

output scheme used in GpSM doubles the amount of work in

join processing, which is a key issue that must be overcome.

Memory Latency. Large graphs can only be placed in

global memory. In subgraph isomorphism, we need to perform

N(v, l) extractions many times, and they are totally scattered
due to inherent irregularity of graphs [20]. It is hard to coalesce

memory access in this case, which aggravates latency.

Load Imbalance. GPU performs best when each processor is
assigned the same amount of work. However, neighbor lists

vary sharply in size, causing severe imbalance between blocks,

warps and threads. Balanced workload is better, because the

overall performance is limited by the longest workload.

III. SOLUTION OVERVIEW

Our solution consists of filtering and joining phases.

A. Filtering Phase

Generally, a lightweight filtering method with high pruning

power is desirable. Since GSI adopts a vertex-oriented strategy,

we select candidate vertices C(u) for each query node u in
query graph Q. More powerful pruning means fewer candi-
dates. Many pruning techniques have been proposed, such as

[4]. The basic pruning strategy is based on “neighborhood

structure-preservation”: if a vertex v in G can match u in Q,
the neighborhood structure around u should be preserved in
the neighborhood around v. In this work, we propose a suitable
data structure that fits GPU architecture to implement pruning.

We encode the neighborhood structure around a vertex v in
G as a length-N bitvector signature S(v). Generally, it has two
parts. The first part is called vertex label encoding that hashes a

vertex label into K bits. The second part encodes the adjacent

edge labels together with the corresponding neighbor vertex.

We divide the (N −K) bits into N−K
2 groups with 2 bits per

group. For each (edge, neighbor) pair (e, v′) of a vertex v, we
combine Le and Lv′ (i.e., the labels of edge e and v′) into a
key and hash it to some group. Each group has three states:

“00”– no pair is hashed to this group; “01”–only a single pair

is hashed to this group; and “11”–more than one pair is hashed

to this group. Figure 7(a) illustrates vertex signature S(v0) of
G in Figure 1. We offline compute all vertex signatures in G
and record them in a signature table (see Figure 7(b)). We

have the same encoding strategy for each vertex u in Q. It is
easy to prove that if S(v)&S(u) �= S(u), v is definitely not a
candidate for u (“&” means “bitwise AND operation”).
Given a query graphQ, we compute online vertex signatures

for Q. For each query vertex u, we have to check all vertex
signatures in the table (such as Figure 7(b)) to fix candidates.

We can perform the filtering in a massively parallel fashion.

Furthermore, the natural load balance of accessing fixed-

length signatures is suitable for GPU. To further improve the

performance, we organize the vertex signature table in column-

first instead of row-first. Recall that all threads in a warp read

the first element of different signatures in the table, the row-

first layout leads to gaps between memory accesses (see Figure

7(c)), i.e., these memory accesses cannot be coalesced. Instead,

the column-first layout provides opportunities to coalesce

memory accesses (see Figure 7(d)).

B. Joining Phase

The outcome of filtering are candidate sets for all query

vertices. In Figure 1, candidate sets are C(u0) = {v0},
C(u1) = {v1, v2, ..., v100}, and C(u2) = C(u3) =
{v101, v102, ..., v201}. Figure 8 demonstrates our vertex-

oriented join strategy. Assume that we have matches of

edge u0u1 in table M and candidate vertices C(u2). In Q,
u2 is linked to u0 and u1 according to the edge labels b
and a, respectively. Thus, for each record (vi, vj) in M ,
we read N(vi, b) and N(vj , a) and do the set operation

N(vi, b) ∩ N(vj , a) ∩ C(u2) \ {vi, vj}, where N(vi, b) and
N(vj , a) denote neighbors of vi with edge label b and vj with
edge label a, respectively. If the result is not empty, new partial
answers can be generated, as shown in Figure 8.

1251

Authorized licensed use limited to: Ant Financial. Downloaded on August 11,2020 at 03:02:58 UTC from IEEE Xplore.  Restrictions apply. 



S(v )

S(v )

S(v )

S(v )

t t

S( )

Row-first

t t t tt t t t

Column-first

a ba

v

v v vv a

S(v )

t

t
t

t

Fig. 7. Encoding table of data vertices

Mu u

v v v

M'

La

L a

buf
buf

buf
bufm

b a

v
v
v

v

v Lb

v v

v v
u u u
v v v

 a
b

C
u
v

v
v

abuf m C L L

Fig. 8. Vertex-oriented Join Strategy

Notice that there are two primitive operations: accessing

one vertex’s neighbors based on the edge label (i.e., N(v, l)
extraction) and set operations. We first present a novel data

structure for graph storage on GPU (Section IV). Then, the

parallel join algorithm (including the implementation of set

operations) is detailed in Section V.

IV. DATA STRUCTURE OF GRAPH: PCSR

Compressed Sparse Row (CSR) [21] is widely used in

existing algorithms (e.g., GunrockSM and GpSM) on sparse

matrices or graphs, and it allows locating one vertex’s neigh-

bors in O(1) time. Figure 9 shows an example: the 3-layer
CSR structure of G in Figure 1. The first layer is “row offset”
array, recording the address of each vertex’s neighbors. The

second layer is “column index” array, which stores all neighbor

sets consecutively. The corresponding weight/label of each

edge is stored in “edge value” array. If no edge weight/label

exists, we can remove “edge value” array and yield 2-layer

CSR structure. To extract N(v, l) in CSR, all neighbors of v
must be accessed and checked whether or not corresponding

edge label is l. Obviously, the memory access latency is
very high and it suffers from severe thread underutilization

because threads extracting wrong labels are inactive thus

wasted. We carefully design a GPU-friendly CSR variant

to support accessing N(v, l) efficiently. The complexity of

N(v, l) extraction consists of locating and enumerating. In our
structures, N(v, l) is stored consecutively, i.e., the complexity
of enumerating is the same: O(|N(v, l)|). Thus, we use the
time complexity of locating N(v, l) as metric.
To speed up memory access, we divide G into different

edge label-partitioned graphs (for each edge label l, the edge
l-partitioned P (G, l) is the subgraph G′ (of G) induced by
all edges with label l). These partitioned graphs are stored

v     v     v   v   v   

v v v v v v vv
a a b a a a a b

Fig. 9. Traditional CSR structure

independently and edge labels are removed after partitioning.

