
Leaper: A Learned Prefetcher for Cache Invalidation in
LSM-tree based Storage Engines

Lei Yang1, Hong Wu2, Tieying Zhang2, Xuntao Cheng 2, Feifei Li2, Lei Zou1,
Yujie Wang2, Rongyao Chen2, Jianying Wang2, and Gui Huang2

Peking University1

Alibaba Group2

ABSTRACT
Frequency-based cache replacement policies that work well
on page-based database storage engines are no longer suffi-
cient for the emerging LSM-tree (Log-Structure Merge-tree)
based storage engines. Due to the append-only and copy-
on-write techniques applied to accelerate writes, the state-
of-the-art LSM-tree adopts mutable record blocks and issues
frequent background operations (i.e., compaction, flush) to
reorganize records in possibly every block. As a side-effect,
such operations invalidate the corresponding entries in the
cache for each involved record, causing sudden drops on the
cache hit rates and spikes on access latency. Given the ob-
servation that existing methods cannot address this cache
invalidation problem, we propose Leaper, a machine learn-
ing method to predict hot records in a LSM-tree storage
engine and prefetch them into the cache without being dis-
turbed by background operations. We implement Leaper in
a state-of-the-art LSM-tree storage engine, X-Engine, as a
light-weight plug-in. Evaluation results show that Leaper
eliminates about 70% cache invalidations and 99% latency
spikes with at most 0.95% overheads as measured in real-
world workloads.

1. INTRODUCTION
Caches are essential in many database storage engines

for buffering frequently accessed (i.e., hot) records in main
memory and accelerating their lookups. Recently, LSM-tree
(Log-Structure Merge-tree) based database storage engines
have been widely applied in industrial database systems
with notable examples including LevelDB [10], HBase [2],
RocksDB [7] and X-Engine [14] for its superior write perfor-
mance. These storage engines usually come with row-level
and block-level caches to buffer hot records in main mem-
ory. In this work, we find that traditional page-based and
frequency-based cache replacement policies (e.g., LRU [31],
LFU [37]) do not work well in such caches, despite their
successes on B-Trees and hash indexes. The key reason is
that the background operations in the LSM-tree (e.g., com-
pactions, flushes) reorganize records within the storage peri-
odically, invalidating the tracked statistics for the cache and

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

0 50 100 150 200
Time (s)

100

101

N
or

m
al

iz
ed

 v
al

ue

Hit ratio
QPS
Latency

Figure 1: Cache hit ratio and system performance churn (includ-
ing QPS and latency of 95th percentile) caused by cache invali-
dations.

disabling these replacement policies to effectively identify
the hot blocks to be swapped into the cache.

The root causes come from append-only and copy-on-
write (CoW) techniques applied to accelerate inserts, up-
dates and deletes, in conjunction with the mutable blocks
in the storage layout of a LSM-tree. Although newly ar-
rived records and deltas on existing records are appended
into the main memory in the first place, eventually they
need to be merged with existing record blocks in the durable
storage through the flush and compaction operations in the
LSM-tree. Because of these operations, traditional cache
replacement policies that rely on tracking page/block level
access frequency are no longer effective. Every time when
a flush or compaction is executed in the LSM-tree, record
blocks are reorganized and moved both physically and logi-
cally to or within the durable storage, along with changing
key ranges for records and updated values and locations.
This invalidates their corresponding entries and statistics in
the cache and leads to cache miss for their lookups. Further-
more, compactions are usually executed multiple times for
the same record due to the hierarchical storage layout of the
LSM-tree. In this work, we have identified that this problem
often causes latency spikes due to the decreased cache hit
rates. We refer to it as the cache invalidation problem.

Such cache invalidations happen frequently in workloads
with intensive writes and updates, such as order-placement
on hot merchandises in e-commerce workloads. Figure 1
shows an example where the cache misses caused by such
invalidations leads up to 10× latency spikes and 90% QPS
drops in X-Engine [14], a high-performance LSM-tree based
storage engine at Alibaba and Alibaba Cloud. This level of
performance instability introduces potential risks for mission-
critical applications.

The cache invalidation problem has attracted some re-
search attention in the past [11, 1, 39]. They try to decrease

1

the frequency of compactions by relaxing the sorted data
layout of the LSM-tree [15], or maintain a mapping between
records before and after compactions [1, 42]. Furthermore,
they often require significant changes to the LSM-tree im-
plementation. Hence, they either sacrifice the range query
performance, or the space efficiency, or introduce signifi-
cant extra overhead. These are often unacceptable because
many industrial applications prefer general-purpose storage
engines offering competitive performance for both point and
range queries with high memory and space efficiencies.

In this paper, we introduce machine learning techniques to
capture the data access trends during and after compactions
that cannot be captured by existing methods. Our proposal
introduces a small overhead without adding or altering any
data structures in the LSM-tree. More specifically, we pro-
pose a learned prefetcher, Leaper, to predict which records
would be accessed during and after compactions using ma-
chine learning models, and prefetch them into the cache ac-
cordingly. Our key insight is to capture data access trends
at the range level, and intersects hot ranges with record
block boundaries to identify record blocks for prefetching
into the cache. We are enabled by machine learning models
to find such hot ranges from the workload, which cannot be
identified by conventional cache replacement policies. The
identified ranges are independent of background operations,
allowing Leaper to perform across multiple compactions or
flushes continuously. And, our method naturally supports
both point and range queries.

We design and implement Leaper to minimize both of-
fline training overhead and online inference overhead. To
this end, we have applied several optimizations in the imple-
mentation such as the locking mechanism and the two-phase
prefetcher. We have evaluated Leaper using both synthetic
and real-world workloads. Results show that Leaper is able
to reduce cache invalidations and latency spikes by 70% and
99%, respectively. The training and inference overheads of
Leaper are constrained to 6 seconds and 5 milliseconds, re-
spectively. Our main contributions are as follows:

• We formulate the cache invalidation problem, and iden-
tify its root causes in the modern LSM-tree storage
engines, which existing methods cannot address. We
have proposed a machine learning-based approach, Lea-
per, to predict future hot records and prefetch them
into the cache, without being disturbed by background
LSM-tree operations that cause the cache invalidation
problem.

• We have achieved a low training and inference over-
head in our machine learning-based proposal by care-
fully formulating the solution, selecting light-weight
models for predictions and optimizing the implemen-
tation. The overall overhead is often as small as 0.95%
(compared to the cost of other normal execution op-
erations excluding Leaper) as observed in real-world
workloads. We have extracted effective features, achiev-
ing a high level of accuracy: 0.99 and 0.95 recall scores
for synthetic and real-world workloads, respectively.

• We have evaluated our proposal by comparing it with
the state-of-the-art baselines using both synthetic and
real-world workloads. Experimental results show that
Leaper improves the QPS by more than 50% in average
and eliminates about 70% cache invalidations and 99%
of latency spikes, significantly outperforming others.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the background and formulates the cache
invalidation problem. Section 3 presents our design overview
of Leaper. We introduce details of Leaper’s components in
Sections 4, 5 and 6. We evaluate our proposal in Section 7
and conclude in Section 8.

2. BACKGROUND AND PRELIMINARY

2.1 LSM-tree based Storage Engines
Both the idea of append-only writes using logs and the

LSM-tree are not recent inventions [32], however, LSM-tree
based storage engines have acquired significant popularity
in recent years. Notable examples include LevelDB [10]
from Google, RocksDB [7] from Facebook and X-Engine [14]
from Alibaba, supporting applications such as Chrome [17],
LinkedIn [8], and DingTalk [14]. This popularity is driven
by the trend that there are increasingly more writes (e.g.,
inserts, updates) in database workloads, where the tradi-
tional B-tree based storages struggle to offer the expected
performance at a reasonable space cost.

LSM-tree is designed to achieve a high write throughput.
Figure 2(a) illustrates the generic architecture of a LSM-
tree, consisting of a memory-resident component and a disk-
resident component. Incoming records are inserted into ac-
tive memtables in the main memory, which are implemented
as skiplists in many systems [35, 14]. To update an existing
record, the corresponding delta is inserted into this active
memtable in the same way. This append-only design ensures
that all writes other than logging are completed in the main
memory without going into the durable storage where the
access latency is much higher. When an active memtable
is filled, it is switched to be an immutable memtable. As
memtables accumulate in the main memory, approaching
the main memory capacity, flush operations are triggered
to flush some immutable memtables into the durable storage
where incoming records are merged with existing ones. Such
a merge may incur a lot of disk I/Os. And, the same record
may be merged multiple times, causing write amplifications.

