A New CPU-FPGA Heterogeneous gStore
System

Xunbin Su!, Yinnian Lin!, and Lei Zou!

Peking University, Beijing, China
{suxunbin,linyinnian,zoulei}@pku.edu.cn

Abstract. In this demonstration, we present a new CPU-FPGA hetero-
geneous gStore system. The previous gStore system is based on CPU and
has low join query performance when the data size is too big. We imple-
ment a FPGA-based join module to speed up join queries. Furthermore,
we design a FPGA-friendly data structure called FFCSR to facilitate
it. We compare our new system with the previous one on the LUBM2B
dataset. Experimental results demonstrate that the new CPU-FPGA het-
erogeneous system performs better than the previous one based on CPU.

1 Introduction

Recently in large-scale data retrieval and query, graph database has been applied
in a wide range of fields. gStore[3] is a graph-based RDF data management
system on multi-core CPU that supports SPARQL 1.1 standard query language
defined by W3C. It stores RDF data as a labeled directed graph G (called
RDF graph), where each vertex represents a subject or an object and each edge
represents a predicate. Given a SPARQL query, we can also represent it as a
query graph). Then gStore employs subgraph matching of @ over G to get
query results. Specific technical details of gStore have been published before [6]
and [7].

Though gStore can already support the storage and query of billions of RDF
triples, the query performance significantly decreases as the data size increases,
especially join queries (SPARQL queries involving join process). Two main per-
formance bottlenecks for join queries are a large number of list intersections and
too many reading Key-Value store operations from the external storage.

To overcome the two problems above and improve the overall performance
of gStore, we introduce the field-programmable gate array (FPGA). A FPGA
has many advantages including low energy consumption, high concurrency, pro-
grammability and simpler design cycles. In recent years, not only has GPU been
widely used in graph computation[1] but also using FPGAs for hardware accel-
eration has gradually become a trend. For example, FPGAs are often used for
accelerating some common graph algorithms like breadth-first search (BFS) and
single-source shortest path (SSSP)[5].

In this demo, we design and implement a new CPU-FPGA heterogeneous
gStore system that has a FPGA-based join module and a FPGA-friendly data

2 F. Author et al.

structure called FFCSR, which can accelerate join queries and improve the over-
all performance of gStore.

We conduct a comparative experiment on the previous and the new version
of gStore on LUBM2B dataset. Experimental results demonstrate that the new
CPU-FPGA heterogeneous gStore system performs better compared with the
previous one on CPUs.

2 System Overview

The whole gStore system consists of an offline part and an online part. The offline
part consists of a build module and a load module, for data preprocessing. The
online part consists of a SPARQL parser, a filter module and a join module,
handling a SPARQL query. We depict the system architecture in Figure 1.

RDF Triples SPARQL Quer Final Results J<'
2 1 2)
i i i i
i . i .
‘ Offline oo Online 1
I I 1 I
! i : SPARQL Parser i
I
i Build Module i i
i i i
: i : Query Graphl
i i
i Load Module i i Candidate Lists Join Module i
| | i _ > |
! RDF Graph A i : Filter Module i
i i
[I l 777777 o i‘ - T 77777777777777777777777777777 i
! External Memory ! Host Memory ! FPGA Global Memory '1
! I I I I
! ! I I I
i Key-Value Store : i Hash Mapping i i i
: L viddid&idvid) | vigzd 1 o on Results
i VS*-Tree Store — | i i i !
I] i
e R I— R

Fig. 1. the System Architecture

Build Module. In the offline phase, gStore first accepts an RDF file and
converts it to RDF triples. Then the build module uses adjacency list represen-
tation to build a RDF graph. The RDF graph is stored in external memory in
the form of a Key-Value store and a VS*-tree store.

Load Module. GSI[4] proposes a GPU-friendly data structure to represent
an edge-labeled graph, called PCSR. Inspired by [4], we build a FPGA-friendly
Compressed Sparse Row during the load module, which we call FFCSR. Ad-
ditionally, two sets of hash mappings are created to facilitate FPGA random
access to the FFCSR. We describe them in Figure 2. Hash mappings are stored
in host memory and the FFCSR is transferred to the FPGA’s global memory
(DRAM).

There are three components in the FFCSR: an index list, & offset lists and
k adjacency lists, where k is the number of DDRs in DRAM. The index list

A New CPU-FPGA Heterogeneous gStore System 3

has p triples, where p is the number of predicates. The first element of the i-
th triple represents a DDR number. The second and the third are an out-edge
offset initial position and an in-edge offset initial position. The i-th offset list
and adjacency list are stored on the i-th DDR, which could be favorable for
FPGA reading operations in parallel. The mapping vid2id converts the discrete
but ordered vertex ids (vid) to the consecutive offset ids (0id) and the mapping
1d2vid is just opposite.

pid= o Pid=7 Index list

1

Offset lists

Ve s

DDRO DDR1 DDR2 DDR3

vid2id

HashMapping vid‘ 1 ‘ 9’14’ 20’33‘76’97 id| o‘ 1| 2 | 3‘ 4| 5 ’ 6

id2vid
Fig. 2. the structure of FFCSR and corresponding hash mappings

SPARQL Parser. In the online phase, the SPARQL parser converts a
SPARQL query given by a user to a syntax tree and then builds a query graph
based on the syntax tree. The query graph is encoded into a signature graph
with the similar encoding strategy that encodes RDF graphs.

Filter Module. After the SPARQL parser, the filter module uses the VS*-
tree store to generate an ordered candidate list for each query node. This step
is necessary to reduce the size of the input to the join module.

