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Abstract—A graph stream is a continuous sequence of data items, in which each item indicates an edge, including its two endpoints

and edge weight. It forms a dynamic graph that changes with every item. Graph streams play important roles in cyber security, social

networks, cloud troubleshooting systems and more. Due to the vast volume and high update speed of graph streams, traditional data

structures for graph storage such as the adjacency matrix and the adjacency list are no longer sufficient. However, prior art of graph

stream summarization either supports limited kinds of queries or suffers from poor accuracy of query results. In this paper, we propose

a novelGraph Stream Sketch (GSS for short) to summarize the graph streams, which has linear space cost OðjEjÞ (E is the edge set of

the graph) and high update speed, and supports most kinds of queries over graph streams with controllable errors. Experimental

results show that our solution is up to 142 times faster than the adjacency list when processing updates in graph streams, and its

memory consumption is as small as 30% of the adjacency list. Though error is introduced as a trade off in our solution, both theoretical

analysis and experiment results confirm that such error is small and controllable. The relative error is below 10�2 in edge weight query,

and the precision is above 90% is 1-hop precursor/successor queries.

Index Terms—Approximate query, data stream, sketch, graph

Ç

1 INTRODUCTION

IN the era of Big Data, data streams propose new challenges
to existing systems. Furthermore, the traditional data

stream is modeled as a sequence of isolated items, and the
connections between these items are rarely considered.
However, in many data stream applications, the connections
often play important roles in data analysis, such as finding
malicious attacks in network traffic data, mining news
spreading paths among social networks. In these cases the
data is organized as graph streams. A graph stream is an
unbounded sequence of items, in which each item is denoted
as ðs; d�!;w; tÞ, where s; d

�!
represents an edge from nodes s to

d, w is the edge weight and t is the timestamp. These data
items together form a streaming graph that changes continu-
ously. Note that, for ease of presentation, we use the terms
“graph stream” and “streaming graph” interchangeably in
this paper. Below we discuss an example to demonstrate the
usefulness of streaming graphs.

Use Case 1: Network Traffic. The network traffic can be seen
as a large streaming graph, where each edge indicates the
communication between two IP addresses. With the arrival
of packets in the network, the network traffic graph changes
rapidly and constantly. In the network traffic graph, various

kinds of queries are needed, like performing node queries to
find malicious attackers, or subgraph queries to locate cer-
tain topology structures in the dynamic network.

Use Case 2: Social Networks. In a social network, interac-
tions among users form a streaming graph. Edges between
different nodes are weighted by the frequencies of interac-
tions. In such a graph, queries like finding the potential
friends of a user and tracking the spreading path of a piece
of news are often needed.

Many real-world streaming graphs have large sizes and
high throughput. For example, in large ISP or data cen-
ters [1], there could be millions of packets every second.
The large volume and high dynamicity make it hard to
store the whole graph stream efficiently with traditional
data structures, such as adjacency lists or adjacency matri-
ces. Considering the above graph streaming applications,
there are two requirements for designing a new data struc-
ture : (1) linear space cost; and (2) high update speed.
There have been works for graph summarization based on
grouping nodes or edges with similar neighborhood,
like [2], [3], but they either do not support updates or
have a low update speed. Approximate data structures for
traditional data streams, like CM sketch [4] and other
sketches [5], [6] can also be considered, but they support
limited query types. In recent years, data structures for
approximate graph stream summarization with high
speed are also proposed, like TCM [7] and gMatrix [8]. But
their accuracy is quite low. More related work is discussed
in Section 2.

In this paper, we design a novel data structure–Graph
Stream Sketch (GSS for short) to support most kinds of
queries over streaming graphs with controllable errors in
query results. Both theoretical analysis and experiment
results show that the accuracy of our method outperforms
state-of-the-arts by orders of magnitude.
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1.1 Our Solution

In this paper, we propose an approximate data structure
(GSS) for graph streams with linear memory usage, high
update speed and high accuracy. Moreover, GSS supports
most kinds of graph queries and algorithms.

Like TCM, GSS uses a hash function Hð�Þ to compress a
streaming graph G into a smaller one Gh, named a graph
sketch. Each node v in G is hashed to HðvÞ. Nodes in G with
the same hash value are condensed into one node in Gh,
and the edges connected to them are also aggregated. An
example of the graph stream G and the graph sketch Gh can
be referred in Figs. 1 and 2, respectively. The compression
ratio can be controlled by the hash range of Hð�Þ (denoted
as M). Obviously, the higher the compression ratio is, the
lower the accuracy is.

TCM uses the adjacency matrix to store the graph sketch.
However, the adjacency matrix is far from memory efficient
when storing large sparse graphs. Its memory usage is
OðjV j2Þ, where jV j is the number of nodes. In order to con-
trol the memory usage, TCM has to heavily compress the
streaming graph, resulting into low accuracy.

In GSS, we design a novel data structure to store the
graph sketch, which combines fingerprints and hash
addresses to distinguish nodes and edges. Compared to the
adjacency matrix, it has higher memory efficiency and can
store a larger graph sketch with the same space. It also
achieves high update speed. We further propose a tech-
nique called square hashing, which makes the data structure
more compact and improves both space and time efficiency.

Note that GSS is designed to support various kinds of
queries upon the streaming graph, thus we propose three
query primitives based on GSS. They are edge query, 1-hop
successor query and 1-hop precursor query. In Section 7, we
propose several variants which improve the efficiency of
these query primitives, especially the successor query and
the precursor query.

To summarize, we made the following contributions:

1) We propose GSS, a novel data structure for graph
stream summarization. It has small memory usage,
high update speed, and supports most kinds of
queries over streaming graphs.

2) We propose a technique called square hashing. It
helps to compact the data structure of GSS, which
improves update speed and reduces memory cost.

3) We define three graph query primitives supported
by GSS. Almost all algorithms for graphs can be
implemented with these primitives. In order to fur-
ther improve these query primitives, especially the
successor query and the precursor query, we pro-
pose several improved versions of GSS.

4) We conduct theoretical analysis and extensive
experiments to evaluate the performance of GSS,
which show that GSS outperforms state-of-the-art in
terms of query accuracy and system throughput.

2 RELATED WORK

Graph summarization and graph sketches have been inves-
tigated for years. They can be divided into three kinds:

The first kind summarizes the graph by grouping
nodes and edges with similar neighborhood. For example,
Fan et al. [2] propose query-specific functions to group
equivalence nodes, so that the compressed graph can
answer specific queries without loss. Raghavan et al. [9]
propose a 2-level compressed representation of web
graphs based on grouping small sets of web pages. Rion-
dato et al. [10] build connection between graph summari-
zation and geometric clustering problems, and propose a
lossy group-based graph summarization algorithm with
accuracy guarantee. However, most of these works do not
support dynamic graphs. Though a small part of algo-
rithms in this kind support incremental summarizing,
they still have a low speed due to the high cost of discov-
ering similar nodes or edges. In Section 8.6, we compare
the state-of-the-art incremental graph summarization
method, MoSSo [3] with our work, and the result shows
that it is up to 103 times slower.

The second kind summarizes the graph by selectively
extracting edges and nodes. These algorithms only keep
essential data to provide approximations of certain graph
metrics, like sparsifiers for edge cut approximation and
spanners for node distance approximation. For example,
Peleg et al. [11] build a k-spanner where the estimated node
distance is within k times of the true value. And Spielman
et al. [12] build sparsifiers by sampling edges according to
their effective resistance. Recent work has extended this
kind to graph streams, like estimating maximum matching
size [13], building sparsifiers and spanners [14], [15] and
maintaining dense subgraphs [16] in graph streams. How-
ever, these algorithms can only answer typical kinds of
queries, as a large fraction of graph data is lost.

Fig. 1. An example of the graph stream.

Fig. 2. An example of the graph sketch.
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The third kind encodes the graph in bit level, like reor-
dering edges [17] and bipartite minimum logarithmic
arrangement [18], but they do not support graph updates.