To bound such write amplifications and to facilitate fast
lookups over recently flushed records which are still very
likely to be hot due to locality, the disk component of the
latest LSM-tree storages adopts a tiered layout consisting of
multiple levels with inclusive key ranges [14]. Each level is
several times larger than the one above it. Flushed records
first arrive in the first level L0. When L0 is full, parts of
it are merged into the next level L1 through compactions.
In the meantime, compactions also remove records marked
to be deleted or old versions of records that are no longer
needed and then write back the merged records in a sorted
order into the target level.

The above-introduced write path achieves a high write
throughput at the cost of the lookup performance. Although
many lookups for newly inserted records can be served by
the memtables in the main memory, the rest have to access
all those levels in disk. And, to access a frequently updated
record, a lookup has to merge all its deltas scattered across
the storage to form the latest value. Even with proper in-
dexes, this lookup path can be very slow due to the disk
I/Os involved. A range query, even worse, has to merge
records satisfying its predicates from all levels in the disk.

To resolve the slow lookups, many LSM-tree storage en-
gines have incorporated caches in the main memory to buffer

2

Active
MemTable

L0

L1

L2

100-200

50-150 160-250

0-150

Immutable
MemTable

Flush

Switch

Compaction

Block cache
0-150 100-200 160-250

160-300

B1

B2 B3

Memory
Disk

T1

(a) Before merge

L0

L1

L2

160-300

50-130 140-180 190-250

0-150

Active
MemTable

Immutable
MemTable

Block cache
0-150 100-200 160-250

B1’ B2’ B3’

Memory
Disk

T1’

(b) After merge
Figure 2: The left half describes the general architecture of LSM-tree based storage engines in which writes are directly appended into
the active memtable and reads are retrieved in order of active memtable, immutable memtables and tiered trees on disk. The right half
is an example of cache invalidations after flush and compaction.

hot records. Usually, a row cache for individual records
and a block cache for record blocks are used [14]. In Fig-
ure 2(a), we have illustrated a block cache buffering three
record blocks from the disk. To maintain these caches, tradi-
tional frequency-based cache replacement policies like LRU
are usually enforced to swap entries in and out of those
caches. These policies work well when there is a clear and
stable level of locality in the workload that they can track,
however, flushes and compactions in the LSM-tree often dis-
able such policies, which we introduce in the following.

2.2 Cache Invalidation Problem
In a LSM-tree based storage engine, the cache invalida-

tion problem happens when background compaction and
flush operations move cached records either from the main
memory to the disk or shuffle them within the disk, causing
potential retrievals to miss the cache in the main memory
and access the disk. In this work, our goal is to minimize
such cache misses to improve the lookup performance. We
formulate the problem as follows:

For a sequence of incoming requests for recordsR = {r0, r1,
...}, and a set of compactions (or flush) moving sets of
records:

M = {m0 = {r00, r01, ..., r0n0−1},m1 = {r10, r11, ..., r1ni−1}, ...},
and a database cache buffering a set of records:

C = {rc0, rc1, ..., rcL−1},
find a cache replacement method so that

|R
⋂
C| is maximized by minimizing |R

⋂
C
⋂
M |,

where ri, m
i, rij , and rci refer to a record, a compaction

merging ni records, a record merged by compaction, and
records buffered in the cache with L records, ni, i, j, L ∈ N .

Examples. Figure 2 illustrates an example of the formu-
lated problem by showing the status of record blocks before
and after a flush and a compaction. In Figure 2(a), the im-
mutable memtable T1 can be accessed in the main memory.
After the flush, all retrievals for records originally in T1 has
to access the flushed blocks in T1′ in the disk. Before the
compaction, one record blocks from level L0, L1, and L2 is
cached, respectively. After a compaction merging the blocks
selected by the green dashed line B1, B2 and B3, the corre-
sponding cached blocks are invalidated, because the cached
records have been merged with others and moved to new
locations (B1′, B2′, B3′) in the level L2. In this case, re-
trievals of these records miss the cache and have to access
these blocks in the disk.

Most relevant related work and existing solutions.
Several methods were proposed to reduce cache invalida-
tions. Stepped-Merge tree [15] is a LSM-tree variant where
records are not fully sorted to decrease the frequency of com-
paction, and therefore reduce cache invalidations. However,
it significantly degrades read performance when executing
range queries or frequently-updated workloads.

LSbM [42] combines the idea of SM-tree [15] and bLSM [39],
and aims to maintain the reference between cache and disk
during compaction. Unfortunately, it increases the burden
of compaction and brings storage overhead. Also, it de-
grades read performance when executing range queries as
Stepped-Merge tree.

Incremental Warmup Algorithm [1] builds mappings be-
tween data before and after compaction through pre-sorted
smallest keys. It moves newly compacted blocks sequentially
into block cache along blocks’ key range. Before they are
moved, the blocks in the block cache will be evicted whose
key ranges overlap with them. However, it has two disad-
vantages. First, it assumes that newly compacted blocks will
be frequently visited. Second, newly compacted blocks may
overlap more than one block, it will prefetch infrequently
requested blocks into the block cache.

3. DESIGN OVERVIEW
3.1 Design Rationale

Both traditional page-based cache replacement policies
and existing methods that try to either delay compactions
or maintain a mapping between record blocks before and
after compactions are not sufficient to solve the cache in-
validation problem formulated above. Firstly, record blocks
of the LSM-tree are mutable and updated by flushes and
compactions. This disables page-based cache replacement
policies to track the access frequency of each block, unlike
in page-based storage where the contents of a page rarely
experience drastic changes since its formation. Secondly, in
the emerging write-intensive workloads with massive inserts
and updates that prefer the LSM-tree storage engine, the
frequencies for flushes and compactions are inevitably high,
driving up both the execution and memory overheads of the
existing methods introduced above.

The cache invalidation problem can be divided into a time
series classification problem and a traditional cache replace-
ment problem. Firstly, because it is the set of records moved
by compactions and flushes, M , that distinguishes the cache
invalidation problem from the conventional cache replace-
ment problem, we need to make a decision for each inval-

3

Online

Offline

Key Range
Selection

Feature
Selection

Multi-thread
Collection

Feature
Generation

Overlap
Check

Learner

Prefetcher

Collector

Leaper
component

Storage
Engine

Log Data

Blocks

Compaction
/Flush

Inference

Workload

Cache

Key Range Statistics

Prefetch Blocks

Trained model(s)

 ···

Hot/Cold Key Ranges

Data FlowControl Flow

Figure 3: Workflow of LSM-tree storage engine with leaper.

idated cache entry on whether to keep it in the cache, ac-
cording to the prediction on whether or not it is going to
be accessed either during the compaction or after the com-
paction. Or, formally, given the access of a block in the last
x · t minutes, predict whether this block will be accessed in
the following T minutes.

Secondly, for cached entries that are not invalidated by
compactions and flushes, their access statistics can be main-
tained well by traditional policies like the LRU, making such
policies sufficient to manage the cache for these entries. As
a result, we propose a hybrid solution combining a classifier
to guide cache swaps for invalidated entries and the LRU
cache replacement policy for the other cache entries. The
specific classification model is explained in Section 4.3.

Other solutions are also possible, such as sequence predic-
tion and time series regression. For the sequence prediction
approach, it collects a long historical record access sequence
for a past period time, and makes predictions on the future
access sequence. The computation and memory overhead in-
curred in this process is more than necessary for our problem
because we only need to make predictions on the invalidated
cached entries, and the information on the rest is not neces-
sary, given that policies like LRU already performs reason-
ably well. For the time series regression approach, it trans-
forms the access pattern into arrival rates for each record to
minimize the RMSE (Root Mean Squared Error). However,
most workloads have obvious hot spots, which means that
the transformation from regression to classification will lose
considerable accuracy.

3.2 System Overview
To achieve the time series classifier introduced above, we

introduce machine learning models to predict record accesses
during and after compactions. Specifically, we predict at the
range level, aiming at a good trade-off between the predic-
tion overhead and accuracy. With such hot ranges predicted,
we intersect them with block boundaries to select record
blocks that should be prefetched into the cache.