The straightforward way is to store each one using traditional

CSR. However, it cannot work well, since vertex IDs in a

partitioned graph are not consecutive. For example, the edge

partitioned graph P (G, b) only has two edges and four ver-
tices (v0,v1,v101,v201). The non-consecutive vertex IDs disable
accessing the corresponding vertex in the row offest in O(1)
time (by vertex ID). There are two simple solutions:

(1) Basic Representation. The entire vertex set V (G) is
maintained in the row offset for each edge partitioned graph

CSR, regardless of whether or not a vertex v is in the

partitioned graph (see Figure 10(a)). Clearly, this approach

can locate a vertex’s neighbors in O(1) time using the vertex
ID directly, but it has high space cost: O(|E(G)|+ |LE(G)| ×
|V (G)|), where |LE(G)| is the number of distinct edge labels.
In complex graphs such as DBpedia, there are tens of thou-

sands of different edge labels and this solution is not scalable.

(2) Compressed Representation. A layer called “vertex ID”
is added, and binary search is performed over this layer to find

corresponding offset (see Figure 10(b)). Obviously, the overall

space cost is lowered, which can be formulated as O(|E(G)|).
However, this leads to more memory latency. Theoretically, we

require 	log (|V (G, l)|+ 1)
+2 memory transactions to locate
N(v, l), where |V (G, l)| denotes the number of vertices in the
edge l-partitioned graph P (G, l).
Therefore, neither of the above methods work for a large
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Fig. 10. Three Representations of edge a-partitioned graph

data graph G. In the following we propose a new GPU-friendly
data structure to access N(v, l) efficiently, called PCSR (Def-
inition 4). We reorganize the row offset layer using hashing.

The row offset layer is an array of hash buckets, called group.
Each item hashed to the group is a pair (v, ov), where v is
a vertex ID and ov is the offset of v’s neighbors in column
index ci. Let GPN be a constant to denote the maximum

number of pairs in each group. The last pair is an end flag
to deal with the overflow. We require that 2 ≤ GPN ≤ 16,
then one group can be read concurrently by a single memory
transaction using one warp.

Definition 4 PCSR structure. Given an edge l-partitioned
graph P (G, l), the Partitioned Compressed Sparse Row (PCSR
for short) PCSR(G, l) = {gl, ci} is defined as follows:

• ci is the column index layer that holds the neighbors.
• gl = {gi} is an array of groups and each group is a
collection of pairs (no more than GPN pairs).

• Each pair in gi is denoted as (v, ov) except for the last
pair, where v is a vertex ID and ov is the offset of
v’s neighbors in ci, i.e., a prefix sum of the number of
neighbors for vertices. Let nv be the offset of next pair.
v’s neighbors start at ci[ov] and end before ci[nv]. All
vertices in one group have the same hash value.

• The last pair (GID,END) is the overflow flag. If GID
is -1, it means no overflow; otherwise, overflowed vertices
are stored in the GID-th group. Note that gi.END is
the end position of previous vertex’s neighbors in ci, i.e.,
the first ov in group gi+1.

Figure 10(c) is an example of PCSR corresponding to edge

a-partitioned graph. Let D denote P (G, l), the edge label l-
partitioned graph. Algorithm 1 builds PCSR forD. We allocate
|V (D)| groups (i.e. hash buckets) for gl and |E(D)| elements
for ci (Line 1). For each node v, we hash v to one group using
a hash function f (Lines 3-4). If some group gi overflows (i.e.,
more than GPN − 1 vertices are hashed to this group), we
find another empty group gj and record group ID of gj in
the last pair in gi to form a linked list (Lines 5-8). Claim 1

confirms that we can always find empty groups to store these

overflowed vertices. Finally, we put neighbors of each vertex

in ci consecutively and record their offsets in gl (Lines 9-13).

Claim 1 When the overflow happens in Line 6 of Algorithm
1, we can always find enough empty groups to store all
overflowed vertices. (Proof is in the full paper [19].)

Based on PCSR, we compute one vertex’s neighbors ac-

cording to edge label. An example of computing N(v0, a) in

Figure 10(c) is given as follows.

1) use the same hash function f to compute the group ID
idx that v0 maps to, here idx = 0;

2) read the entire 0-th group (i.e., g0) to shared memory
concurrently using one warp in one memory transaction;

3) probe all pairs (v′, ov′) in this group (g0) concurrently
using one warp;

4) we find the first pair (in group g0) that contains v0.
The corresponding offset is 0 and the next offset 100.

It means that ci[0, ..., 99] in the column index layer are
v0’s neighbors.

Assume that vertex v is hashed to the i-th group gi. Due
to the hash conflict, v may not be in group gi. In this case,
according to the last pair, we can read another group whose

ID is gi.GID and then try to find v in that group. We iterate
the above steps until v is found in some group or a group is
found whose gi.GID is “-1” (i.e., v does not exist in D).

Parameter Setting. The choice of GPN is critical to the

performance of PCSR, affecting both time and space. With

smaller GPN , the space complexity is lower while the prob-
ability of group overflow is higher. Once a group overflows,

we may need to read more than one group when locating

N(v, l), which is more time consuming. With larger GPN ,
the probability of group overflows is reduced, though the space

cost rises. Recall that the width of global memory transaction

is exactly 128B, so in GSI we set GPN = 16 to fully utilize
transactions. Under this setting, there can be at most 15 keys

within a group. The space complexity is a bit high, which

can be quantified as 32 × |V (D)| + |E(D)|. However, it is
worthwhile and affordable because at any moment at most

one partition is placed on GPU. In addition, under this setting

no group overflow occurs in any experiment of Section VII.