More graph summarization algorithms can be referred
in [19]. Besta et al. [20] also propose a programming model
that can combine different graph summarization methods.

There are some other works which aim to support certain
kinds of continuous queries like triangle counting or sub-
graph matching [21], [22], [23], and systems which aim to
provide high query performance while supporting graph
updates, like [24], [25], [26], [27], [28]. They are built upon
traditional graph storage structures like adjacency lists, and
focus on query strategies. On the other hand, we aim to
design a new graph storage structure which is more suitable
for high-throughput graph streams. Therefore, we position
our work as a competitor of the adjacency list rather than
these works. As will be discussed in Section 8.6, we experi-
mentally compare our algorithm GSS with the adjacency
list. The results show that the memory usage of GSS is only
30% � 50% of the adjacency list, and the update speed of
GSS is up to 142 times higher than the adjacency list. This
confirms the superiority of GSS in storing high-throughput,
large-volume graph streams. More related work about sys-
tems and query algorithms upon streaming graphs can be
referred in [29], [30], [31].

Multiple variants of the graph stream models are also
proposed. For example, semi-streaming model [32] allows
algorithms to process the graph data in multiple passes.
This model suits the situation where large static graphs are
stored on the disk. Algorithms can scan the graph multiple
times from the disk, but cannot store it in memory. On the
other hand, we define graph streams as sequences of edges
arriving from data sources like internet, and we can only
process them in one scan. Other variants include W-stream
model [33] which allows stream manipulations across
passes and stream-sort model [34] which allows stream sort-
ing passes.

Data stream summarization has been another hot topic
for years. Related work usually uses hash-based method to
build compact data structures like counter arrays or bit
arrays to summarize the data stream and provide approxi-
mate support to certain kinds of queries, like the CM
sketch [4], the CU sketch [35] and so on [5], [6], [36].

In our paper, we follow the idea of applying techniques
of data stream summarization to graph streams. We define
the graph stream summarization problem as designing a
data structure with linear memory usage, high update
speed, and provides graph query primitives to support vari-
ous kinds of graph queries. In this scenario, TCM [7] is the
state-of-the-art for graph stream summarization. It uses a
hash function Hð�Þ to compress the streaming graph G ¼
ðV;EÞ into a smaller graph sketch Gh. For each node v in G,
TCM maps it to node HðvÞ in Gh. For each edge e ¼ s; d

�!
in

G, TCM maps it to edge HðsÞ; HðdÞ�������!
in Gh. The weight of an

edge in Gh is an aggregation of the weight of all edges
mapped to it. Then TCM uses an adjacency matrix to repre-
sent the graph sketch. When the memory is sufficient, we
can also build multiple sketches with different hash func-
tions, and report the most accurate value in queries.

If we represent the size of the value range ofHð�ÞwithM,
we need to build an M �M adjacency matrix. To satisfy the

demand on memory usage, the size of the matrix, M �M
has to be within OðjEjÞ, which means M � jV j for a sparse
streaming graph. This means the graph sketch is much
smaller than G, leading to heavy hash collisions and poor
accuracy in TCM. Following works include [8], [37], [38]
which extend TCM to labeled graphs or heavy hitter
queries, but the problem of poor accuracy still remains.

3 PROBLEM DEFINITION

Definition 1 (Graph Stream). A graph stream is an
unbounded time evolving sequence of items S ¼ fe1; e2;
e3. . .. . .eng, where each item ei ¼ ðs; d�!; t;wÞ indicates a directed
edge 1 from node s to node d, with wight w. The timepoint ti is
also referred as the timestamp of ei. Thus, the edge streaming
sequence S forms a directed graph G ¼ ðV;EÞ that changes with
the arrival of every item ei, where V andE denote the set of nodes
and the set of edges in the graph, respectively.We callG a stream-

ing graph for convenience.

In a graph stream S, an edge s; d
�!

may appear multiple times
with different timestamps. The weight of such an edge in the
streaming graphG is SUM of weight of all these occurrences.
In the majority of the paper, we suppose that the weight of
each item, w, is a positive number. It means the stream only
inserts edges but does not remove them. This insertion-only
model applies to scenarios like network monitoring (IP as
nodes and communications as edges) and social network
monitoring (user as nodes and interactions as edges). GSS
can be used to summarize data arriving in such streams in a
period like days or weeks. In Section 5.2.1, we will further
extend GSS to streams with negative weight and edge dele-
tions. We also discuss how to handle graph with edge labels
in Appendix C of the supplementarymaterials, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2022.3174570.

Example 1. An example of the graph stream, S, and the cor-
responding streaming graphG are both shown in Fig. 1. If
an edge appears multiple times, the weight of these
occurrences is added up as stated above.

In practice, G is usually a large, sparse and high speed
dynamic graph. The large volume and high dynamicity
make it hard to store graph streams using traditional data
structures such as adjacency lists and adjacency matrices.
The large space cost of OðjV j2Þ rules out the possibility of
using the adjacency matrix to represent a large sparse
graph. On the other hand, the adjacency list has OðjEjÞ
memory cost, which is acceptable. However, the time cost
of updating is OðjV jÞ, as we have to search for the edge first,
in order to determine if we should add a new edge, or just
modify the weight of an existing edge. This is unacceptable
due to the high speed of the graph stream.

The goal of our study is to design a linear space cost data
structure with efficient update algorithm over high speed
graph streams and support to various kinds of queries. To
meet that goal, we allow some approximate query results but
with small and controllable errors. However, prior solutions

1. The approach in this paper can be easily extended to handle undi-
rected graphs.

GOU ETAL.: GRAPH STREAM SKETCH: SUMMARIZING GRAPH STREAMS WITH HIGH SPEEDAND ACCURACY 5903

Authorized licensed use limited to: Peking University. Downloaded on May 29,2023 at 02:29:54 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TKDE.2022.3174570
http://doi.ieeecomputersociety.org/10.1109/TKDE.2022.3174570


for graph summarization / data stream summarization /
graph stream summarization suffer from different problems,
like low update speed or even cannot update [2], [3], limited
query types [4], [39] or low accuracy [7], [8]. Therefore, in
this paper, we design a novel graph stream summarization
strategy.

Formally, we define our graph stream summarization prob-
lem as follows.

Definition 2 (Graph Stream Summarization). Given a
streaming graph G ¼ ðV;EÞ, the graph stream summariza-
tion problem is to design a compact data structureDS to repre-
sent the streaming graph, where the following conditions hold:

1) The space cost ofDS is OðjEjÞ;
2) DS changes with each new arriving data item in the

streaming graph and the time complexity of updating
DS should be as small as possible;

3) DS supports various queries over the streaming graph
G with small and controllable errors.

In order to support various kinds of graph queries, we
define three graph query primitives.

Definition 3 (Graph Query Primitives). Given a graph
GðV;EÞ, the three graph query primitives are:

� Edge Query: given an edge e ¼ s; d
�!

, return its weight
wðeÞ if it exists in the graph and return �1 if not.

� 1-hop Successor Query: given a node v, return a set
of nodes that are 1-hop reachable from v, and return
f�1g if there is no such node;

� 1-hop Precursor Query: given a node v, return a set
of nodes that can reach node v in 1-hop, and return
f�1g if there is no such node.

With these primitives, we can retrieve all information in
the streaming graph. Connection of nodes can be retrieved
by 1-hop successor queries and 1-hop precursor queries.
The weight of the edges can be retrieved by edge queries.
Therefore, all kinds of queries and algorithms can be sup-
ported with these primitives. The notations used in this
paper are shown in Appendix A of the supplementary
materials, available online.

4 GSS: BASIC VERSION

In this section, we describe a conceptually simple scheme to
help to illustrate intuition and benefit of our approach. The
full approach, presented in Section 5, is designed with more
optimizations. To produce a graph stream summarization,
we first design a graph sketch Gh ¼ ðVh; EhÞ for the stream-
ing graph G, which is a smaller graph generated by com-
pressing Gwith hash functions.