Figure 3 shows the workflow of our proposal, Leaper,
consisting of three major parts: Collector, Prefetcher,
and Learner. The bottom part shows the Learner com-
ponent which is responsible for training predictive models
with different time scales. The higher part shows the Col-
lector component which generates featurized data and the
Prefetcher component which interacts with the flush op-
eration and the compaction operation and fills appropriate
data blocks into the cache. The overall system can be easily
plugged into the LSM-tree storage engine, shown on the left

of Figure 3, without altering any existing data structures.
The Learner extracts the access data from query logs,

transforms the data into the format for training classifica-
tion models. To reduce the overhead, we group continuous
primary keys into key ranges. Leaper selects the right size
of key ranges according to different workloads to achieve
a good system and model performance. After that, the
Learner trains multiple models for Leaper to predict the
future access of key ranges with different time scales. We
use Tree-based models for classification to achieve optimal
performance.

The Collector collects data in a multi-thread way. We
implement optimized lock mechanisms to reduce the over-
head. After that, the Collector obtains the access statistics
for different key ranges. The Collector finally transfers the
access statistics of key ranges into counting features for fur-
ther prediction.

The Prefetcher first predicts the access of key ranges using
the features from the Collector and the trained models from
the Learner. Based on the predicted results, the Prefetcher
finds out all blocks that will be accessed from those par-
ticipating in the merge operations. This is handled by the
Overlap Check module. Finally, the Prefetcher takes actions
to either insert new blocks into the cache or evict old blocks
from the cache. The prefetching happens along with the
processing of flush and compaction operations.

Figure 3 also depicts the control flow between the storage
engine and leaper. During the database running, the Collec-
tor keeps updating the access statistics. The Learner trains
the models periodically, depending on the pattern changes
of the workload. It always outputs trained models for the
Prefetcher to do prediction as necessary. When the flush and
the compaction operations are internally triggered by the
storage engine, the Prefetcher begins to run. For flush, the
Prefetcher directly predicts the future access of key ranges
that involve in the flush. For compaction, since it’s usually a
long time period, we use a two-phase mechanism to predict
more accurate access of the key ranges that participate in
the compaction.

4. OFFLINE ANALYSIS
To solve the cache invalidation problem, Leaper applies

machine learning models to predicts the data blocks that
would be accessed after the flush and compaction opera-
tions and then do the prefetch. In this section, we describe
the design of Learner, the offline component of Leaper which
handles data featurization and model training. We first dis-
cuss the key range selection to reduce the system overhead
and make our approach realistic for the online components.
After that, we discuss the important features of the predic-
tion problem. Last, we describe the classification model and
training methodology we use in Leaper.

4.1 Key Range Selection
To get training data for a classification model, we need to

know the access information of blocks. But we are unable to
get it since the blocks keep changing along with the merge
operation. Instead, we introduce the key range, which also
consists of a range of continuous keys and never changes dur-
ing the database running. The key range of grouping keys
together has three major advantages. First, it’s infeasible
to record the access information for each key, so it’s of great

4

Algorithm 1: Key Range Selection

Input: Initial size A , the number of zeroes in vi of
counting map {(ki, vi)}ni=1 as M(A) and
decline threshold α

Output: Most suitable granularity A∗

1 while 2M(2A) > αM(A) do
2 A← 2A;
3 Binary search to find the maximum value A∗

satisfying A∗M(A∗) > αAM(A) from A to 2A;
4 return A∗

help to reduce the overhead. Second, key range can be effi-
ciently used to do further overlap checks in the Prefetcher.
Third, key range is naturally fit for range queries.

The key range size has significant impacts on both the
prediction accuracy and the overhead of the online compo-
nent of Leaper. For a given storage filled with records, the
key range size determines the number of key ranges and the
size of statistics per key range to be collected online by the
Collector in our design. Reducing such key range size results
in more detailed statistics, and potentially a higher level of
prediction accuracy for prefetch, with increasing online col-
lection overhead.

In this paragraph, we discuss how to determine the size of
key ranges. We initialize the size of key ranges with a small
value A (we use 10 in our experiments). For each key range,
we use a binary digit (i.e., 1 or 0) to indicate whether it is
accessed (or predicted to be accessed soon) or not. With
this method, it takes a vector of N bits to store such access
information for N key ranges in a single time interval. For a
period time with multiple time intervals, we extend a vector
into a matrix, with one row in the matrix corresponding to
one time interval. We take a vector of 4 bits (0,1,1,1) for
example. If we expand the key range size twice, the size of
vector (or matrix) shrinks to the half and it forms logical
add (i.e., 1 + 0 = 1, 1 + 1 = 1 and 0 + 0 = 0) between
merging bits. In our example, the vector turns to be (1,1).
We utilize the fact that the access information loss occurs
and the proportion of zeros in vector (or matrix) declines as
we expand the key range size. Thus, the information loss in
our case can be represented by the decline in the proportion
of zeros.

However, information loss does not necessarily lead to per-
formance penalties for the prediction. Through observation
and experimental analysis, if the proportion of zeroes com-
pared to the previous beyond a threshold α which is a heuris-
tic value, machine learning models can still obtain fine pre-
diction results with a reasonable decrease in accuracy. And,
we call this efficient expansion. We keep expanding the key
range size until the expansion not efficient any more. In
our case, the threshold α is set to 0.6. And eventually, the
key range size is expanded to ten thousand. We show the
selection results in the experimental section.

More formally, Algorithm 1 depicts the procedure for com-
puting the range size. It follows the idea of binary search to
find the maximum valueA∗ satisfyingA∗M(A∗) > αAM(A).
By using this algorithm, Leaper selects an appropriate range
size to group keys together.

4.2 Features
Different from getting user features from the application

and generating features from query strings, only the table
ID and the primary key of each query are visible inside the

storage engine. Considering this fact, we perform feature
engineering on the log of storage engines to transform raw
access information into useful features. This section explains
the most three critical folds based on their importance to the
tree-based classification models.

Read/write arrival rate. Different key ranges exhibit
different access patterns, as shown in Figure 4(a). So read
arrival rate is the most important feature for the model to
capture access patterns. Figure 4(b) shows that write op-
eration may share access pattern with read operation for
some key ranges that fits in with users’ behavior. For this
reason, it’s meaningful to set write arrival rate as a feature
to help read arrival rate structure access pattern for some
key ranges. The arrival rate is calculated within a time slot
which is usually one or two minutes. In our scenario, we use
6 time slots (explained in Section 7) to represent the arrival
rate. So there are 12 features for read and write in total.

Prediction Timestamp. Figure 4(c) is the access load
on one database table of E-commerce scenario in five days.
Load peaks during daytime hours and dips at night. Since
the load has obvious time-dependent characteristics [24], it
is reasonable to add the prediction timestamp as a feature.
We use 3 features, hour, minute and second of the day, to
help the model to capture the access patterns of key ranges.

Precursor Arrival Rate. Figure 4(d) tells us some key
ranges may share similar patterns with others. So we try
to capture application patterns through studying the corre-
lation between key ranges’ access. If the target key range
is often accessed following another key range’s access pat-
tern, we call that key range is the precursor of the target
key range. We use Cosine similarity to verify the target key
range shares a similar access pattern with the precursor. We
pose Algorithm 2 to calculate γ most similar precursors of
each key range. Through this algorithm, we add γ most
similar precursors’ arrival rate in the last one slotted time
interval into features to help to capture the application pat-
terns. In our case, γ is set to 3 which introduces 3 features
for the model.

Algorithm 2: Calculation of Precursors

Input: Access sequence of all key ranges {(ki, ti)}ni=1

Output: Precursors map {(ki, {p1, p2...pγ})}ni=1 for
key ranges

1 Initialize transfer matrix T of key ranges and define
precursor constant γ and similarity threshold ε;

2 for each item i in {(ki, ti)}ni=1 do
3 for j from 1 to γ do
4 T [ki][ki−j]← T [ki][ki−j] + 1;

5 Calculate access vectors ~Vi(a vector of N bits for N
time intervals) of key ranges;

6 for each key range ki do
7 count← 0;
8 for item kj in sorted(T [ki]) do

9 if Cosine similarity cosθ =
~Vki
·~Vkj

‖~Vki
‖×‖~Vkj

‖
> ε

then
10 Add kj into ki’s precursors;
11 count← count+ 1;

12 if count = γ then
13 break;

Other things need to be determined are the slotted size

5

(a) Read arrival rate (b) Read and write arrival rate (c) Temporal Feature (d) Precursor arrival rate
Figure 4: Access patterns in E-commerce scenario. (a) shows read arrival rate of different key ranges have different patterns; (b)
shows read arrival rate and write arrival rate of the same key range share similar pattern; (c) shows e-commerce workload has temporal
periodicity; (d) shows many key ranges share similar patterns with their precursors.

and the feature length. The slotted size needs to be atomic
but as long as possible in order to reduce overhead. Usually,
the slotted size is set to one or two minutes, but it would
also be limited by other constraints that will be discussed in
Section 6. The feature length is reached from the experiment
to be six, and details are shown in Section 7.