Analysis. Within PCSR, |V (D)| keys are hashed into

|V (D)| groups, which is called one-to-one hash [22]. Under
this condition, the time complexity of locating N(v, l) can
be analyzed by counting memory transactions. It is easy to

conclude that the number of memory transactions is decided by

the longest conflict list of one-to-one hash function. According

to [22], the expectation of longest conflict list’s length is

upper bounded by 1 + 5 log |V (D)|
log log |V (D)| . If |V (D)| < 232, the

expectation of the maximum length of conflict list is smaller

than 45. It means that at most
⌈

45
GPN−1

⌉
=

⌈
45
15

⌉
= 3 memory

transactions are needed, since one transaction accesses one

group and each group contain GPN (=16) valid vertices. This

is quite a large data graph. In our experiments, even for graphs

with tens of millions of nodes, the longest conflict list’s length
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is no larger than 13, which means that only one memory

transaction is needed to locateN(v, l). In other words, locating
N(v, l) is O(1). Furthermore, for each edge label l, the space
cost of the corresponding PCSR is linear to P (G, l). Thus,
we can conclude that the total space of all PCSRs for G is

O(|E(G)|). Table I summarizes the comparison, where the
time complexity counts both locating and enumerating N(v, l)
together.

TABLE I
EFFICIENCY OF DIFFERENT DATA STRUCTURES

Structure Time Complexity Space Complexity

CSR O(|N(v)|) O(|E|)
BR O(|N(v, l)|) O(|E| + |LE | × |V |)
CR O(log |V (G, l)| + |N(v, l)|) O(|E|)
PCSR O(|N(v, l)|) O(|E|)

* BR and CR denote “Basic Representation” and “Compressed
Representation”, respectively.

Algorithm 1: Build PCSR structure
Input: partitioned graph D = P (G, l)
Output: PCSR structure of D

1 allocate gl array (containing |V (D) groups) and ci array
(containing |E(D)| elements);

2 select a hash function f , set pos = 0;
3 foreach node v in D do
4 use f to map v to a group ID i;
5 foreach group gi in gl do
6 if gi overflows then
7 find enough empty groups gj to store keys of gi;
8 set their GIDs to form a linked list;
9 foreach group gi in gl do
10 foreach pair Tj = {v, ov} in gi do
11 set ov = pos in Tj ;
12 add N(v) to ci from pos on and set

pos = pos+ num(N(v));
13 set END = pos in gi;
14 let gl = {gi} and return {gl, ci} as data structure;

V. PARALLEL JOIN ALGORITHM

Algorithm 2 outlines the whole join algorithm, where the

intermediate table M stores all matches of partial query graph

Q′. In each iteration, we consider one query vertex u and
join intermediate table M with candidate set C(u) (Lines 9-
11). Heuristically, the first selected vertex has the minimum

score score(u′) = C(u′)
deg(u′) (Lines 5-7). In later iterations, we

consider the adjacent edge label frequency (freq(l)) when
selecting the next query vertex to be joined (Lines 12-13).

Algorithm 3 lists how to process each join iteration (i.e.,

Line 10 in Algorithm 2). Before discussing the algorithm,

we first study some of its key components. Each warp in

GPU joins one row of M with candidate set C(u): acquires
neighbors of vertices in this row leveraging restrictions on

edge labels, and intersects them with C(u) (set intersection).
The result of the intersection should remove the vertices in this

row (set subtraction), to satisfy the definition of isomorphism.
Let Q′ be the partial query graph induced by query vertices

u0 and u1. Figure 8 shows the intermediate tableM , in which
each row mi represents a partial match of Q

′. Let La
i and

Algorithm 2: The whole join process
Input: query graph Q, data graph G
Output: the final matches of Q in G

1 Let Q′ be the partial query graph, set Q′ = φ;
2 foreach node u′ in Q do
3 score(u′) = C(u′)

deg(u′) ;

4 for i = 1 to |V (Q)| do
5 if i == 1 then
6 uc = argminu′score(u

′);
7 set intermediate table M = C(uc) and add uc to Q

′;
8 else
9 u = argminu′ /∈Q′{score(u′)|u′ is connected to Q′};
10 Call Algorithm 3 to join M with C(u) (generating

new intermediate table M ′);
11 set M = M ′, uc = u and add u to Q′;
12 foreach edge ucu′ in Q do
13 score(u′) = score(u′) × freq(LE(ucu′));
14 return M as final result;

Lb
i be the neighbor lists of mi, e.g., L

a
99 and L

b
99 represents

N(v0, a) and N(v100, b) respectively. For each row mi, we

assign a buffer (bufi) to store temporary results. Assuming
that the next query vertex to be joined is u2, let us consider the
last warp w99 that deals with the last row m99 = {v0, v100}.
There are two linking edges u0u2 and u1u2 with edge labels
a and b, respectively. Warp w99 works as follows:

1) Read v0’s neighbors with edge label a, i.e., N(v0, a);
2) Write buf99 = (N(v0, a) \ {v0, v100}) ∧ C(u2);
3) Read v100’s neighbors with edge label b, i.e., N(v100, b);
4) Update buf99 = buf99 ∧N(v100, b).
5) If buf99 �= φ, each item in buf99 can be linked to the
partial match m99 to form a new match of Q′ ∪ u2. We
write these matches to a new intermediate table M ′.

All warps execute the exact same steps as above in a massively

parallel fashion on GPU, which will lead to some conflicts

when accessing memory.