We choose a hash function Hð�Þ with value range ½0;MÞ,
and then Gh is generated as follows:

1) Initialization: Initially, Vh ¼ ? , and Eh ¼ ? .
2) Edge Insertion: For each edge e ¼ s; d

�!
in E with

weight w, we compute hash values HðsÞ and HðdÞ. If
either node HðsÞ or HðdÞ is not in Vh yet, we insert it

into Vh. Then we setHðeÞ ¼ HðsÞ; HðdÞ�������!
. IfHðeÞ is not

in Eh, we insert HðeÞ into Eh and set its weight

wðHðeÞÞ ¼ w. If HðeÞ is in Eh already, we add w to
the weight.

Gh is empty at the beginning and expands with every
data item in the graph stream. We can store hHðvÞ; vi pairs
with a hash table to make this mapping procedure revers-
ible. This needs OjV j additional memory, as jV j4jEj, the
overall memory requirement is still within OðjEjÞ.
Example 2. A graph sketch Gh for the streaming graph G in

Fig. 1 is shown in Fig. 2. The value range of the hash func-
tion Hð�Þ is ½0; 32Þ. In the example, nodes c and g are
mapped to the same node with ID 5 in Gh. In Gh, the
weight of edge 2; 5

�!
is 6, which is the summary of the

weight of edge a; c�! and edge a; g�! in G.

Obviously, the size of the value range of the map func-
tion Hð�Þ, which we represent with M, will influence the
size of the graph sketch. The generated graph sketch is
always no larger than the original streaming graph, as the
map function is a many-to-one map. The smaller M is, the
smaller the graph sketch will become. Theoretically, when
M ¼ s � jV j, where jV j is the number of nodes in the
streaming graph, the generated graph sketch will have ð1�
e�

1
sÞsjV j nodes. We can control the size of the graph sketch

by setting different M. We also transform the original node
IDs, which may be long strings, to integers with logðMÞ bits
with the map function. It helps us to save space when stor-
ing the graph sketch.

However, it should be noted that when M becomes
smaller, we will have a higher probability to get a wrong
answer in queries, especially 1-hop successor query and 1-
hop precursor query. In Appendix B of the supplementary
materials, available online, we demonstrate the theoretical
results of the relationship between M and the accuracy of
the query primitives with figures. The result shows that M
has to be much larger than jV j to get high accuracy in 1-hop
successor / precursor queries.

TCM resorts to an adjacency matrix to represent Gh. In
this case, the matrix width m equals to M, i.e, the value
range of the map function. To keep the memory usage
within OðjEjÞ (Condition 1 in Definition 2), m must be less
than

ffiffiffiffiffiffiffijEjp
, that means m ¼ M <

ffiffiffiffiffiffiffijEjp � jV j for a sparse
streaming graph. Large quantities of nodes will collide with
each other, leading to low accuracy. Our theoretical analysis
in Section 6.1 and experiments in Section 8 confirm this.

Considering the above limitations, we design a novel
data structure for graph stream summarization, called GSS.

Definition 4 (GSS). Given a streaming graph G ¼ ðV;EÞ, we
have a hash function Hð�Þ with value range ½0;MÞ to map each
node v in graphG to nodeHðvÞ in graph sketchGh. Then we use
the following data structure to represent the graph sketchGh:

1) GSS consists of a size m�m adjacency matrix X and
an adjacency list buffer B for left-over edges.

2) For each node HðvÞ in graph sketch Gh, we define
an address hðvÞð04hðvÞ < mÞ and a fingerprint
fðvÞð04fðvÞ < F Þ where M ¼ m� F and hðvÞ ¼
bHðvÞ

F c, fðvÞ ¼ HðvÞ%F .

3) Each edgeHðsÞ; HðdÞ�������!
in the graph sketchGh is mapped

to a bucket in the row hðsÞ, column hðdÞ of the matrix
X. We record hfðsÞ; fðdÞi and w in the corresponding
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bucket of the matrix, where w is the edge weight and
fðsÞ, fðdÞ are fingerprints of the two endpoints.

4) Adjacency list buffer B records all left-over edges in
Gh, whose expected positions in the matrix X have
been occupied by previous inserted edges.

When implementing a GSS for a graph stream, in order
to satisfy the OðjEjÞ memory cost requirement, we usually
set m ¼ a� ffiffi½p �jEj, where a should be a constant approxi-
mate to 1. To achieve high accuracy, we set M 	 jV j. This
can be achieved by setting a large F , in other words, using
long fingerprints. When the memory is not sufficient, we
can also set smaller M with smaller m and F , but this will
decrease the accuracy.

Example 3. The basic version of GSS to store Gh in Fig. 2 is
shown in Fig. 3. Here we set F ¼ 8. The nodes in the origi-
nal streaming graph and their corresponding HðvÞ, hðvÞ
and fðvÞ are shown in the table. In this example, edge
2; 10
��!

and edge 5; 18
��!

in Gh are stored in the buffer because
of collisions with other edges.

In GSS, we store edges with different source nodes in
Gh in one row of the matrix, because the graph is sparse
and each node is usually connected to very few edges. We
can use fingerprints to distinguish them. It is similar in
columns. This idea of combining addresses and finger-
prints to distinguish different items is known as quotient-
ing [40] and is widely used in hash-based structures.
Fingerprints also help us to distinguish edges when they
are mapped into the same bucket. This enables us to apply
a map function with a much larger value range, and gen-
erate a much larger graph sketch with the same matrix
size as TCM.

5 GSS: AN OPTIMIZED VERSION

As we know, GSS has two parts: a size m�m matrix X and
an adjacency list buffer B for left-over edges. Obviously, we
only need Oð1Þ time to insert an edge into X, but linear time
OðjBjÞ if the edge must go to the buffer B, where jBj repre-
sents the number of all left-over edges. Therefore, jBj influ-
ences both the memory and the time cost. In this section, we
design a solution, namely square hashing, to reduce jBj.
Then we further propose several improvements to increase
the update speed.

5.1 Square Hashing

In the basic version, an edge is pushed into buffer B if its
mapped position in the matrix X has been occupied. The
most intuitive solution is to find another bucket for it. We
further notice the highly skewed degree distribution in real-
world graphs, in which node degrees usually follow the
power-law distribution. In other words, a few nodes have
very high degrees, while most nodes have small degrees.
Consider a node v that has A out-going edges in the graph
sketchGh. For am�m adjacency matrixX in GSS (see Defi-
nition 4), there are at least A�m edges that should be
inserted into buffer B, as these A edges must be mapped to
the same row (in X) due to the same source vertex v. These
high degree nodes lead to crowded rows and result in most
of the left-over edges. On the other hand, many other rows
are uncrowded. We have the same observation for columns
of matrix X. Is it possible to make use of unoccupied positions in
uncrowded rows / columns? It is the motivation of our first
technique, called square hashing.

For each node with ID HðvÞ ¼ hhðvÞ; fðvÞi in Gh, we
compute a sequence of hash addresses fhiðvÞj14i4rg;
ð04hiðvÞ < mÞ for it. Edge HðsÞ; HðdÞ�������!

is stored in the first
empty bucket among the r� r buckets with addresses

fhhisðsÞ; hidðdÞijð14is4r; 14id4rÞg;

where hisðsÞ is the row index and hidðdÞ is the column index.
We call these buckets mapped buckets for convenience. Note
that we consider row-first layout when selecting the first
empty bucket.

The following issue is how to generate a good hash
address sequence fhiðvÞj1 
 i 
 rg for a vertex v. There are
two requirements:

Independent: For two nodes v1 and v2, we use Pr to repre-
sent the probability that 81 
 i 
 r; hiðv1Þ ¼ hiðv2Þ. Then we
have Pr ¼Qr

i¼1 Prðhiðv1Þ ¼ hiðv2ÞÞ. In other words, the ran-
domness of each address in the sequence will not be influ-
enced by others. This requirement will help to maximize the
chance that an edge finds an empty bucket among the r� r
mapped buckets.