4.3 Model
We use Gradient Boosting Decision Tree (GDBT) [9] as

the classification model due to its accuracy, efficiency and
interpretability. It produces a model in the form of an en-
semble of weak prediction models (decision trees). GBDT is
widely used in industry and is often used for tasks such as
click-through rate prediction [36] and learning to rate [4].
For every feature, GBDT needs to scan all the data in-
stances to estimate information gain of all the possible split
points. Thus, we could learn the computational complex-
ity of GBDT is proportional to both the number of features
and the number of data instances. When it comes to big
data or strict time requirements, GBDT may not be a suit-
able choice. Fortunately, there are several works speed up
GBDT like training via GPU [44, 29], parallel training [27]
and novel implementations of GBDT including XGBoost [5]
and LightGBM [16]. According to the experiments shown
in [16], LightGBM can outperform XGBoost and other im-
plementations in terms of computational speed and memory
consumption. Our experiments in Section 7 also confirm
that, and thereby, we select the implementation of Light-
GBM.

Other kinds of machine learning models including neu-
ral networks are also been tried. However, they are been
proved not feasible because of accuracy nor inference over-
head. Take LSTM used in [13] as an example. The time
to do hundreds of inferences in one compaction is about 1-2
seconds, which is unbearable in the OLTP database system.

The input of the classification model is a feature vector
with 18 dimensions (i.e., 6 read arrival rates, 6 write arrival
rates, 3 temporal features and 3 precursors’ arrival rates).
The output is a binary digit (i.e., 1 or 0) indicating whether
this key range would be accessed soon (i.e., one slotted time
interval). The loss functions we use are Square Loss and
Logarithmic Loss.

For model training, we generate training set and test-
ing set from the E-commerce workload. We exploit Grid-
SearchCV function from scikit-learn to search for the op-
timal parameters on testing set. The main parameters we
tune are num leaves, learning rate, bagging fraction and fea-
ture fraction. All the above parameters help avoid over-
fitting. K-fold cross validation also helps determine the ul-

timate parameters. Finally, num leaves, learning rate, bag-
ging fraction, and feature fraction are 31, 0.05, 0.8 and 0.9,
respectively.

What is more, we only train one global model for different
key ranges. Because new key ranges would be generated
during the database running, one global model for all key
ranges has better generalization ability. Also, it can help
reduce inference overhead.

5. ONLINE PROCESSING
In this section, we mainly present how to collect statistics,

how to implement prediction and how to decide which blocks
need to be prefetched in the online components of Leaper.

5.1 Locking Mechanism
In multi-thread storage engines, collecting statistics into

Collector will lead to write conflicts. To prevent this, it’s
necessary to apply a locking mechanism in Collector. There
exists a trade-off between the system overhead and the record-
ing accuracy and our first principle here is not affecting the
throughput of the database systems. We try to sacrifice
some collecting accuracy which means we don’t record all
access data. We find if the recording error is within a rea-
sonable range, it has little influence on the accuracy of pre-
diction. Experiment results in Section 7 will also prove this.

Table 1: Influence of locking mechanisms

Locking Strategies avg QPS (k/s) Decline ratio
Raw 337.7 -

Global mutex 200.5 40.61%
Double-Checked+Atomic 279.6 17.21%
Double-Checked+Atomic

+Sample
325.4 3.66%

Specifically, we adopt three strategies in the design of Col-
lector. First, double-checked locking [38] and lazy initializa-
tion are used for initializing key ranges. Lazy initialization
avoids initializing a key range until the first time it is ac-
cessed and double-checked locking is typically used to reduce
locking overhead when implementing lazy initialization. In
fact, double-checked locking reduces the overhead of acquir-
ing a lock by testing the locking criterion before acquiring
the lock. Second, atomic operations are used in statistics
to replace the mutex. Global mutex itself has a tremendous
impact on system performance, as shown in Table 1. If no
statistics are recorded, the average QPS is about 337703 per
second. When global mutex adopted, there will arise 40.61%
QPS decline. But if atomic operations adopted, the decline
ratio can be reduced to 17.21%. Third, sampling strategy
helps further reduce the total overhead. Because the ini-
tialization and the first record of a key range are guaranteed

6

by double-checked locking, the following records of the same
key range are sampled at the probability of P . Therefore,
the estimate of key range N̂i can be calculated by the sta-
tistical value Si and sampling probability P :

N̂i =
Si − 1

P
+ 1 (1)

Then, we compute the sampling error of our locking mech-
anism as follows:

1. In our case, statistical value for each key range obeys
the binomial distribution:

Si − 1 ∼ B(Ni − 1, P),

2. At the same time, the binomial distribution can ap-
proximately be considered as the normal distribution:

Si ∼ N((Ni − 1)P + 1, (Ni − 1)P (1− P)),

3. As a result, the sampling error could be described by:

|N̂i −Ni| ≤ zα/2

√
(Ni − 1)(1− P)

P
,

where zα/2 means standard score in Normal Distribu-
tion Tables with significance level of α.

Although our approach in Collector can’t guarantee the
accuracy of collecting the key range statistics, it has supe-
rior performance than other strategies and controls the QPS
decline to only 3.66%.

5.2 Inference
After the flush or the compaction is triggered, the Prefetcher

begins to work. The inference module predicts the hot and
cold key ranges using the featurized data from the Collector
and the trained model from the Learner. Through infer-
ence, we divide all involved key ranges into hot key ranges
and cold key ranges. A hot key range means this key range
is predicted to be accessed in the near future while a cold
key range means the opposite.

Although grouping keys into key ranges reduce the num-
ber of inferences, it is still challenging to minimize the cost
of each inference. In Leaper, we use the Treelite [6] to im-
plement the model inference part. There are three ma-
jor considerations for using Treelite. First, it uses com-
piler optimization techniques to generate model-specific and
platform-specific code, which includes Annotate conditional
branches, Loop Unrolling, etc. Treelite achieves 3-5× speedup
on the original implementation of lightGBM. Second, we
use dynamic linking library to integrate the model infer-
ence logic into the storage engine. In other words, with-
out recompiling the inference code, we just need to update
the trained model by simply replacing the dynamic library
generated from the Learner. Third, it supports multiple
tree models such as Gradient Boosted Trees and Random
Forests from different implementations (XGBoost, Light-
GBM, Scikit-Learn, etc). These properties are very impor-
tant for us to do comparison experiments and are flexible
for Leaper to support more models from more training li-
braries. In the experimental section, we test and verify the
effectiveness of Treelite and LightGBM through the cost of
inference.

5.3 Overlap Check
After inference in the Prefetcher, we need to figure out

what target blocks from the compaction and flush opera-
tions should be prefetched. Since there is no one-to-one

correspondence between the key ranges generated by Key
Range Selection and the target blocks, we need to check
whether the target blocks contain hot key ranges.

Algorithm 3: Check Overlap Algorithm

Input: Target blocks {(Ai, Bi)}mi=1, hot key ranges
{(aj , bj)}nj=1

Output: Prefetch Data T
/* Case 1: O(nlogm) < O(m) */

1 start = A1, end = Am ;
2 for aj in hot key ranges do
3 Binary Search for Ai 6 aj < Ai+1 from start to

end;
4 while bj > Ai+1 do
5 if Min(Bi, bj) > aj then
6 T.Add((Ai, Bi));
7 i← i+ 1;

8 start = Ai+1;

/* Case 2: O(m) 6 O(nlogm) */

9 for Ai in target blocks and aj in hot key ranges do
10 if Min(Bi, bj) >Max(Ai, aj) then
11 T.Add((Ai, Bi));
12 if Bi < bj then
13 i← i+ 1;
14 else if Bi > bj then
15 j ← j + 1;
16 else
17 i← i+ 1, j ← j + 1;

We pose a Check Overlap Algorithm ti check whether tar-
get blocks would be prefetched as Algorithm 3. There are
two ways to do overlap check between predicted hot key
ranges and target blocks. Case 1 follows the thought of bi-
nary search and Case 2 follows the thought of sort-merge.
Which implementation we apply is determined by when the
Prefetcher gets specific information of target blocks. If we
get it at the end of flush or compaction, Case 2 will be
invoked. Otherwise, if we get it during flush or compaction,
Case 1 will be invoked. If we get the specific information
of target blocks both during and after flush or compaction,
which one is better depends on how many orders of magni-
tudes exist between m and n, where m means the number
of target blocks and n means the number of predicted hot
key ranges. In our case, m and n change dynamically in dif-
ferent flush or compaction operations. As a result, we adopt
a hybrid algorithm combining both of them to obtain the
optimal result.