Problem of Parallelism. When all warps write their cor-
responding results to global memory concurrently, conflicts

may occur. To enable concurrently outputting results, existing

solutions use two-step output scheme, which means the join
is done twice. In the first round, the valid join results for

each warp are counted. Based on prefix-sum of these counts,

each warp is assigned an offset. In the second round, the

join process is repeated and join results are written to the

corresponding addresses based on the allocated offsets. An

example has been discussed in Example 1. Obviously, this

approach doubles the amount of work.

Prealloc-Combine. Our solution (Algorithm 3) performs the

join only once, which is called “Prealloc-Combine”. Each

warp wi joins one row (mi) in M with candidate set

C(u). Different from existing solutions, we propose “Prealloc-
Combine” strategy. Before join processing, for each warp wi,

we allocate memory for bufi to store all valid vertices that can
be joined with row mi (Line 1 in Algorithm 3). A question

is how large this allocation should be. Let Q′ be the partial
query graph that has been matched. We select one linking edge
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e0 = u′0u in query graph Q (u′0 ∈ V (Q′)), and u (/∈ V (Q′))
is the query vertex to be joined. Assume that the edge label is

“l0”. As noted above, mi denotes one partial match of query

graph Q′. Assume that vertex v′i matches u
′
0 in mi. It is easy

to prove that the capacity of bufi is upper bounded by the size
of N(v′i, l0). Based on this observation, we can pre-allocate
memory of size |N(v′i, l0)| for each row. Note that this pre-
allocation strategy can only work for “vertex-oriented” join,

since we cannot estimate the join result size for each row in the

“edge-oriented” strategy. During each iteration, the selected

edge e0 is called the first edge and it should be considered
first in Line 2 of Algorithm 3. For example, in Figure 8, u1u2
is selected as e0, thus the allocated size of buf99 should be
|N(v100, a)| = 3.
Though buffers can be pre-allocated separately for each row

(i.e., each row issues a new memory allocation request), it

is better to combine all buffers into a big array and assign

consecutive memory space (denoted as GBA) for them (only

one memory allocation request needed). Each warp only needs

to record the offset within GBA, rather than the pointer to
bufi. The benefits are two-fold:
(1) Space Cost. Memory is organized as pages and some

pages may contain a small amount of data. In addition,

pointers to bufi need an array for storage (each pointer needs
8B). Combining buffers together helps reduce the space cost

because it does not waste pages and only needs to record one

pointer (8B) and an offset array (each offset only needs 4B).

(2) Time Cost. Combined preallocation has lower time

overhead due to the reduction in the number of memory

allocation requests. Furthermore, the single pointer of GBA
can be well cached by GPU and the number of global

memory load transactions decreases thanks to the reduction

in the space cost of pointer array.

Algorithm 4 shows how to allocate buffers bufi for each row
mi. Assume that there exist multiple linking edges between

Q′ (the matched partial query graph) and vertex u (to be
joined). To reduce the size of |GBA|, among all linking
edges, we select the linking edge u′0u whose edge label l0
has the minimum frequency in G (Line 1). We perform a

parallel exclusive prefix-sum scan on each row’s upper bound

|N(v′i, l0)| (Lines 3-5), later the offsets (F [i], ∀0 ≤ i < |M |)
and capacity of GBA (F [|M |]) are acquired immediately.
With the computed capacity, we pre-allocate the GBA and

offset array F [0, ..., |M |−1] (Line 7). Each buffer bufi begins
with the offset F [i].
Let us recall Figure 8, where Figure 8(a) is the process of

GBA allocation. First, a parallel exclusive prefix sum is done

on num(La
i ) and the size of GBA is computed (200). Then

GBA is allocated in global memory and the address of bufi
is acquired. For example, the final row m99 has three edges

labeled by a, thus num(La
99) is 3 and the beginning address of

buf99 in GBA is 197. However, if u0u2 is selected as the first
edge e0, we can yield smaller |GBA| (100). The label b of
u0u2 is more infrequent than a, thus heuristically it is superior,
as illustrated in Algorithm 4. For ease of presentation, we still

Algorithm 3: Join a new candidate set
Input: query graph Q, current intermediate table M

corresponding to the partial matched query Q′,
candidate set C(u) (u is the vertex to be joined), and
linking edges ES between Q′ and u.

Output: updated intermediate table M ′

1 Call Algorithm 4 to select the first edge e0, and pre-allocate
memory GBA and offset array F .

2 foreach linking edge e = u′u in ES do
3 let l be the label of edge e in Q;
4 launch a GPU kernel function to join M with C(u) ;
5 forall each row mi (partial match) in M do
6 let bufi be the segment Fi~Fi+1 in GBA;
7 assign a unique warp wi to deal with mi;
8 assume that v′

i match u
′ in mi;

9 if e is the first edge e0 then
10 do set subtraction bufi = N(v′

i, l) \mi ;
11 do set intersection bufi = bufi ∩ C(u) ;
12 else
13 do set intersection bufi = bufi ∩N(v′

i, l) ;
14 do prefix-sum scan on {num(bufi)};
15 allocate memory for new intermediate table M ′;
16 launch a GPU kernel function to link M and buf0,...|M|−1 to

generate M ′ ;
17 forall partial answer mi in M do
18 read mi into shared memory;
19 assign a unique warp wi to deal with mi;
20 forall z in bufi do
21 copy mi and z to the corresponding address of M

′ as
a new row;

22 return M ′ as the result;

assume that u1u2 is selected as e0 in Figure 8.