Join Module. The join module can be divided into two parts: a CPU host
and a set of FPGA kernels. We adopt multi-step join[2] in the join module.
The order which query node should be added in each step is determined by
its priority. The priority of each query node is inversely proportional to the
size of its candidate list because the smaller size leads to fewer intermediate
results and a faster join. Then the host generates two types of candidate lists
for FPGA kernels. One is mapped using the mapping vid2id, which we call CLR
(candidate list for reading). The other is converted to a bitstring where the i-
th bit represents whether vid = i exists, which we call CLS (candidate list for
searching). Finally, FPGA kernels perform specific computational tasks to get
results. Note that results should be restored using the mapping id2vid.

3 FPGA Kernel

A set of FPGA kernels are designed for computation of intersection among mul-
tiple candidate lists. They are controlled by the host. A FPGA kernel is designed
as a 4-stage pipeline consisting of reading FFCSR and CLR, intersection com-
puting, searching in CLS and writing back, as shown in Figure 3.

4 F. Author et al.

Reading FFCSR and CLR. A CLR reader reads one set of k elements at
a time and passes them to a dispatcher for FFCSR reading. A dispatcher decides
to assign tasks to FFCSR reading threads according to the oid. As soon as a
thread gets an oid, it accesses the FFCSR in DRAM for corresponding adjacency
list and stores it in a buffer in BRAM for the next stage.

Stagel Stage2 Stage3 Staged

A \ A 1
r AN L A 1

FFCSR Reader FIFO CLS Searcher
CLR CLR Intersection Searching Block Result
— FFCSR —» — — .
Reader Dispatcher Cache Tree Dispatcher Index Writer
FFCSR Reader CLS Searcher

|5r:ﬁ _______________________ J ___ lf ____E

i CLR FFCSR CLS results —I>

Fig. 3. the pipeline overview of a FPGA kernel

Intersection Computing. We implement a merge-based intersection tree
whose leaf nodes correspond to original adjacency lists, to find the common
elements among all k£ adjacency lists in a bottom-up manner. At every cycle an
intersection is conducted between each 2 sibling nodes. Because the BRAM is
faster than the DRAM, we design a simple FIFO cache shared by the threads.
Before a thread accesses the DRAM, it first searches in the cache in BRAM to
see if the needed list is already cached to avoid unnecessary 10.

Searching in CLS and Writing Back. The vids generated by the intersec-
tion tree are sent to another dispatcher. This dispatcher conducts Round-Robin
Scheduling and allocates a vid to a searching thread each cycle. Then each thread
searches a given vid in the CLS. If the corresponding bit of the CLS is equal to
one, the result will be written to the output buffer.

Optimization. We design a smaller in-BRAM block index for searching to
reduce DRAM access. Note that in most cases the CLS is very sparse with many
continuous zeros. Therefore, we use a bitstring index where one bit represents
a fixed-length block of the CLS. The size of the block index is small enough to
be put in BRAM. A searching thread first checks the block index to determine
whether a given vid is valid. The CLS in DRAM is searched only when the vid
is valid.

4 Demonstration

In this demo, we use the famous Lehigh University Benchmark (LUBM) for eval-
uating the efficiency of our new gStore system. We choose the LUBM2B dataset
with 2136214258 triples for our experiments. The host system is a supermi-
cro 7046GT-TRF (Intel Xeon E5-2620 v4 2.10 GHz, 256GB memory) which is
equipped with a Xilinx alevo-u200 FPGA board (64GB global memory, 35MB
BRAM) via PClIe 3.0 with 16 lanes. The design on the FPGA is clocked with
330 MHz.

In Figure 4(a), we input a join query and execute it with gStore on CPU and
CPU-FPGA heterogeneous gStore, respectively. The performance comparison

A New CPU-FPGA Heterogeneous gStore System 5

histogram is below to validate the effectiveness. In Figure 4(b), the visual query
results are shown to validate the correctness. Experimental results demonstrate
that CPU-FPGA heterogeneous gStore can achieve up to 3.3x speedup for join
queries.

\ / NS
iodes: 74, edgess 24 @, | OOE hodes! 74 edges: 144 .

(a) Query Page (b) Visual Results

Fig. 4. Demonstration of gStore

Acknowledgment

This work was supported by The National Key Research and Development Program
of China under grant 2018 YFB1003504 and NSFC under grant 61932001.

References

1. Alam, M., Perumalla, K.S., Sanders, P.: Novel parallel algorithms for fast multi-
gpu-based generation of massive scale-free networks. Data Science and Engineering
4(1), 61-75 (2019)

2. Ngo, H.Q., Porat, E., Ré, C., Rudra, A.: Worst-case optimal join algorithms. Journal
of the ACM (JACM) 65(3), 16 (2018)

3. Shen, X., Zou, L., Uzsu, M.T., Chen, L., Li, Y., Han, S., Zhao, D.: A graph-based
rdf triple store. In: 2015 IEEE 31st International Conference on Data Engineering.
pp. 1508-1511. IEEE (2015)

4. Zeng, L., Zou, L., Ozsu, M.T., Hu, L., Zhang, F.: Gsi: Gpu-friendly subgraph iso-
morphism. arXiv preprint arXiv:1906.03420 (2019)

5. Zhou, S., Prasanna, V.K.: Accelerating graph analytics on cpu-fpga heterogeneous
platform. In: 2017 29th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD). pp. 137-144. IEEE (2017)

6. Zou, L., Mo, J., Chen, L., Ozsu, M.T., Zhao, D.: gstore: answering sparql queries
via subgraph matching. Proceedings of the VLDB Endowment 4(8), 482-493 (2011)

7. Zou, L., Ozsu, M.T., Chen, L., Shen, X., Huang, R., Zhao, D.: gstore: a graph-based
sparql query engine. The VLDB JournalThe International Journal on Very Large
Data Bases 23(4), 565-590 (2014)