What’s more, other technologies like Date reuse [14] and
Bloom Filter [3] are exploited to reduce the errors of Check
Overlap Algorithm.

6. OPTIMIZATIONS
Leaper designs prefetch methods for both flush and com-

paction. For flush, all records in immutable memtables
would not be modified, so blocks that need to be prefetched
can be computed directly by Check Overlap Algorithm with
the inputs of flushed records and hot key ranges predicted
by trained models. Leaper only puts these blocks into block
cache and then solves cache invalidation caused by flush.

For compaction, firstly, blocks for prediction and prefetch
are not the same. Therefore, the inputs of Check Overlap
Algorithm should be newly compacted blocks. Second, com-
paction involves much more records than flush. To reduce

7

the influence of Prefetcher on block cache, Prefetcher kicks
off old blocks to save memory. Third, compaction brings ver-
sion switches. If those kicked off blocks accessed before the
end of compaction (the records requested are old-version),
it will lead to a different type of cache miss.

Leaper introduces another kind of prefetch method called
Two-phase Prefetcher to respond to the above problems.
Two-phase Prefetcher exploits a combination of innovative
methods both in prediction and storage engine. In predic-
tion, Multi-step Prediction helps Leaper predict the future
access of data in a more fine-grained way. In storage en-
gine, Two-phase Prefetcher is bound to merge tasks in com-
paction, so that the inputs of Check Overlap Algorithm can
be compacted blocks and hot key ranges. Meanwhile, Two-
phase Prefetcher predicts the future access of the key ranges
that participate in the compaction in two phases. In the
first phase (eviction phase), it predicts the access during the
entire process of the compaction operation. In the second
phase (prefetch phase), it predicts the access in an estimated
period of time after the compaction operation is done.

100-200

Compaction1 begin Compaction2 beginCompaction1 end

Merge tasks

Recovery of cache
tremble

HotT1

HotT2

Key ranges divided by model

ColdHotT2

1-150 450-600151-350

300-500

Check

Block cache

T1 T2

201-3501-200 351-480 481-600

Li
Li+1

Li+1

Figure 5: The design of Prefetcher for compaction.

Two-phase Prefetcher is designed like Figure 5. At the
beginning of one compaction, we call multi-step prediction
models trained offline to distinguish hot and cold key ranges.
Then, we compute T1 and T2 based on the number of blocks
participate in the compaction and previous log data. At
last, target blocks in two phases are operated (i.e., evicted
or prefetched), respectively.

6.1 Multi-step Prediction
Firstly, we need multi-step prediction models to fit Two-

phase Prefetcher. One step corresponds to the slotted size.
It has been mentioned in Section 4 that slotted size needs to
be atomic but as long as possible to reduce overhead. Slotted
size is limited by T1 and T2 in Figure 5 where T1 means the
duration of one compaction, and T2 means recovery time of
hit ratio decline caused by cache invalidations.

In theory, slotted size is the greatest common divisor of
T1 and T2. But in fact, every compaction has its own T1 and
T2 and recovery time T2 is far less than compaction time T1.
As a result, the slotted size can be expressed as T2. Since
we determine slotted size t, the number of steps k can be
calculated by the constraint as follows:

k · t ≥Max(T1 + T2) (2)
In fact, Multi-step Prediction contains k models to predict

whether key ranges would be accessed in the next k slotted
time intervals. Ultimately, these k models are provided for
Two-phase Prefetcher to do prediction as necessary.

6.2 Two-phase Prefetcher
Models provided by Multi-step Prediction can’t be used

directly because different compaction has different T1 and
T2. We first need to estimate the value of T1 and T2 and

then combine k slotted time intervals into T1 and T2 for
formation of two-phase binary classification. At last, we use
the two-phase binary classification to perform prefetching.

According to our analysis, T1 and T2 approximately sat-
isfy the following equations respectively:

T1 = αN

T2 = β
Q

S

(3)

Where N means the number of blocks needed to merge,
Q means QPS (short for queries per second) and S means
the size of block cache. Both α and β are constants re-
lated to workloads. They can be computed approximately
by sampling other variables.

After determining the value of T1 and T2, hot key ranges
for T1 and T2 can be computed by Equation (4):{
hotT1 = hot1t ∪ hot2t ∪ · · · ∪ hotk1t, k1t ≤ T1 ≤ (k1 + 1)t

hotT2 = hot(k1+1)t ∪ · · · ∪ hotk2t, k2t ≤ T1 + T2 ≤ (k2 + 1)t

(4)
Where hotT1 means hot key ranges for T1, hotT2 means

hot key ranges for T2 and hotit means hot key ranges for
the ith slotted time interval. Since one compaction is made
up of many merge tasks, we use one merge task as shown in
the left part of Figure 5 to describe the process of prefetch-
ing for example. In this case, block [300,500] from Leveli
and block [1,150] from Leveli+1 are added into cache before
merging. They check overlap with hotT1 and we know block
[1,150] won’t be accessed before the end of compaction, so
we evict it from block cache while block [300,500] remains
kept in block cache. Also, the other three blocks and blocks
reused will be checked as well to make use we don’t let any
block will be accessed go. After this merge task, two blocks
from Leveli and three blocks from Leveli+1 are merged to
Leveli+1. It is important to note that during merge tasks,
blocks are loaded into memory and we don’t need extra stor-
age overhead to get exact blocks. Additionally, newly gen-
erated blocks are of writable state until filled up. Once a
new block is full, it checks overlap with hotT2 and we deter-
mine whether it will be requested in T2. In this way, block
[201,350] is put into block cache.

For another thing, merge tasks are not only block-based
but also extent-based or key-based. In the first phase, ex-
tents will be divided into blocks to do the same check as we
mentioned. For keys, it can also check overlap with hotT1

but added into KV cache (if used). In the second phase,
no matter extents, blocks or keys, they are all reorganized
in the same way. We only need to arrange the Prefetcher
module in the right place.

7. EXPERIMENTS
7.1 Experimental setup

Testbed. The machine we use consists of two 24-core
Intel Xeon Platinum 8163 CPUs (96 hardware threads in
total), a 512 GB Samsung DDR4-2666 DRAM, a RAID con-
sisting of two Intel SSDs and a Nvidia Tesla P100 GPU. For
model evaluation, we train our model with LightGBM [28].
For system performance, we implement Leaper in X-Engine
with MySQL 5.7 which deployed in a single node.

Baseline. To evaluate the prediction accuracy for hot
records, we compare Leaper with a temporal locality baseline
that assumes records accessed in the previous second are pre-
dicted to be accessed again in the next second. To evaluate

8

the impact of Leaper on the system performance, we com-
pare it with the state-of-the-art, Incremental Warmup [1].
Both Leaper and Incremental Warmup are implemented in
X-Engine.

Metrics. We evaluate both Recall and Precision of the
proposed prediction model in Leaper. We need high recall
to increase cache hit rates, and high precision to reduce the
memory footprint of the prefetched records in the cache. We
adopt the Area Under Curve (AUC) metric [23] to evaluate
the generalization ability of our model. Performance-wise,
we evaluate the cache hit rate, query per second (QPS) and
latency of 95% confidence level.

Workloads. We use synthetic workloads, generated us-
ing SysBench [18] with varying configurations (e.g., skew-
ness), to evaluate the performance of Leaper in different
scenarios. We further adopt two real-world workloads, e-
commerce (i.e., placing orders for online purchases) and in-
stant messaging (i.e., online chats), to evaluate how Leaper
performs serving these popular applications of LSM-tree stor-
age engines. Table 2 introduces the details of these work-
loads.

Dataset. The dataset we use for model training is gener-
ated from the E-commerce workload. We use the data in the
first three days as the training set and data of the following
one day as the testing set. Data dependencies and tempo-
ral relations are preserved in these data sets. The training
and testing data sets contain 3,404,464 and 807,829 records,
respectively.

7.2 Offline evaluation

7.2.1 Overall results

Precision Recall AUC
0.80

0.85

0.90

0.95

1.00

R
at

e

Temporal Locality

LGB

LGB with sample

Figure 6: Results of prediction and baseline and influence of data
sampling.

Figure 6 shows the precision, recall scores and the AUC of
the temporal locality baseline (blue bars) and the LightGBM
model used in Leaper (orange bars).