In each join iteration, Algorithm 3 handles all linking edges

between Q′ and u. It allocates GBA (Line 1), processes

linking edges one by one (Lines 2-13), and finally generates

a new intermediate table M ′(Lines 14-21). Obviously, GBA
is allocated only once in Algorithm 3 and no new temporary

buffer is needed. Figure 8(a) performs the GBA allocation by
edge u1u2 and Figure 8(b) finishes set operations. Correspond-
ingly, edge u1u2 is joined first. For example, L

a
99 subtracts

m99 and the result is {v200, v201}, which are stored in buf99
(Line 10). Next, for each valid element x in buf99, we check
its existence in candidate set of u2 (Line 11). The second
edge is u0u2 and it is processed by Line 13, where buf99
is further intersected with Lb

99 and the result is {v201}, i.e.,
num(buf99) = 1. We acquire the matching vertices of each
row mi in bufi, then a new prefix sum is performed to obtain

size and offsets of M ′ (Line 14). After M ′ is allocated, wi

copies extensions of mi to M
′ (Lines 15-21).

GPU-friendly Set Operation. In Algorithm 3, set operations

(Lines 10,11,13) are in the innermost loop, thus frequently

performed. Traditional methods (e.g., [23]) all target the

intersection of two lists. However, in our case there are

many lists of different granularity for set operations. A naive

implementation launches a new kernel function for each set

operation and uses traditional methods to solve it. This method

performs bad, so we propose a new GPU-friendly solution.

There are three granularities: small (partial match Mi),
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Algorithm 4: Function: Pre-allocate Memory
Input: query graph Q, current intermediate table M

corresponding to the partial matched query Q′,
candidate set C(u) (u is the query vertex to be joined),
and linking edges ES between Q′ and u.

Output: Allocated memory GBA and Offset arrary F .
1 Among all edges in ES, select edge e0 = u′

0u, whose edge
label l0 has the minimum frequency in G.

2 Set offset F [0]=0;
3 foreach row mi in M , i = 0, ..., |M | − 1 do
4 Assume vertex v′

i matches query vertex u
′
0 in row mi.

5 F [i+ 1]=F (i)+|N(v′
i, l0)|. // Do exclusive prefix-sum

scan.
6 Let |GBA| = F [|M |];
7 Allocate consecutive memory with size |GBA| and let GBA

record the beginning address.
8 Return GBA and offset array F [0, ..., |M | − 1].

medium (neighbor list N(v, l)) and large (candidate set C(u)).
We use one warp for each row and design different strategies

for these lists:

• For small list Mi, we cache it on shared memory until

the subtraction finishes.

• For medium list N(v, l), we read it batch-by-batch (each
batch is 128B) and cache it in shared memory, to mini-
mize memory transactions.

• For large list C(u), we first transform it into a bitset, then
use exactly one memory transaction to check if vertex v
belongs to C(u).

Lines 10 and 11 can be combined together. After subtraction,

the check in Line 11 is performed on the fly.

We also add a write cache to save write transactions, as there

are enormous invalid intermediate results which do not need to

be written back to bufi. It is exactly 128B for each warp and
implemented by shared memory. Valid elements are added to

cache first instead of written to global memory directly. Only

when it is full, the warp flushes its cached content to global

memory using exactly one memory transaction.

VI. OPTIMIZATIONS

A. Load Balance

In Algorithm 3, load imbalance mainly occurs in Lines 4

and 16, where neighbor set sizes of all rows are distributed

without attention to balance. We propose to balance the work-

load using the following method (4-layer balance scheme): (1)
Extract workloads that exceed W1, and dynamically launch

a new kernel function to handle each one; (2) Control the

entire block to deal with all workloads larger than W2; (3) In

each block, all warps add their tasks exceeding W3 to shared

memory and then divide them equally; and (4) Each warp

finishes remaining tasks of the corresponding row.

The first strategy limits inter-block imbalance; the next two

limit imbalance between warps. W2 should be set as the block

size of CUDA, while W1 and W3 are parameters that should

be tuned (W1 > W2 > W3 > 32). This method is superior to
merging all tasks and dividing them equally [24], because it

avoids the overhead of merging tasks into work pool.

B. Duplicate Removal

In Figure 8, the first elements of all rows are all v0 and each
row does the same operation: extracting N(v0, a). To reduce
redundant memory access, we propose a heuristic method to

remove duplicates within a block. If rows x and y have a
common vertex v in the same column, we let the two warps
of x and y (wx and wy) share the input buffer (placed in
shared memory) of N(v, l). For the shared input buffer, only a
single warp (e.g., warp wx) reads neighbors into buffer. Other
warps wait for the input operation to finish and then all warps

perform their own operations. The pseudo code is in [19].

VII. EXPERIMENTS

We evaluate GSI against state-of-the-art subgraph matching

algorithms, such as CPU-based solutions VF3 [10], CFL-

Match [8], CBWJ [25], and GPU-based solutions GpSM and

GunrockSM. We also include two state-of-the-art GPU-based

RDF systems (MAGiQ [26] and Wukong+G [27]) in the

experiments. Note that RDF systems are originally designed

for SPARQL queries whose semantic is subgraph homomor-

phism; we extend them to support subgraph isomorphism. All

experiments are carried out on a workstation running CentOS

7 and equipped with Intel Xeon E5-2697 2.30GHz CPU and

188G host memory, NVIDIA Titan XP with 30 SMs (each SM

has 128 cores and 48KB shared memory) and 12GB global

memory. The evaluation of filtering strategy is in [19].

A. Datasets and Queries

The experiments are conducted on both real and synthetic

datasets. The statistics are listed in Table II. Enron email

communication network (enron), the Gowalla location-based
social network (gowalla), patent citation network (patent) and
the road_central USA road network (road) are downloaded
from SNAP [28]. Large RDF graphs, such as DBpedia [29]

and WatDiv (a synthetic RDF benchmark [30]), are also used.
TABLE II

STATISTICS OF DATASETS

Name |V | |E| |LV | |LE | MD1 Type2

enron 69K 274K 10 100 1.7K rs
gowalla 196K 1.9M 100 100 29K rs
patent 6M 16M 453 1K 793 rs
road 14M 16M 1K 1K 8 rm

DBpedia 22M 170M 1K 57K 2.2M rs
WatDiv 10M 109M 1K 86 671K s

* |LV | and |LE | denote the number of vertex label and edge
label, respectively.