Reversible: Given a bucket in row R and column C and
the content in it, we are able to recover the representa-

tion of the edge e in the graph sketch Gh: HðsÞ; HðdÞ�������!
,

where e is the edge in that bucket. This property is
needed in the 1-hop successor query and the 1-hop pre-
cursor query. As in these queries, we need to check the
potential buckets to see if they contain edges connected
to the queried node v and retrieve the other end point in
each qualified bucket.

To meet the above requirements, we propose to use linear
congruence method [41] to generate a sequence of r random
values fqiðvÞj14i4rg with fðvÞ as seeds. We call this
sequence the linear congruential (LR) sequence for conve-
nience. The linear congruence method is as following: select
a timer a, small prime b and amodule p, then

q1ðvÞ ¼ ða� fðvÞ þ bÞ%p
qiðvÞ ¼ ða� qi�1ðvÞ þ bÞ%p; ð24i4rÞ

�
(1)

By choosing a, b and p carefully, we can make sure the
cycle of the sequence we generate is much larger than r, and

Fig. 3. An example of the basic version of data structure.
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there will be no repetitive numbers in the sequence [41].
Then we generate a sequence of hash addresses as following

hiðvÞjhiðvÞ ¼ ðhðvÞ þ qiðvÞÞ%m; 14i4rf g: (2)

When storing edgeHðsÞ; HðdÞ�������!
in the matrix, besides stor-

ing the pair of fingerprints and the edge weight, we also
store an index pair his; idi, supposing that the bucket has an
address hhisðsÞ; hidðdÞi. As the length of the sequence, r, is
small, the length of each index will be less than 4 bits. There-
fore storing such a pair will cost little.

Note that the hash sequence fqiðvÞj14i4rg generated by
the linear congruence method are both independent and
reversible. The independence property has been proved
in [41]. We show how to recover the original hash value
HðvÞ based on the fðvÞ, hiðvÞ and the index i as follows.
First, we compute the LR sequence fqiðvÞg with fðvÞ follow-
ing (1). Second, we use equation ðhðvÞ þ qiðvÞÞ%m ¼ hiðvÞ to
compute the original hash address hðvÞ. As hðvÞ < m, the
equation has a unique solution. At last we use HðvÞ ¼
hðvÞ � F þ fðvÞ to compute HðvÞ. Given a bucket in the
matrix, the fingerprint pair hfðsÞ; fðdÞi and the index pair
his; idi are all stored in it, and we have hisðsÞ ¼ R, hidðdÞ ¼
C, where R and C are the row index and the column index
of the bucket in the matrix, respectively. Therefore we can
retrieve bothHðsÞ andHðdÞ as above.
Example 4. An example of the modified version is shown in

Fig. 4. In the matrix we store Gh in Fig. 2, which is a graph
sketch of G in Fig. 1. In this example we set F ¼ 8, m ¼ 4,
r ¼ 2, and the equation in the linger congruencemethod is

q1ðvÞ ¼ ð5� fðvÞ þ 3Þ%8
qiðvÞ ¼ ð5� qi�1ðvÞ þ 3Þ%8; ð24i4rÞ

�
(3)

Compared to the basic version, in the modified version
all edges are stored in the matrix, and the number of mem-
ory accesses we need to find an edge in the matrix is within
22 ¼ 4. In fact in the example we only need one memory
access to find most edges, and 2 for a few ones.

We illustrate four basic operators in GSS as follows.

Edge Updating: When a new item ðs; d�!; t;wÞ comes in the

graph stream S, we map it to edge HðsÞ; HðdÞ�������!
in the graph

sketch Gh with weight w. Then we compute two hash
address sequences fhiðsÞg and fhiðdÞg and check the r2

mapped buckets with addresses fhhiðsÞ; hjðdÞij14i4r;

14j4rg one by one. For a bucket in row hisðsÞ and column
hidðdÞ, if it is empty, we store the fingerprint pair
hfðsÞ; fðdÞi, the index pair his; idi and weight w in it, and
end the procedure. If it is not empty, we check the finger-
print pair hfðs0Þ; fðd0Þi and the index pair hi0s; i0di stored in
the bucket. If the fingerprint pair and the index pair are
both equal to the corresponding pairs of the inserted edge

HðsÞ; HðdÞ�������!
, we add w to the weight in it, and end the proce-

dure. Otherwise it means this bucket has been occupied by
another edge, and we consider other hash addresses follow-
ing the hash sequence. If all r2 buckets have been occupied,

we store edgeHðsÞ; HðdÞ�������!
with weight w in the buffer B.

Graph Query Primitives. The three graph query primitives
are supported as follows:

Edge Query: When querying an edge e ¼ s; d
�!

, we map it

to edgeHðsÞ; HðdÞ�������!
in the graph sketch, and use square hash-

ing method to find the r2 mapped buckets and check them
one by one. Once we find a bucket in row hisðsÞ and column
hidðdÞ which contains the fingerprint pair hfðsÞ; fðdÞi and
the index pair his; idi, we return its weight as the result. If
we find no result in the r2 buckets, we search the buffer for
edge HðsÞ; HðdÞ�������!

and return its weight. If we still cannot find
it, we return �1.

1-hop Successor Query: To find the 1-hop successors of a
node v, we map it to node HðvÞ in Gh. Then we compute its
hash address sequence according to HðvÞ, and check the r
rows with index fhiðvÞj14i4rg. If a bucket in row hisðvÞ,
column C contains fingerprint pair hfðvÞ; fðuÞi and index
pair his; idi, where fðuÞ is any integer in range ½0; F Þ and id
is any integer in range ½1; r�, we use fðuÞ, id and C to com-
pute HðuÞ as stated above. Then we add HðuÞ to the 1-hop
successor set SS. After searching the r rows, we also need to
check the buffer to see if there are any edges with source
nodeHðvÞ and add their destination nodes to SS. We return
�1 if we find no result. Otherwise we obtain the original
node ID from SS by accessing the hash table which stores
hHðvÞ; vi.

1-hop Precursor Query: To answer an 1-hop precursor
query, we have the analogue operations with 1-hop succes-
sor query if we switch the columns and the rows in the
matrixX. The details are omitted due to space limit.

After applying square hashing, the edges with source
node HðvÞ in Gh are on longer stored in a single row, but
spread over r rows with addresses fhiðvÞj14i4rg. Simi-
larly, edges with destination node HðvÞ are stored in r dif-
ferent columns. These rows or columns are shared by edges
with different source nodes or destination nodes. The
higher degree a node has, the more buckets its edges may
take. This eases congestion brought by the skewed node
degree distribution. Moreover, as each edge has multiple
mapped buckets, it has a higher probability to find an
empty one. Obviously, square hashing will reduce the num-
ber of left-over edges.

5.2 More Optimizations

5.2.1 Dealing With Edge Deletion

In this section, we extend GSS to graph streams with edge
deletions. We suppose the weight w in each item ðs; d�!; t;wÞ
in the graph stream can be negative, which means to delete
a former item. When the weight of an edge in the streaming

Fig. 4. An example of the modified version of data structure.
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graph is decreased to 0. It is deleted. 2 In this case the update
operator becomes as follows:

Update with edge deletion: When a new item ðs; d�!; t;wÞ
comes in the graph stream S, we map it to edge HðsÞ; HðdÞ�������!
in the graph sketch Gh. Then we find the r2 mapped buckets
and check them one by one. If we find a mapped bucket
with fingerprint pair and index pair equal to the corre-
sponding pairs of HðsÞ; HðdÞ�������!

, we add w to the weight in it.
If the weight becomes 0, we clear this bucket. If we find no
mapped bucket with matched fingerprint pair and index

pair, we further check the buffer for HðsÞ; HðdÞ�������!
. If we find it

in the buffer, we add w to its weight, and remove the edge if
its weight becomes 0. If we can neither find this edge in the
mapped bucket or the buffer, we insert it into the first empty
mapped bucket. If there is no empty mapped bucket, we
add it into the buffer.