To conclude, our model performs much better than the
baseline. With similar precision, our model achieves 15.39%
higher recall scores than the baseline. The recall achieved
by the baseline implies that 82.85% data has strong tempo-
ral localities and a cache large enough to store all of them
could potentially perform well. The 15.39% increase of re-
call achieved by our model translates to higher cache hit
rates given the same cache capacity. The 14.84% increase of
AUC achieved by our model over the baseline shows that our
model has a better predictive capability which gives more
robust results.

7.2.2 Influence of data sampling
We now evaluate the impacts of data sampling in the Col-

lector. The green bars in Figure 6 show the precision, recall
scores and AUC achieved when we adopt sampling on the
key range collection. The sampling rate we use is 0.01, as we

use in the Collector. As introduced in Section 4, we draw
into sampling errors trading for less overhead of the Col-
lector. Despite such errors, our model with sampled inputs
still achieves similar results as the accurate statistics. This
is mainly because our model is a binary classifier, so that
such sampling errors have negligible impacts on the binary
outputs of the model, as confirmed by the above results.

7.2.3 Features

2 4 6 8 10
Feature length

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

on
/R

ec
al

l/
A

U
C

R
at

e

Recall

Precision

Cost

AUC

40

50

60

T
im

e(
s)

Figure 7: Variation of metrics and training time alongside feature
length.

Precision Recall AUC
0.900

0.925

0.950

0.975

1.000

R
at

e

R

R/W

R/W/T

R/W/T/P

Figure 8: Variation of metrics using different feature types.

As discussed in Section 4.3, feature selection includes two
aspects, length and types. Figure 7 shows the precision, re-
call and AUC metrics on the left y-axis, and the training
time on the right y-axis, for different feature lengths. With
increasing feature lengths, both recall and AUC increase sig-
nificantly until the length larger than six. The precision has
a minor decrease and stabilizes at around 0.95. On the other
hand, the cost rises proportionally with increasing length,
which may be influenced by different early stopping rounds.
These results show that the increasing feature lengths pay
off up until around a length of four to six.

When it comes to feature types, Figure 8 gives out the
precision, recall scores and AUC of different feature types.
We use the same prediction results provided by the Light-
GBM model in this experiment, and only changes the fea-
ture type: R (read arrive rate), R/W (write arrival rate),
R/W/T (prediction time) and R/W/T/P (precursor arrival
rate). Comparing these experiments, read arrival rate, write
arrival rate and precursor arrival rate contribute to the im-
provement of the recall score, while the prediction time has
relatively minor impacts. The importance of features gener-
ated by the LightGBM model shown in Table 3 also achieves
the same conclusion. The AUC increases when adding more
features, showing that all these features contribute to the
robustness of the model.

7.2.4 Models
After determining the features we use in the model, we

compare different models by evaluating their corresponding
metrics and training time costs. We experiment with tens
of models including Linear models, Naive Bayesian models,
Decision Tree models and Neural Network models, and se-
lect six best-performing ones to compare. Figure 9 presents

9

Table 2: Detailed information of different workloads

Workload Type Point lookups Range lookups Updates Inserts Read-write Ratio1 Table size2

Default synthetic workload3 75% 0% 20% 5% 3:1 20m
E-commerce workload 75% 10% 10% 5% 6:1 10m

Instant messaging workload 40% 0% 35% 25% 2:3 8m
1 Read-write Ratio is the approximate ratio.
2 The workloads we use are all single-table, the table size also means the number of primary keys.
3 The synthetic workload uses the default mixture. The default Zipf factor we use is 0.5.

Table 3: Importance of features

Feature Type Feature Length Sum of Importance
Read 6 35.61%
Write 6 23.53%
T ime 3 9.88%

Precursor 3 30.98%

Precision Recall AUC Cost
0.900

0.925

0.950

0.975

1.000

R
at

e

Log

RF

GBDT

XGB

ANN

LGB

0

500

1000

T
im

e(
s)

Figure 9: Variation of metrics using different models.

the results. The blue, orange, green, red, brown and pur-
ple bars represent Logistic Regression (LR), Random Forest
(RF), GBDT (implemented by scikit-learn [34]), XGBoost
(XGB), Artificial Neural Network (ANN, also called Multi-
Layer Perceptron, with 2 hidden layers containing 120 and
3 cells), and LightGBM, respectively. LightGBM has the
highest recall score and the second highest AUC score, with
the least training time. Among other models, only XGBoost
performs similarly with LightGBM. However, it consumes
five times more training time. Thus, we choose LightGBM
in this work.

7.3 Online performance
We implement Leaper in X-Engine [14] and compare it

with the Incremental Warmup baseline. The initial data
size is 10 GB with a key-value pair size of 200 bytes. The
total buffer cache is set to 4 GB including 1 GB reserved for
the write buffers (i.e., memtables), and 3 GB for the block
cache. We run a 200-second test on each workload. The
report interval for intermediate statistics is set to 1 second.

7.3.1 Cache invalidation in Flush

0 50 100 150 200

95

100

Ca
ch

e h
it

ra
tio

 (%
)

0

2

4

Nu
m

be
r o

f f
lu

sh
es

Baseline Leaper Number of flushes

0 50 100 150 200
Time (s)

0

200

QP
S

(k
/s)

0

50

La
ten

cy
 (m

s)

Figure 10: Cache hit ratio, QPS and latency of synthetic workload
for flush operations over 200 seconds among baseline and Leaper.

First of all, we run the test using the default synthetic
workload to observe Leaper’s effect on flush operations. We

disable compactions to avoid the influence of compactions.
The results are shown in Figure 10. The blue and orange
lines represent the Incremental Warmup baseline and Leaper,
respectively. Although shutting down compactions causes
layers to accumulate in Level0 without merging into the next
level, and results in steep descent of the QPS and step as-
cent of latency shown in the lower figure of Figure 10, it does
not interfere with our evaluation on flush. The upper figure
indicates that our method removes almost all the cache in-
validations (reflected as cache misses) caused by flush. And,
the lower figure indicates that the QPS increases and latency
decreases along with the reduced cache misses.

7.3.2 Cache invalidation in Compaction
With Leaper addressing the cache invalidations caused by

flush, we now move on to evaluate its efficiency against the
same problem caused by compactions. We first use two real-
world applications and then use synthetic workloads with
varying configurations.

Real-world Application
Figure 11(a) shows the cache hit rates, QPS and latency

of the e-commerce workload over 200 seconds achieved by
the Incremental Warmup baseline and Leaper. The green
bars represent the number of compaction tasks running in
the background.

The upper figure indicates that our approach reduces about
half of the cache invalidations. And, the cache hit rates re-
cover faster after compactions with Leaper. The lower fig-
ure indicates that our approach performs similarly with the
baseline when there is no compaction, and outperforms the
baseline during compactions.

Figure 11(b) shows the cache hit ratio, QPS and latency
of the instant messaging workload over 200 seconds. The
upper figure also indicates that Leaper reduces about half
of the cache invalidations. Despite that the instant mes-
saging workload has more write operations and more com-
pactions than the e-commerce workload, the lower figure
shows Leaper could nearly prevent significant QPS drops
and latency raises caused by compactions, achieving a smooth
overall performance.

We now evaluate the efficiency of Key Range Selection in
the e-commerce workload. The initial value we choose is 10
and the merge threshold we choose is 0.6. The experimental
results are shown in Figure 12. The key range with * (i.e.,
104) is the most suitable range size calculated. From the
upper figure, we find it performs stabler cache hit ratio than
other sizes. The lower figure shows that 104 is nearly optimal
for the system performance.

Flexible Benchmark

A. Overall results

Figure 11(c) shows the cache hit ratio, QPS and latency
of the default synthetic workload over 200 seconds. From
the upper figure, Leaper still removes almost all cache inval-
idations while the baseline performs much worse than real-
world workloads. This is mainly because compactions in

10

0 50 100 150 200

95

100

B
lo

ck
 c

ac
he

 h
it

ra
tio

 (
%

)

0

2

4

N
um

be
r

of
 c

om
pa

ct
io

nsBaseline Leaper Number of compactions

0 50 100 150 200
Time (s)

0

100

200

Q
PS

 (
k/

s)

0

5

L
at

en
cy

 (
m

s)

(a) E-commerce

0 50 100 150 200

95

100

B
lo

ck
 c

ac
he

 h
it

ra
tio

 (
%

)

0

2

4

N
um

be
r

of
 c

om
pa

ct
io

nsBaseline Leaper Number of compactions

0 50 100 150 200
Time (s)

0

50

100

Q
PS

 (
k/

s)

0

1

2

L
at

en
cy

 (
m

s)

(b) Instant messaging

0 50 100 150 200

50

75

100

B
lo

ck
 c

ac
he

 h
it

ra
tio

 (
%

)

0

2

4

N
um

be
r

of
 c

om
pa

ct
io

nsBaseline Leaper Number of compactions

0 50 100 150 200
Time (s)

0

200

Q
PS

 (
k/

s)

0

50

100

150

L
at

en
cy

 (
m

s)

(c) Synthetic workload
Figure 11: Cache hit ratio, QPS and latency over 200 seconds among baseline and Leaper for E-commerce, Instant messaging and
synthetic workload, respectively.