1 Maximum degree of the graph.
2 Graph type: r:real-world, s:scale-free, and m:mesh-like.

Since most graphs do not contain vertex/edge labels except

for edge labels in RDF datasets and vertex labels in patent

dataset, we assign labels following the power-low distribution.

The default numbers of vertex/edge labels are given in Table

II. To generate a query graph, we perform the random walk

over the data graph G starting from a randomly selected vertex
until |V (Q)| vertices are visited. All visited vertices and edges
(including the labels) form a query graph. The same query

graph generation approaches are also used in [31], [32].
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For each query size |V (Q)|, we generate 100 query graphs
and report the average query running time. Note that the

default query size |V (Q)| is 12 in the following experiments.
In Section VII-E, we also evaluate GSI with respect to the

number of vertex/edge labels and query size.

B. Evaluating Join Phase

We evaluate three techniques of the join phase in GSI: PCSR

structure, the Prealloc-Combine strategy and GPU-friendly set

operation. Table III shows the result, where GSI- is the basic

implementation with traditional CSR structure, two-step output

scheme and naive set operation. Two metrics are compared:

(1) the number of transactions for reading data from global

memory (GLD); (2) the time cost of answering subgraph

search query. We add techniques to GSI- one by one, and

compare the performance of each technique with previous

implementation. For example, in Table III, the column “+SO”

is compared with the column “+PC” to compute GLD drop

and speedup. After adding these techniques, we denote the

implementation as GSI.

1) Performance of PCSR structure: To verify the efficiency
of PCSR in Section IV, we compare it with traditional CSR

structure. We set the bucket size as 128B and find that the

maximum length of conflict list is below 15, even on the largest

dataset. Therefore, with PCSR structure, GSI always finds the

address of N(v, l) within one memory transaction, which is a
big improvement compared to traditional CSR.

Table III shows that PCSR brings an observable drop

of GLD (about 30%), and nearly 2.0x speedup. The least

improvement is observed on WatDiv due to small |LE |, while
on other datasets the power of PCSR is tremendous, achieving

more than 1.8x speedup. The superiority of PCSR is two-

fold: (1) fewer memory transactions are needed, as presented

in Table I; and (2) threads are fully utilized while traditional

CSR suffers heavily from thread underutilization.

We also compare PCSR with “Compressed Representation”

(CR) in Table IV. On all datasets, at least 13% drop of

GLD and 1.1x speedup are achieved. WatDiv delivers the best

performance, where CR even has higher GLD than traditional

CSR. PCSR has no advantage over CR when enumerating

N(v, l), and the only difference is locating. WatDiv has the
minimum number of edge labels, thus its edge label-partitioned

graphs are very large, leading to high cost of locating for CR.

The “Basic Representation” (BR) consumes too much memory

to run on large graphs with hundreds of edge labels.

2) Performance of Parallel Join Algorithm: In our vertex-
oriented join strategy, there are two main parts: the Prealloc-

Combine strategy (PC) and GPU-friendly set operation (SO).

To evaluate Prealloc-Combine strategy, we implement the

two-step output scheme [15] as the baseline. Table III shows

that on all datasets, PC obtains more than 21% drop of GLD

and 1.2x speedup. The gain originates from the elimination of

double work during join, which also helps reduce GLD, thus

further boosts the performance. It must be pointed out that PC

can reduce the amount of work by at most half, thus there is

no speedup larger than 2.0x.

To evaluate our GPU-friendly set operation, we compare

with naive solution: finish each set operation with a new kernel

function. Table III shows that SO reduces GLD by about

40%; consequently, it leads to more than 1.3x speed up. On

patent and road, the improvement is not apparent because their

neighbor lists are relatively small. SO also eliminates the cost

of launching many kernel functions.

SO performs best on enron, WatDiv and DBpedia, showing

>5.7x speedup. The reason is that write cache performs best

on these graphs, thus saving lots of global memory store

transactions (GST). On other graphs, the gain of write cache

is small because they have fewer matches, thus perform fewer

write operations. More details are in our full paper [19].

C. Evaluating Optimization Techniques in GSI

We evaluate the two optimization strategies proposed in

Section VI and give the result in Table V, where column

“+DR” is compared with column “+LB”. After adding the

two optimizations, we denote the implementation as GSI-opt.

1) Performance of Load Balance scheme: The 4-layer

balance scheme (LB) in Section VI-A does not save global

memory transactions, or the amount of work. However, it

improves the performance by assigning workloads to GPU

processors in a more balanced way. We verify its efficiency

by comparing it with the strategy used in [24]. The study

of tuning parameters is in [19]. W2 should be equal to

the block size of CUDA (1024), and empirically we set

W1 = 4W2 = 16W3 = 4096.
On the four smaller datasets, LB does not show much

advantage because the time cost is already very low (less

than 0.6 seconds) and the load imbalance is slight. But on

other datasets, LB brings tremendous performance gain, i.e.,

more than 2.7x speedup. This demonstrates that our strategy

is especially useful on large scale-free graphs, due to the

existence of severely skewed workloads. Note that though

patent is scale-free, its maximum degree is small, which limits

the effect of LB.

2) Performance of Duplicate Removal method: Using the
duplicate removal method (DR) in Section VI-B, input is

shared within a block so the amount of work should be

reduced theorectically. Compared with baseline (no duplicate

removal), Table V shows 1.3x and 1.1x speedup on WatDiv

and DBpedia, respectively. Besides, GLD is also lower with

DR, but its comparison is omitted here.

This experiment shows that DR really works, though the

improvement is small. The bottleneck is the region size that

DR works on, i.e., a block. Even with the block size set to

maximum (1024), DR can only remove duplicates within 32

rows since we use a warp for each row.