Notice that different from update operator in Section 5.1.
When wemeet an emptymapped bucket, we cannot directly
insert HðsÞ; HðdÞ�������!

into the bucket and end the update proce-

dure. Because HðsÞ;HðdÞ�������!
may have arrived before, but at

that time, this bucket is occupied by another edge, which is

deleted later. Thus HðsÞ; HðdÞ�������!
may be stored in latter

mapped buckets or the buffer. Therefore, we have to check
all the mapped buckets and the buffer to find out if
HðsÞ; HðdÞ�������!

has arrived or not. As a result, when dealing with
deletion, the update speed of GSS will become lower. But
with the mapped bucket sampling technique described in
the following section, the decrement is not large.We evaluate
the update speed of GSS both with and without deletion in
Section 8.6.

5.2.2 Mapped Buckets Sampling

In the modified version of GSS, each edge has r2 mapped
buckets. In the worst case of an updating, we may need to
check all r2 mapped buckets. We can use a sampling tech-
nique to decrease the time cost. Instead of check all the r2

buckets, we select k buckets as a sample from the mapped
buckets. We call these buckets candidate buckets for short.
For each edge we only check these k buckets in updates and
queries, and the operations are the same as above. The
method to select these k buckets for an edge e is also a linear
congruence method, with the sum of the source node finger-
print and the destination node fingerprint as seed.

5.2.3 Multiple Rooms

We can separate each bucket in the matrix into l segments,
and each segment contains an edge. We call each segment a
room for convenience. When performing the basic operators,
we use the same process as above to find the buckets we
need to check, and search all the rooms in them to find qual-
ified edges or empty rooms. Compared to enlarging the
matrix and select more candidate buckets, access to adjacent
rooms in a bucket is more cache-friendly. The multi-room
schema is also fully utilized when implementing GSS in
hardwares like FPGA, as will be discussed in details in
Section 7.3.

6 ANALYSIS

6.1 Accuracy Analysis

Recall that GSS uses two steps to summarize a graph
stream. In the first step, it uses a hash function Hð�Þ to com-
press the original streaming graph G into a graph sketch
Gh. In the second step, it stores the graph sketch with a
novel data structure. In the following sections, we will first
prove that the second step has no error. Then we will ana-
lyze the error brought by the first step

First we prove that the storage of the graph sketch Gh in the
data structure of GSS is accurate. As the buffer is an adja-
cency list that stores edges in Gh accurately, we only need
to check the matrix. We need to prove that each occupied
bucket of the matrix is uniquely possessed by one edge
HðsÞ; HðdÞ�������!

in Gh. In other words, we need to prove the fol-
lowing theorem:

Theorem 1. With the position and the content of a bucket in the
matrix of GSS, we can get a unique solution about the ID of the
stored edge.

As discussed in Section 5.1, given the position and content
of a bucket, we can recover a unique edge IDHðsÞ; HðdÞ�������!

. The
recovery procedure is discussed in detail in Section 5.1, we
omit it here to save space. When there are multiple rooms in
a bucket, though they share the same position, they have dif-
ferent fingerprint pairs and index pairs. We will not mix
themup in queries. Therefore, the storage of the graph sketch
Gh is accurate.

Second, we analyze the error in the procedure of mapping G to
Gh. We use �P ðe1; e2Þ to represent the probability of the fol-
lowing event:

Definition 5 (Edge Collision). An edge collision between
streaming graph edge e1 and e2 means Hðe1Þ ¼ Hðe2Þ in the
graph sketch Gh.

If e1 and e2 share no endpoints, we have �P ðe1; e2Þ ¼ 1
M2 .

Otherwise, if they have the same source / destination node,
we have �P ðe1; e2Þ ¼ 1

M , because they will collide if their des-
tination / source nodes have the same hash value.

Next, we will analyze the accuracy of the query primi-
tives with this probability.

For edge query, if the queried edge collides with other
edges, the query result will be larger than the true value.
We use AdjðeÞ to denote set of edges that share one end-
point with e, and the sum of their weight is WAdjðeÞ. E
denotes edges in the streaming graph G, but excluds e if e is
in the streaming graph. Note that the queried edge may not
exist in the streaming graph, and in this case the result of
edge query is �1. Then E �AdjðeÞ denotes the edges that
share no endpoints with e, and we use WE�AdjðeÞ to repre-
sent sum of their weight. The query result is correct if and
only if all other edges do not collide with e. For edges in
AdjðeÞ, the probability that all of themdo not collidewith e is

Pr1 ¼ 1� 1

M

� �jAdjðeÞj
¼ e�

jAdjðeÞj
M : (4)

For edges in E �AdjðeÞ, the probability that all of them do
not collide with e is

2. directly removing an edge e ¼ s; d
�!

is equal to receiving an item
ðs; d�!; t;�wðeÞÞwhere wðeÞ in the weight of e in current streaming graph
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Pr2 ¼
 
1� 1

M2

!jE�AdjðeÞj
¼ e

�jE�AdjðeÞj
M2 : (5)

The correct rate of edge query is

CorrectRateðeÞ ¼ Pr1 � Pr2 ¼ e
�jEjþðM�1Þ�jAdjðeÞj

M2 : (6)

The expected error of edge query, namely the difference
between the queried result and the true value, is the sum of
weight of all edges that collide with e. which is

ErrorðeÞ ¼ WAdjðeÞ
M

þWE�AdjðeÞ
M2

(7)

For 1-hop successor query, we use SucðvÞ to represent the
successors of the query node v, and use PreðuÞ to represent
the precursor set of a node u. Because the true successors
will definitely be reported, the potential error is including
false successors. The successor query result of v is correct
only if for each node u in V � SucðvÞ, edge v; u�! is correctly
reported as not existent. This probability is

CorrectRatesucðvÞ ¼
Y

u2V�SucðvÞ
CorrectRateðv; u�!Þ

¼
Y

u2V�SucðvÞ
e
�jEjþðM�1Þ�jAdjðu; v�!Þj

M2

� e
�
½jEjþðM�1Þ�ðjSucðvÞjþjEj

jV jÞ��ðjV j�jSucðvÞjÞ
M2 (8)

The precision of the 1-hop successor query, namely the
ratio of the true successors against the reported successors, is

PrecisionsucðvÞ ¼ jSucðvÞj
jSucðvÞj þ FalseSucðvÞ ; (9)

where FalseSucðvÞ represents the number of false successors,
and the expected value is

FalseSucðvÞ ¼
X

u2V�SucðvÞ
ð1� CorrectRateðv; u�!ÞÞ

¼
X

u2V�SucðvÞ
ð1� e

�jEjþðM�1Þ�ðjSucðvÞjþjPreðuÞjÞ
M2 Þ: (10)

The 1-hop precursor query is similar to 1-hop successor
query. We only need to exchange the Sucð�Þ and Preð�Þ func-
tion in the formula. From the formulas we can see that the
larger M is, the higher the accuracy is. In GSS we have M ¼
m� F , where m is the width of the matrix, and F is the
maximum size of the fingerprints. For a matrix with m ¼
1000 and 16-bit fingerprint, M can be as larger as 65536000,
This guarantees the accuracy. On the other hand, in TCM
the accuracy analysis is the same as GSS, but we have M ¼
m. This lead to the difference in accuracy.

6.2 Buffer Size Analysis

After all the improvements, the buffer in GSS is very small.
The mathematical expression of the buffer size is very com-
plicated and is influenced by many details of the graph.
Therefore we give an expression of the probability that a

new edge e becomes a left-over edge, which means inserted
into the buffer, as a measurement. We use E to denote edges
already in the streaming graph before e arrives. The number
of edges in E is denoted as jEj ¼ N for simplicity of presen-
tation in the following analysis. AdjðeÞ denotes edges that
have common source node or common destination node
with e. We suppose jAdjðeÞj ¼ D for simplicity. The width
of the matrix is m, and each bucket in the matrix has l
rooms. For each node we compute a hash address sequence
with length r. For each edge we choose k candidate buckets
among the r2 mapped buckets.