100 101 102 103 104 * 105
80

100

C
ac

he
 h

it
ra

tio
 (%

)

100 101 102 103 104 * 105

Key Range Size

0

200

Q
PS

 (k
/s

)

Figure 12: Cache hit ratio, QPS and latency over different key
range sizes ranging from 1 to 105. The key ranges with * means
calculated effective ranges in the offline part.

synthetic workload contain more blocks than that in real-
world applications. QPS and latency performance in the
lower figure can also draw the same conclusion as above
real-world workloads.

Table 4 summarizes the speedups of QPS and the smooths
of latency achieved by Leaper over the baseline. It is impor-
tant to note that the comparison are collected only dur-
ing and after compactions (i.e., T1 + T2 in section 6), be-
cause Leaper is exploited to stabilize system performance
and smooth latency rather than speed up overall perfor-
mance. It is shown that during and after compactions, the
QPS speedup, latency smooth, and cache miss elimination
can achieve the increase of about 50%, 40% and 70% on
average, respectively, which indicates Leaper’s effectiveness
for cache invalidation problem in LSM-tree based storage
engines.

Table 4: Achievements of Leaper

Workload Type QPS Latency Cache misses
E-commerce +83.71% -46.35% -40.56%

Instant messaging +18.30% -7.49% -64.23%
Synthetic +66.16% -62.24% -97.10%

1 Statistics are collected during and after compactions.

B. Range query

In this part, we study the influence of the range query.
Its read-write ratio is fixed to 3:1 and we tune the range
query ratio from 0 to 100% of the total read queries. From
the lower figure of Figure 13 we find that the QPS declines

with the rise of range query ratio. And, Leaper always out-
performs the baseline during and after compactions (i.e.,
T1 + T2 in section 6). At the ratio of 20%, the gap between
baseline and Leaper is the biggest. In the upper figure, the
churn of the baseline’s cache hit ratio worsens with increas-
ing range query ratios, while Leaper performs much better
for all ratios. We find that the range query accelerates the
collection of key range statistics for hot key ranges and then
helps to make more accurate predictions. Overall, Leaper
outperforms the baseline for range-intensive workloads.

0% 20% 40% 60% 80% 100%
90

95

100

Ca
ch

e h
it

ra
tio

 (%
) Baseline Leaper

0% 20% 40% 60% 80% 100%
Range query ratio

0

200

400

QP
S

(k
/s)

1.0

1.5

2.0

Sp
ee

du
p

Ra
tio

Figure 13: Cache hit ratio and QPS over different range query
ratios ranging from 0% to 100% among baseline and Leaper.

C. Data skew

In Figure 14, we vary the skewness of keys accessed by
both reads and writes according to a Zipf distribution, and
measure the speedup of QPS achieved. When accesses are
uniformly distributed at random, Leaper achieves no speedup,
and even slows down because of the computational and stor-
age overhead. With skewed accesses, some records become
hot, allowing Leaper to achieve higher speedups. When the
Zipf factor reaches up to about 1.0, the baseline can also
work well because of the small number of hot records with
such a high level of skewness.

D. Different mixtures

Figure 15 shows the performance of Leaper and baseline
while processing different mixtures of point lookups, up-
dates and inserts. We start with the default mixture of 75%
point lookups, 20% updates and 5% inserts, which repre-
sent common scenarios with many write operations. In this
case, Leaper increases the cache hit rates from 97.66% to
98.59%. We gradually scale the shares of reads up to 85%

11

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Zipf factor

0.9

1.0

1.1

1.2

Sp
ee

du
p

R
at

io

Figure 14: Speedup Ratio of QPS between Leaper and baseline
with different zipf factors ranging from 0 to 1.0.

and 90% while keeping the same percents of updates and
inserts, Leaper always outperforms the baseline.

75:20:5 85:12:3 90:8:2

96

98

100

Ca
ch

e h
it

ra
tio

 (%
) Baseline Leaper

75:20:5 85:12:3 90:8:2
Mix ratio (%:%:%)

0

200

400

QP
S

(k
/s)

Figure 15: Cache hit ratio and QPS over different mixtures of
point lookups, updates and inserts.

7.3.3 Computation & Storage Overhead
Table 5: Computation & Storage Overhead of Leaper

Collector LGB LGB*
Check

Overlap
Overall

C
o
m

p
u
-

ta
ti

o
n Default synthetic <1µs/query 3ms 1ms 1ms -4.68%

E-commerce <1µs/query 21ms 5ms 3ms -0.77%
Instant messaging <1µs/query 9ms 2ms 2ms -0.95%

S
to

ra
g
e Default synthetic 3.2KB 4.9KB 8KB - -

E-commerce 16.3KB 5.0KB 8KB - -
Instant messaging 8.9KB 5.0KB 8KB - -

To better understand the computational and storage over-
head of Leaper, we recorded the time and space it spends in
its three main components and overall overhead expressed
by QPS.

Collector: The time to record the primary key of a query
and update the key range counter, and the maximum space
the key range counter occupies in the memory.

Inference: The time to do inferences in one compaction
with CPU only, and the size of the model object containing
both model parameters and tree structure for LightGBM.

Check Overlap: The time to run check overlap algo-
rithm once.

Overall: Since some other components (such as input
blocks of predict and prefetch, the prefetch operation) are
shared with the storage engine, we could not compute the
overhead of them singly. As a result, we adopt the decline
of QPS exclude during and after flushes and compactions to
capture the overall overhead of Leaper.

Table 5 shows that all of Leaper’s components have rea-
sonable computation and storage overhead. For the Collec-
tor, since we exploit sampling, the overhead of one query
can be reduced to below 1 microsecond. For inference, we
compare the inference time whether we use Treelite. Treel-
ite achieves 3-5× speedup in the inference of LightGBM.
For check overlap, the computation overhead is about 1-3
millisecond. The storage overhead is not computed because
all the inputs are loaded into memory by the storage en-
gine. The overall decline of QPS shows that the overhead of

Leaper is kept below 5% and 0.95% for synthetic and real-
world workload respectively, which is reasonable for system
performance.

8. RELATED WORKS
We have discussed the existing solutions that try to solve

the cache invalidation issue in Section 2. Here we summa-
rize other works using Machine Learning methods to solve
problems in the database systems.

Prior works have studied the use of machine learning to
assist the database administrators to manage the database.
OtterTune [43] introduces a machine learning pipeline to
recommend the optimal knobs configuration across different
workloads. CDBTune [45] and Qtune [21] model the knobs
tuning process as decision-making steps and use reinforce-
ment learning algorithms to learn this process. QueryBot
5000 [24] proposed a forecasting framework that predicts
the future arrival rate of database queries based on histori-
cal data. iBTune [41] uses a pairwise DNN model to predict
the upper bounds of the response time which saves mem-
ory usage of the database. DBSeer [30] performs statistical
performance modeling and prediction to help DBA under-
standing resource usage and performance.

The other category of works integrate machine learning
techniques into the database kernel to optimize different in-
dividual modules of the system. Learned index [20] uses the
mixture of expert networks to learn the data distribution
and use learned models to replace inherent data structures.
ReJOIN [26], Neo [25] have been proposed to optimize the
join order of the planner using reinforcement learning meth-
ods. Some approaches are proposed to intelligently schedule
transactions in DBMS kernel [46, 40]. Other work like [12]
uses LSTM to predict the memory access pattern, for the
purpose of prefetching future memory address accesses.

Self-driving relational database systems [33] optimizes it-
self automatically using deep neural networks, modern hard-
ware, and learned database architectures. SageDB [19] also
proposes a vision where lots of components of the database
systems can be optimized via learning the data distributions.