D. Comparison of GSI with counterparts

Overall Performance. The results are given in Figure 11,
where GSI and GSI-opt represent implementations without

and with optimizations (in Section VI), respectively. Note that

there is no bar if the corresponding time exceeds the threshold
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TABLE III
PERFORMANCE OF TECHNIQUES IN JOIN PHASE

Dataset
Global Memory Load Transactions Query Response Time (ms)

GSI-1 +DS2 drop +PC3 drop +SO4 drop GSI- +DS speedup +PC speedup +SO speedup
enron 3M 2.1M 30% 1.6M 25% 656K 59% 573 274 2.1x 176 1.6x 28 6.3x
gowalla 3.2M 2M 38% 1.3M 33% 848K 39% 353 172 2.1x 88 2.0x 69 1.3x
patent 3.5M 2.4M 31% 1.8M 25% 1.6M 11% 3K 1.4K 2.1x 700 2.0x 524 1.3x
road 3.4M 2.2M 35% 1.7M 22% 1.6M 5% 2.4K 675 3.6x 456 1.5x 456 1.0x
WatDiv 40M 30M 25% 21M 28% 13M 39% 43K 31K 1.4x 25K 1.2x 4.4K 5.7x
DBpedia 53M 31M 42% 24M 21% 14M 43% 85K 48K 1.8x 36K 1.3x 6K 6.0x
1 Basic GSI implementation with traditional CSR structure, two-step scheme and naive set operation.
2,3,4 Add techniques to GSI- one by one: PCSR structure, Prealloc-Combine strategy and GPU-friendly set operation.

TABLE IV
COMPARISON OF CR AND PCSR

Dataset
GLD Time (ms)

CR PCSR drop CR PCSR speedup
enron 2.4M 2.1M 13% 311 274 1.1x
gowalla 2.5M 2M 20% 212 172 1.2x
patent 3.2M 2.4M 25% 1.8K 1.4K 1.3x
road 3.0M 2.2M 27% 873 675 1.3x
WatDiv 46M 30M 35% 42K 31K 1.4x
DBpedia 37M 31M 16% 56K 48K 1.2x

TABLE V
PERFORMANCE OF OPTIMIZATIONS

Dataset\Time(ms) GSI +LB1 speedup +DR2 speedup
enron 28 28 1.0x 28 1.0x
gowalla 69 69 1.0x 68 1.0x
patent 524 466 1.1x 465 1.0x
road 456 456 1.0x 456 1.0x
WatDiv 4.4K 1.3K 3.4x 1K 1.3x
DBpedia 6K 2.2K 2.7x 2K 1.1x

1 Add load balance techniques to GSI.
2 Add duplicate removal method to GSI + LB.

of 100 seconds. In all experiments, GPU solutions beat CPU

solutions as expected due to the power of massive parallelism.

Considering existing GPU solutions only, there is no clear

winner between four counterparts, but they all fail to compete

with GSI. GSI runs very fast on the first four datasets, answer-

ing queries within one second. On WatDiv and DBpedia, GSI

achieves more than 4x speedup over counterparts.

Focusing on our solution, on the first four datasets, GSI-

opt is close to GSI; while on the latter two, GSI-opt shows

more than 3x speedup. To sum up, our solution outperforms

all counterparts on all datasets by several orders of magnitude.

Scalability. We generate a series of RDF datasets using

the WatDiv benchmark. These scale-free graphs are named

watdiv10M, watdiv20M,...,watdiv210M, with the number of

vertices and edges growing linearly as the number in the name.

CPU solutions fail to run even on the smallest watdiv10M

dataset, thus, we only compare GPU solutions and draw the

curves in Figure 12(a). Note that the curve stops if the memory

consumption exceeds GPU capacity or the time exceeds 100s.

The curves of four counterparts are above the curves of GSI

and GSI-opt. Besides, they rise sharply as the data size grows

larger. In contrast, GSI-opt rises much more slowly.

After watdiv210M, all algorithms fail on most queries due

Fig. 11. Performance Comparison on all datasets

to the limitation of GPU memory capacity. The counterparts

stop much earlier because they have larger candidate tables and

intermediate tables. Due to its efficient filter, GSI occupies less

memory, thus scaling to larger graphs. Furthermore, during

each join iteration of GSI, only an edge label-partitioned graph

is needed on GPU. In summary, GSI not only outperforms

others by a significant margin, but also shows good scalability

so that graphs with hundreds of millions of edges for subgraph

query problem are now tractable.

×

×

(a) Scalability with the data size

×

(b) Scalability with the number of SMs

Fig. 12. Scalability Test

We also evaluate the scalability of GSI with the number of

SMs. In order to control the number of running SMs, we limit

the number of blocks launched and withdraw dynamic kernels

(see Section VI-A), which may degrade the performance. We

choose WatDiv (see Table II) and show the result in Figure

12(b). With the number of SMs increasing from 1 to 30,

the response time drops continuously, though with some tiny

fluctuations. The time curve drops fast in the beginning, but

slows down gradually, corresponding to the sub-linear speedup
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curve. The maximum speedup is 2.85, and is limited by the

irregularity of graphs and GPU memory bandwidth, which

cause severe load imbalance and high memory latency.

E. Vary the number of labels and query size

In this section, we explore the influence of number of labels

and query size. We use GSI-opt and select gowalla as the

benchmark. By default, the number of vertex and edge labels

are both 100, and all queries have 12 vertices.

We vary the number of labels and show results in Figure

13(a). As the number of labels increases, run time decreases.

The “vertex label num” line shows sharper drop because larger

|LV | directly reduces the sizes of candidate sets. However,
after |LV | > 100, the drop quickly slows down to zero as can-
didate sets are small enough to be fully parallelized. Similarly,

larger |LE | also helps reduce |C(u)| due to improved pruning
power of labeled edges. In addition, the size of |N(v, l)| is also
lowered as |LE | grows. This is the reason that run time keeps
dropping, though the speed also changes after |LE | > 100.