For each candidate bucket of e, as the edges in E �AdjðeÞ
are randomly inserted into thematrixwith aream2, the prob-
ability that there are a1 non-adjacent edges inserted into it is

p1ða1Þ ¼ N �D

a1

� �
�
 

1

m2

!a1

�
 
1� 1

m2

!N�D�a1

¼ N �D

a1

� �
�
 

1

m2

!a1

� e
�N�D�a1

m2 : (11)

As the D adjacent edges in AdjðeÞ are randomly inserted
in an area of r�m (r length-m rows mapped by the source
node of e or r length-m columns mapped by the destination
node of e), the probability that there are a2 adjacent edges
inserted into this bucket is

p2ða2Þ ¼ D

a2

� �
�
 

1

r�m

!a2

�
 
1� 1

r�m

!D�a2

¼ D

a2

� �
�
 

1

r�m

!a2

� e�
D�a2
r�m : (12)

The probability that there are already n edges inserted into
this bucket is

pðnÞ ¼
Xn
a¼0

p1ðaÞ � p2ðn� aÞ: (13)

The probability that there are less than l edges inserted into
this bucket is

Pr ¼
Xl�1

n¼0

pðnÞ

¼
Xl�1

n¼0

Xn
a¼0

p1ðaÞ � p2ðn� aÞ

¼
Xl�1

n¼0

Xn
a¼0

N�D

a

� �
D

n�a

� � 
1

m2

!a 
1

rm

!n�a
e
�ðN�D�a

m2 þD�nþa
rm Þ

:

(14)

This is also the lower bound that the bucket is still available
for e. The probability that e can not be inserted into the
matrix is the probability that all the k candidate buckets are
not available, which is

P ¼ ð1� PrÞk: (15)

Notice that this is an upper bound as we ignore collisions in
the map procedure from G to Gh. In Appendix B of the
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supplementary materials, available online, we demonstrate
the curve of left-over probability. According to the figure,
the left-over probability is below 1% in most times.

6.3 Time and Memory Cost Analysis

In this section, we analyze the space cost of GSS and the
time cost of primitives. The memory cost of GSS is OðjEhj þ
jBjÞ, where jEhj is the number of edges in the graph sketch
Gh and jBj is the size of buffer, which are both below OðjEjÞ.
Whenwe use a hash table to store the original node IDs, addi-
tional OðjV jÞ memory is needed, but the overall memory cost
is still OðjEjÞ. The update time cost is Oðkþ jBj

jEhj jBjÞ, where k
is the number of sampled buckets. When an edge is stored in
the matrix, we only need to check at most k candidate buckets,
which takes OðkÞ time. Each edge has probability jBj

jEhj to be
stored in the buffer. When it is stored in the buffer, the update
takes additional OðjBjÞ time, as the buffer is an adjacency
list. From the analysis in Section 6.2, we know that the
buffer size jBj is very small. Therefore the time cost of
this part is also small.

The time cost of queries is based on the algorithms we
use. We consider the time cost of the primitives as an evalu-
ation. The time cost of the edge query primitive is the same
as the update, and the time cost of the 1-hop successor
query and 1-hop precursor query is Oðrmþ jBjÞ in GSS,
where m is the width of the matrix and r is the length of the
hash address sequence. Because we have to scan r rows /
columns and the buffer to find all successors / precursors of
a node. In Section 7, we will propose more improvements
and decrease the time cost of 1-hop successor query and 1-
hop precursor query to Oðmr þ jBjÞ.

7 ACCELERATING QUERY PRIMITIVES

Although GSS has achieved high update speed and small
memory usage, it still has performance issues. During suc-
cessor query and precursor query, we need to scan the
mapped rows or columns of a node, which is time consum-
ing. In order to decrease the cost, we propose an improve-
ment on the layout of the matrix. We partition the matrix of
GSS into multiple blocks, and the improved version is called
blocked GSS. Details will be discussed in Section 7.1. Based
on the blocked version, we propose two directions of accel-
erating: GSS with node bitmaps in Section 7.2 and GSS
implemented with FPGA (Field Programmable Gate Array)
in Section 7.3.

7.1 Blocked GSS

In the blocked version of GSS, we divide the matrix into r�
r blocks. These blocks are organized as r rows and r col-
umns, as shown in Fig. 5. In order to distinguish the rows /
columns of blocks with the rows / columns of buckets in
each block, we represent the block row with BR and block
column with BC.

For each node HðvÞ in the graph sketch, we generate an
address list fhiðvÞj14i4rg for it with the same procedure
as Equations (1) and (2). The only difference is that the value
range of the addresses is ½0; mr Þ rather than ½0;mÞ. For each
edge HðsÞ; HðdÞ�������!

in the graph sketch, we map it to r� r
mapped buckets, one in each block. In the block of BR is
and BC id (14is4r, 14id4r), the mapped bucket is located

in row hisðsÞ and column hidðdÞ. Then we select candidate
buckets from the mapped buckets and store the edge in the
first empty candidate bucket. If all candidate buckets are
occupied, it is stored in the buffer.

Compared to non-partition version, there are also some
other differences in blocked GSS. When storing an edge, we
only store the fingerprint pair and the edge weight. The
index pair is not needed. Because the location of the block
implies the indexes his; idi. However, in order to keep the
value range M of the map function Hð�Þ not changed, the
fingerprint has to be logðrÞ bits longer, as the range of the
hash address is r time smaller. Therefore the memory usage
does not change compared to the non-partition version.

7.2 Node bitmap

As stated above, most nodes in the graph have low degrees.
Their neighbors are stored in only a few blocks, and we can
record these blocks to narrow the search area in the 1-hop
successor / precursor query. For the 1-hop successor query,
we can use a bitmap to record whether a block stores succes-
sors of a node. For each node HðvÞ in the graph sketch, we
assign a bitmap with r� r bits. The ith bit is set to 1 if the
block in BR i=r and BC i%r stores the successors of HðvÞ.
Otherwise it is set to 0. It is the similar in the 1-hop precursor
query. The bitmaps can be stored in the same hash table
which stores the node IDs. Each node has 2� r2 bits more
memory usage as a cost.We call GSSwith such node bitmaps
GSSnb. With these bitmaps, we can only check the blocks
whose corresponding bits are 1 in the 1-hop successor / pre-
cursor query, which omits lots of unnecessary scan.

We also propose an alternative solution which uses less
memory, but also achieves less speed improvement. In this
solution, we use two r-bit bitmaps for each node in succes-
sor query, corresponding to the block rows and block col-
umns, respectively. If an out edge of node HðvÞ in the graph
sketch is inserted in BR i and BC j, we set the ith bit of the
first bitmap and the jth bit of the second bitmap to 1. In the
1-hop successor query, we check a block in BR i and BC j if
and only if both the ith bit of the first bitmap and the jth bit
of the second bitmap are 1. It is similar for the 1-hop precur-
sor query. We call GSS with such short bitmaps GSSsb for
short. In GSSsb, we cannot know exactly which block con-
tains neighbors of a node, thus may perform some vain
scans. The speed of the 1-hop successor / precursor query
primitive will be 2-3 times slower than GSSnb, as will be
shown in Section 8.7.

Fig. 5. The Matrix of blocked GSS.
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Though GSSnb and GSSsb has higher query speed com-
pare to original GSS, they do not support edge deletions.
We cannot find out when to reset a bit in the node bitmap to
0, as we cannot determine when a block, or block row / col-
umn does not contain neighbors of a node any more. In the
next section, we will propose another acceleration solution,
which supports deletion.

7.3 Acceleration With FPGA

FPGA (Field Programmable Gate Array) plays an important
role in hardware acceleration because of its high parallelism
and low energy consumption. The matrix structure of GSS
has high fitness with FPGA. We can use FPGA to accelerate
the query primitives of GSS. An FPGA acceleration board is
composed of a chip and multiple memory banks. Each
memory bank has multiple ports connected with the chip,
allowing memory access in parallel. Nowadays, the global
memory provided by the memory banks can be as large as
64 GB, which is capable to store sketches of large graphs.