9. CONCLUSIONS
We introduce Leaper, a Learned Prefetcher, to reduce

cache invalidations caused by background operations (i.e.,
compaction, flush) in LSM-tree based storage engines. In
Leaper, we introduce a machine learning pipeline to pre-
dict records that would be requested in near future from
moved records. And then prefetch them into caches accord-
ingly. We have optimized the implementation of Leaper to
keep its overhead below 0.95% in real-world workloads. Our
evaluations using both synthetic and real-world workloads
show that Leaper eliminates about 70% cache invalidations
and 99% latency spikes compared with the state-of-the-art
baseline.

Future work. In this work, DBMS is decoupled from of-
fline model training. Although such design reduces the nega-
tive impact for online performance, it introduces complexity
for DBMS deployment. Especially for traditional on-premise
environment, the offline training requires extra hardware re-
sources that are not easily provided. We will explore more
light-wight and efficient machine learning pipeline coupled
with DBMS in the future.

12

10. REFERENCES
[1] M. Y. Ahmad and B. Kemme. Compaction management in

distributed key-value datastores. Proceedings of the VLDB
Endowment, 8(8):850–861, 2015.

[2] Apache. Hbase. http://hbase.apache.org/.

[3] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM,
13(7):422–426, 1970.

[4] C. J. Burges. From ranknet to lambdarank to lambdamart:
An overview. Learning, 11(23-581):81, 2010.

[5] T. Chen and C. Guestrin. Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data
mining, pages 785–794. ACM, 2016.

[6] DMLC. Treelite. http://treelite.io/.

[7] Facebook. Rocksdb.
https://github.com/facebook/rocksdb.

[8] T. Feng. Benchmarking apache samza: 1.2 million messages
per second on a single node. URL https://engineering.
linkedin. com/performance/benchmarking-apache-samza-
12-million-messagessecond-single-node,
2015.

[9] J. H. Friedman. Greedy function approximation: a gradient
boosting machine. Annals of statistics, pages 1189–1232,
2001.

[10] Google. Leveldb. https://github.com/google/leveldb.

[11] L. Guo, D. Teng, R. Lee, F. Chen, S. Ma, and X. Zhang.
Re-enabling high-speed caching for lsm-trees. arXiv
preprint arXiv:1606.02015, 2016.

[12] M. Hashemi, K. Swersky, J. Smith, G. Ayers, H. Litz,
J. Chang, C. Kozyrakis, and P. Ranganathan. Learning
memory access patterns. In Proceedings of the 35th
International Conference on Machine Learning, volume 80,
pages 1919–1928. PMLR, 2018.

[13] S. Hochreiter and J. Schmidhuber. Long short-term
memory. Neural Computation, 9(8):1735–1780.

[14] G. Huang, X. Cheng, J. Wang, Y. Wang, D. He, T. Zhang,
F. Li, S. Wang, W. Cao, and Q. Li. X-engine: An
optimized storage engine for large-scale e-commerce
transaction processing. 2019 International Conference on
Management of Data (SIGMOD’19), 2019.

[15] H. Jagadishl, P. Narayan2t4, S. Seshadri, R. Kanneganti,
and S. Sudarshan3t5. Incremental organization for data
recording and warehousing. In VLDB, volume 97, pages
16–25. Citeseer, 1997.

[16] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu. Lightgbm: A highly efficient gradient
boosting decision tree. In Advances in Neural Information
Processing Systems, pages 3146–3154, 2017.

[17] S. Kimak and J. Ellman. Performance testing and
comparison of client side databases versus server side.
Northumbria University, 2013.

[18] A. Kopytov. Sysbench: A system performance benchmark,
2004, 2004.

[19] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, J. Ding,
A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan.
Sagedb: A learned database system. 2019.

[20] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis.
The case for learned index structures. In Proceedings of the
2018 International Conference on Management of Data,
pages 489–504, 2018.

[21] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A query-aware
database tuning system with deep reinforcement learning.
Proceedings of the VLDB Endowment, 12(12):2118–2130,
2019.

[22] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte.
Cardinality estimation using neural networks. In
Proceedings of the 25th Annual International Conference
on Computer Science and Software Engineering, pages
53–59. IBM Corp., 2015.

[23] J. M. Lobo, A. Jiménez-Valverde, and R. Real. Auc: a

misleading measure of the performance of predictive
distribution models. Global ecology and Biogeography,
17(2):145–151, 2008.

[24] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo,
and G. J. Gordon. Query-based workload forecasting for
self-driving database management systems. In Proceedings
of the 2018 International Conference on Management of
Data, pages 631–645. ACM, 2018.

[25] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh,
T. Kraska, O. Papaemmanouil, and N. Tatbul. Neo: A
learned query optimizer. Proceedings of the VLDB
Endowment, 12(11):1705–1718, 2019.

[26] R. Marcus and O. Papaemmanouil. Deep reinforcement
learning for join order enumeration. In Proceedings of the
First International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, pages 1–4,
2018.

[27] Q. Meng, G. Ke, T. Wang, W. Chen, Q. Ye, Z.-M. Ma, and
T.-Y. Liu. A communication-efficient parallel algorithm for
decision tree. In Advances in Neural Information
Processing Systems, pages 1279–1287, 2016.

[28] Microsoft. Lightgbm.
https://github.com/microsoft/LightGBM.

[29] R. Mitchell and E. Frank. Accelerating the xgboost
algorithm using gpu computing. PeerJ Computer Science,
3:e127, 2017.

[30] B. Mozafari, C. Curino, and S. Madden. Dbseer: Resource
and performance prediction for building a next generation
database cloud. In CIDR, 2013.

[31] E. J. O’neil, P. E. O’neil, and G. Weikum. The lru-k page
replacement algorithm for database disk buffering. Acm
Sigmod Record, 22(2):297–306, 1993.

[32] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (lsm-tree). Acta Informatica,
33(4):351–385, 1996.

[33] A. Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma,
P. Menon, T. C. Mowry, M. Perron, I. Quah, et al.
Self-driving database management systems. In CIDR,
volume 4, page 1, 2017.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning
in python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[35] W. Pugh. Skip lists: a probabilistic alternative to balanced
trees. Communications of the ACM, 33(6), 1990.

[36] M. Richardson, E. Dominowska, and R. Ragno. Predicting
clicks: estimating the click-through rate for new ads. In
Proceedings of the 16th international conference on World
Wide Web, pages 521–530. ACM, 2007.

[37] J. T. Robinson and M. V. Devarakonda. Data cache
management using frequency-based replacement. In
Proceedings of the 1990 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, pages
134–142, 1990.

[38] D. C. Schmidt and T. Harrison. Double-checked locking.
Pattern languages of program design, (3+):363–375, 1997.

[39] R. Sears and R. Ramakrishnan. blsm: a general purpose log
structured merge tree. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of
Data, pages 217–228. ACM, 2012.

[40] Y. Sheng, A. Tomasic, T. Zhang, and A. Pavlo. Scheduling
oltp transactions via learned abort prediction. In
Proceedings of the Second International Workshop on
Exploiting Artificial Intelligence Techniques for Data
Management, aiDM ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[41] J. Tan, T. Zhang, F. Li, J. Chen, Q. Zheng, P. Zhang,
H. Qiao, Y. Shi, W. Cao, and R. Zhang. ibtune:
individualized buffer tuning for large-scale cloud databases.
Proceedings of the VLDB Endowment, 12(10):1221–1234,
2019.

13

[42] D. Teng, L. Guo, R. Lee, F. Chen, S. Ma, Y. Zhang, and
X. Zhang. Lsbm-tree: Re-enabling buffer caching in data
management for mixed reads and writes. In 2017 IEEE
37th International Conference on Distributed Computing
Systems (ICDCS), pages 68–79. IEEE, 2017.

[43] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang.
Automatic database management system tuning through
large-scale machine learning. In Proceedings of the 2017
ACM International Conference on Management of Data,
pages 1009–1024, 2017.

[44] H. Zhang, S. Si, and C.-J. Hsieh. Gpu-acceleration for
large-scale tree boosting. arXiv preprint arXiv:1706.08359,

2017.

[45] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng,
J. Xing, Y. Wang, T. Cheng, L. Liu, et al. An end-to-end
automatic cloud database tuning system using deep
reinforcement learning. In Proceedings of the 2019
International Conference on Management of Data, pages
415–432, 2019.

[46] T. Zhang, A. Tomasic, Y. Sheng, and A. Pavlo.
Performance of oltp via intelligent scheduling. In 2018
IEEE 34th International Conference on Data Engineering
(ICDE), pages 1288–1291, April 2018.

14