(a) Vary the number of vertex and edge labels (b) Vary the number of edges and vertices in Q

Fig. 13. Experiments of label number and query size

As for query size, we first fix |V (Q)| = 12 and vary the
number of edges, then fix |E(Q)| = 2 × |V (Q)| and vary
the number of vertices. Figure 13(b) shows the result, where

unenclosed X-axis numbers denote the number of edges, and

the X-axis numbers enclosed in parentheses denote the number

of vertices. In the first case, run time rises slowly, because the

cost of processing extra edges is marginal. After |E(Q)| > 24,
a small drop occurs as there are enough edges to provide

stronger pruning potential. In the second case, an observable

increase can be found because in our vertex-oriented join

strategy, larger |V (Q)| means more join iterations. However,
the rise slows down after |V (Q)| ≥ 13. Generally, larger
query graph results in fewer matches, thus the cost of each

join iteration is lower.

F. Distribution of query time and result size

In addition to average time, using GSI-opt, we also show

the distribution of query time and result size in Figure 14.

For query time, the relative height of boxes corresponds to

the results of average time in Figure 11. Due to the irregularity

of graphs, a few outliers exist. On WatDiv and DBpedia, the

mean is above the major part (the box area) because the cost

of outliers is too high.

For result size, gowalla, patent and road deliver the mini-

mum value, which limits the speedup by write cache. It must

be noted that query time is not decided by result size. Besides,

the data skew on the latter two graphs are more severe, thus

outliers are far above the box.

(a) Box plot of query response time (b) Box plot of query result size

Fig. 14. Distribution of query response time and query result size

G. Additional Experiments

We report the loading time (from host to GPU) of GSI on all

datasets: 1ms, 5ms, 106ms, 120ms, 144ms, 178ms. Besides,

we record the maximum memory consumption of GPU algo-

rithms in Table VI, including host and GPU memories. Note

that “NAN” means an algorithm cannot end in a reasonable

time. Generally, CPU solutions occupy less memory, and the

details are given in [19].

GPU solutions that are based on BFS have larger memory

consumption on both host and GPU. Compared to counter-

parts, GSI consumes more host memory due to the main-

tainance of signature table and PCSR structures. However,

GSI consumes less GPU memory because it has smaller

candidate/intermediate tables and in each iteration only an

edge label-partitioned graph is needed on GPU.

VIII. RELATED WORK

CPU-based subgraph isomorphism. Ullmann [33] and VF2
[34] are the two early efforts; Ullmann uses depth-first search

strategy, while VF2 considers the connectivity as pruning

strategy. Most later methods (e.g., [13], [14]) pre-compute

some structural indices to reduce the search space and optimize

the matching order using various heuristic methods. TurboISO

[11] merges similar query nodes and BoostISO [12] extends

this idea to data graph. CFL-Match [8] defines a Core-Forest-

Leaf decomposition and select the matching order based on

minimal growth of intermediate table. VF3 [10] is an im-

provement of VF2, which leverages more pruning rules (node

classification, matching order, etc.) and favors dense queries.

EmptyHeaded [35] and CBWJ [25] are based on worst-

case optimal join [36]; CBWJ achieves better performance.

Unfortunately, these sequential solutions perform terrible on

large graphs, due to exponential search space.

GPU-based subgraph isomorphism. The first work is [37],
which finds candidates for STwigs [38] first and joins them.

However, STwig-based framework may not be suitable for

GPU due to large intermediate results. Later, GPUSI [39]

transplants TurboISO to GPU. Different candidate regions are

searched in parallel, but its performance is limited by depth-

first search within each region. All backtracking-based GPU

algorithms have problems of warp divergence and uncoalesced

memory access, as analyzed in [17].

GpSM [15] and GunrockSM [16] outperform previous

works by leveraging breadth-first search, which favors par-
allelism. Their routines are already introduced in Section I.
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TABLE VI
MEMORY CONSUMPTION OF GPU ALGORITHMS

Dataset
Host Memory GPU Memory

GpSM GunrockSM Wukong+G MAGiQ GSI GpSM GunrockSM Wukong+G MAGiQ GSI
enron 154M 181M 174M 284M 160M 1.3G 1.4G 667M 721M 661M
gowalla 592M 712M 599M 367M 466M 2.4G 2.8G 1.8G 725M 685M
patent 1.0G 1.3G 1.3G 1.5G 663M 3.5G 3.7G 2.1G 1.1G 915M
road 1.8G 2.0G 2.1G 2.2G 1.1G 3.6G 3.6G 2.3G 1.3G 1.2G
WatDiv 4.4G 5.7G 4.7G 6.9G 8.5G 7.3G 7.7G 7.5G 5.6G 4.9G
DBpedia 6.9G 8.2G 8G NAN 14G 9.0G 9.6G 9.6G NAN 8.1G

They both adopt two-step output scheme to write join results,

and do not utilize features of GPU architecture. Therefore,

they have problems of high volume of work, long latency of

memory access and severe workload imbalance. In summary,

GpSM and GunrockSM both lack optimizations for challenges

presented in Section II-C.

MAGiQ [26] and Wukong+G [27] are two GPU-based RDF

systems that supports SPARQL queries. Wukong+G develops

efficient swapping mechanism between CPU and GPU, while

MAGiQ utilizes existing CUDA libraries of linear algebra

for filtering. They have no optimization for table join, which

marks them inefficient.

IX. CONCLUSIONS

We introduce an efficient algorithm (GSI), utilizing GPU

parallelism for large-scale subgraph isomorphism. GSI is

based on filtering-and-joining framework and optimized for

the architecture of modern GPUs. Experiments show that GSI

outperforms all counterparts by several orders of magnitude.

Furthermore, all pattern matching algorithms using N(v, l)
extraction can benefit from the PCSR structure. The Prealloc-
Combine strategy also sheds new light on join optimization.
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