When implementing GSS on FPGA (we call it GSS-FPGA
for short), we map edges in the graph stream into edges in
the graph sketch with an encoder on the CPU host. We place
the matrix of GSS in the global memory of FPGA, and the
buffer is placed on CPU, as the adjacency lists cannot be
accelerated by parallelism or pipeline. Update and query in
the matrix are performed with kernels on the FPGA chip.
We separate blocks of the matrix among multiple memory
banks. Each block is bounded with an independent port, so
that we can access these blocks in parallel. As the number of
ports is limited, we can not divide the matrix into a large
number of blocks. In order to keep a high loading rate in the
matrix, we enlarge each bucket into multiple rooms as a
compensation. Using multiple rooms also helps to make full
use of the port width. Because the port width is 512-bit, we
can fetch multiple adjacent rooms in one memory access.

In GSS-FPGA, all primitives can benefit from the parallel-
ism. In the 1-hop successor / precursor query, we can scan
different blocks in parallel, and in each block, buckets in the
mapped row/ column can be checked in pipeline. Therefore,
we can achieve high speed without the cost of storing bit-
maps. The time cost of the 1-hop successor / precursor query
is reduced to Oðmr þ jBjÞ. In update and edge query, the
mapped buckets of an edge can also be checked in parallel.
Especially, in the edge query primitive, multiple queries can
be processed in pipeline, which leads to much higher
throughput compared with CPU implementation. On the
other hand, in the update primitive, the read of mapped
buckets and write back of them after updates induce read-
write lock, which prevents the update primitive from being
fully pipelined. Due to the low frequency of FPGA, the
update primitive is slower than CPU implementation. But
we can still achieve a speed of 1:7 million updates per sec-
ond, as shown in Section 8.7. Notice that becausewe can scan
all the mapped buckets in parallel, we do not need to select
candidate buckets in GSS-FPGA.

8 EXPERIMENTAL EVALUATION

In this section, we show our experimental studies of GSS. In
Section 8.4, we evaluate the accuracy of GSS in three graph
query primitives and compare it with TCM. In Section 8.5,

we evaluate the buffersize of GSS. In Section 8.6, we compare
the update speed andmemory usage of GSS with TCM, adja-
cency lists and an incremental lossless graph summarization
method MoSSo [3]. In Section 8.7, we further evaluate the
optimizations proposed in Section 7. At last, we evaluate the
performance of GSS in graph analytic mission Single Source
Shortest Path (SSSP) in Section 8.8. In the supplementary
materials, available online we present experiments on other
compound queries like triangle counting, reachability query
and subgraphmatching. All experiments are performed on a
server with dual 18-core CPUs (Intel Xeon CPU E5-2697
@2.3 GHz, 2 threads per core) and 192 GB DRAM memory,
running CentOS. All algorithms including GSS and TCM
are implemented in C++. The codes are open sourced code of
GSS and TCM.3 The code forMoSSo is provided by the origi-
nal authors at http://dmlab.kaist.ac.kr/mosso/.

8.1 Datasets

1)lkml-reply.4 The first dataset is a collection of communica-
tion records in the network of the Linux kernel mailing list. It
contains 63399 email addresses (nodes) and 1096440 commu-
nication records (edges). 2)networkflow. The second dataset is
a collection of network packets downloaded from a back-
bone router. It contains 445440480 communication records
(edges) concerning 2601005 different IP addresses (nodes). 3)
Twitter.5 The third dataset is a network contains Twitter fol-
low data based on a snapshot taken in 2009. Each node repre-
sents a user and each directed edge indicates that a user
follows another user. The original dataset is a static dataset
with no duplication, and it contains 52; 579; 682 nodes and
1; 963; 263; 821 edges. The highest node degree in this dataset
reaches 3; 691; 240. We randomly generate duplication for its
edges with zipf distribution. The duplicated dataset contains
3; 720; 775; 389 edges. For all the three datasets, edges are
weighted by their frequencies in the dataset. We feed edges
to the data structure in random orders to simulate graph
streams.

8.2 Metrics

Average Relative Error (ARE). ARE measures the accuracy of
reported weight in edge queries and reported distance of
node pairs in SSSP. Given a query q, the relative error is
defined as: REðqÞ ¼ j ^fðqÞ

fðqÞ � 1j. fðqÞ and ^fðqÞ are the real
answer and the estimated value of q. When giving a query
set, the average relative error (ARE) is measured by averaging
the relative error over all queries in it. A more accurate data
structure has smaller ARE.

Average Precision. We use average precision as the eval-
uation metric in 1-hop successor / precursor queries.
Given such a query q, we use SS to represent the accurate
set of 1-hop successors / precursors of the queried node,
and ŜS to represent the set we get by q. As TCM and GSS
have only false positives, which means SS � ŜS, we define
the precision of q as PrecisionðqÞ ¼ jSSj

jŜSj . Average precision

of a query set is the average value of the precision of all

3. https://github.com/Puppy95/Graph-Stream-Sketch
4. http://konect.uni-koblenz.de/networks/lkml-reply
5. http://konect.cc/networks/twitter_mpi/
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queries in it. A more accurate data structure has higher
Average Precision.

Compression Ratio. It measures the effectiveness of graph
compression, defined as 1 - (memory usage after compres-
sion)/(original memory usage with adjacency lists).

Buffer Percentage: It measures buffer size of GSS. Buffer
percentage is defined as the number of edges in the buffer
divided by the total number of edges in the graph stream.

8.3 Experiments Settings

In experiments, we implement two kinds of GSS with differ-
ent fingerprint sizes: 12 bits and 16 bits, and vary the matrix
size. We use f to represent the fingerprint size. We apply all
improvements to GSS, and the parameters are as follows.
Each bucket in the matrix contains l ¼ 8 rooms. For lkml-
reply and networkflow, the length of the address sequences
is r ¼ 8, and the number of candidate buckets for each edge is
k ¼ 4. For Twitter which is highly skewed, we set r ¼ 16
and k ¼ 8. As for TCM, we apply 4 graph sketches to
improve its accuracy. Its memory usage is 8 times larger
than GSS in lkml-reply and networkflow, and the same as
GSS in Twitter (due to short of memory). The hash tables
used in TCM and GSS to store hHðvÞ; vi, namely hash value
- original ID pairs are classic hash tables with linked lists to
address hash collisions. IDs with the same hash value are
organized as a linked list in the same key-value pair.

8.4 Experiments on Query Primitives

In this section, we evaluate the accuracy of GSS in the 3 graph
query primitives. Figs. 6, 7, and 8 show ARE of edge queries
and average precision of 1-hop precursor / successor queries
respectively.We only show the result of Twitter in 1-hop pre-
cursor / successor queries due to space limitation. The edge
query set contains all edges in the graph stream, and the 1-
hop precursor / successor query set contains all nodes in the
graph stream. The x-axis of the figures is the matrix width of
GSS with f ¼ 16. The other two data structures have the
same memory usage (or 8 times memory usage for TCM in
lkml-reply and networkflow). The results show that GSS per-
formsmuch better in supporting these query primitives than
TCM. In fact the precision of 1-hop precursor / successor

queries of TCM in a dataset as large as Twitter is nearly 0. On
the other hand, with 16-bit fingerprint GSS can always get
ARE below 10�2 in edge queries and average precision
beyond 90% in 1-hop precursor / successor queries.

8.5 Experiments on Buffer Size

In this section, we evaluate the buffer size of GSS (f ¼ 16).
Fig. 9 shows the buffer percentage in Twitter. The five curves
in the figure represent 1) GSS without square hashing (no-
SH). 2) GSS with square hashing and k ¼ 2=4=8 candidate
buckets. The x-axis is the width of the matrix. From the
curves, we can see that square hashing significantly
decreases the buffer size. With the increment of candidate
bucket number k, the buffer size also decreases, but the gap
shrinks as the matrix size grows. Besides, with k54 and
matrix width lager than 18000, the buffer size is smaller than
2%. Thus inmost updates we do not need to use the buffer.

8.6 Memory and Speed Evaluation

In this section we evaluate the memory usage and update
speed of GSS. We compare the update speed of GSS, TCM,
adjacency lists and the state-of-the-art incremental lossless
graph summarization method MoSSo in Table 1. We com-
pare the memory usage of GSS and adjacency lists, and the
result is shown in Table 2. We also compare the compres-
sion ration of MoSSo and GSS in Table 3.

For GSS we set the matrix width to be 200 in lkml-reply,
1200 in networkflow, and 18000 in Twitter. The fingerprint
length is 16, and other parameters are the same as above.
Former experiments show that GSS achieves nearly accurate
query results with these parameters. TCM uses 8 times
memory compared to GSS in lkml-reply and networkflow,
and the same memory as GSS in Twitter. Both GSS and

Fig. 6. Average Relative Error of Edge Queries.

Fig. 7. Average Precision of 1-hop Precursor Queries.

Fig. 8. Average Precision of 1-hop Successor Queries.

Fig. 9. Buffer Percentage of GSS.
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TCM use hash tables to store the original node IDs, but we
also present the speed of TCM without hash table. For
MoSSo, the parameters are set according to the recommen-
dation of the authors (escape probability set to 0:3 and num-
ber of samples set to 120), details can be referred in [3]. As
MoSSo does not support duplicate edges and directed
graphs, we remove the edge duplication and edge direction
in the three datasets for MoSSo. For adjacency lists, in order
to support both the successor query and the precursor
query, 2 sets of lists are needed for each graph. The first set
stores the successor lists, and the second set stores the pre-
cursor lists. In Table 1, we show both the update speeds of
the successor lists and the precursor lists. In Table 2. The
memory usage is the sum of both sets of lists.

Table 1 shows the update speed of the algorithms. The
algorithms are accelerated with -O2 option of GCC. In each
dataset, we insert all the edges into the data structure and
calculate the average speed. The unit we use is Million
Operations per Second (Mops). If an algorithm cannot finish
processing the dataset in 48 hours, the result is marked as
Time Limit Exceeded (TLE).

From the table, we can see that GSS always achieve an
update speed over 1Mops. The update speed is lower in
Twitter. Because this dataset is so large that even if only
1% � 2% edges are stored in the buffer, updating them still
has a high cost and brings decrement in speed. We also
evaluate the speed of GSS with edge deletions. We insert all
the edges in each dataset into GSS twice, with positive
weight at the first time and negative weight at the second
time. GSS processes these deletion-included updates with
update method discussed in Section 5.2.1, and we compute
the average speed. As discussed above, the speed will have
a decrement with deletion, as we have to scan all the candi-
date buckets and the buffer in each update. But its speed is
still higher than other algorithms.

TCM has a sharp decrement in speed with the graph size
growing. Because for large graphs, the map range of TCM is
limited while the node set is large, resulting into a lot of
node IDs mapped to the same hash value. In each update of
the hash table, we have to scan a long ID list attached to the

same hash value. It leads to low update speed. As a compar-
ison, we also present the update speed of TCMwithout stor-
ing node IDs with hash tables. We can find that in the case
its update speed is comparable to GSS. But without the hash
table it cannot support queries requiring node IDs like the
1-hop successor query.

The adjacency list is sensitive to the skewness. Its update
speed varies in different datasets. Even for the same dataset,
the update speed of the successor list and the precursor list
may also have a large difference. And in large graphs like
Twitter, the update speed is below 0:03Mops.

As MoSSo has to analyse the graph topology to find
nodes with similar neighborhood, its update speed is below
0:01Mops in most times, which cannot meet the demand of
high throughput of graph streams.

Table 2 shows the memory usage of GSS and adjacency
lists. We do not show the memory usage of TCM, as in
experiments it is set according to the memory usage of GSS.
From the table we can see that the memory usage of GSS is
30% � 50% of the adjacency lists. This memory usage
includes the memory used by the hash table which stores the
original node IDs. The memory usage of GSSnb and GSSsb is
also shown in the table, we can see that GSSnb needs 25%
additional memory at most compared to the original GSS,
whileGSSsb barely needs any additional memory.

Because MoSSo can only support undirected graphs, we
have to remove edge directions for it in all three datasets.
After that the streaming graphs become much smaller (as
edge s; d

�!
and d; s

�!
will be combined). Therefore we do not

directly compare the memory usage of MoSSo with GSS.
We compare their compression ratio in Table 3 instead.
From the table we can see that though GSS has small errors,
but its compression ratio is higher than MoSSo, and its
update speed is also much higher (Table 1).

8.7 Experiment of Optimizations

In this section, we evaluate the effect of optimizations pro-
posed in Section 7. We evaluate the speed of four primitives,
update, edge query, 1-hop successor query and 1-hop pre-
cursor query of GSS with different optimizations, and the
result is shown in Table 4. The unit of speed is Million Oper-
ations per Second (Mops). The dataset we use in experi-
ments is lkml-reply. Parameters for 3 versions of GSS on

TABLE 1
Update Speed (Mops)

Data Structure lkml-reply networkflow Twitter

GSS 5:1 5:67 1:58
GSS (with deletion) 5 3:93 1:04
TCM 1:4 0:03 TLE
TCM(without hash table) 6:2 6:1 2:7
Adjacency Lists (Successor) 0:43 1:7 0:03
Adjacency Lists (Precursor) 0:33 0:04 TLE
MoSSo 0:012 0:005 TLE

TABLE 2
Memory Usage(MB)

Data Structure lkml-reply networkflow Twitter

GSS 3:36 161 2:6� 104

GSSsb 3:41 166 2:62� 104

GSSnb 3:79 202 2:97� 104

Adjacency Lists 8:76 353 6:47� 104

TABLE 3
Compression Ratio

Data Structure lkml-reply networkflow Twitter

GSS 61:6% 54:4% 59:7%
MoSSo 17:4% 45:5% TLE

TABLE 4
Speed of Different Versions of GSS (Mops)

Data
Structure

Update Edge
Query

Successor
Query

Precursor
Query

GSS 5:1 4:9 0:06 0:04
GSSnb 4:3 5:5 0:36 0:32
GSSsb 4:8 5:7 0:19 0:17
GSS-FPGA 1:7 9:6 0:31 0:24

5912 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 6, JUNE 2023

Authorized licensed use limited to: Peking University. Downloaded on May 29,2023 at 02:29:54 UTC from IEEE Xplore.  Restrictions apply. 



CPU are the same as Section 8.6. On the other hand, GSS-
FPGA is implemented on FPGA board Xilinx u280. The
board has 32 HBM memory banks, with totally 8GB mem-
ory. The matrix of GSS is split into 9 blocks, separated on 9
independent memory banks for parallelism. Each bucket of
the matrix has 8 rooms. The total memory usage of the
matrix is the same as the CPU versions. From Table 4. We
can see that the original GSS has the lowest speed in succes-
sor and precursor queries. For GSSnb or GSSsb, the update
speed and the edge query speed is similar with the original
version, but the successor query and the precursor query
are 6 � 8 and 3:2 � 4:25 times faster than the original ver-
sion. When implemented on FPGA, the update speed of
GSS decreases due to the low frequency of FPGA. However,
as the edge query is fully pipelined, the speed is more than
1:68 times higher than the CPU implementations. Both the
successor query and the precursor query have a speed com-
petitive with the speed of the optimized GSS on CPU.
Besides, GSS-FPGA can support deletions without decre-
ment in update speed, while GSSnb and GSSsb do not sup-
port edge deletions.

8.8 Experiment of SSSP

In this section we evaluate the performance of GSS in graph
analytic mission Single Source Shorted Path (SSSP). In lkml-
reply and networkflow, we use nodes with top-100 degrees
as source nodes and carry out SSSP computation 100 times.
In Twitter, we use nodes with top-10 degrees as source
nodes and carry out SSSP computation 10 times, as the
graph is large and SSSP computing in it is time consuming.
The SSSP computation is carried out with Dijkstra algo-
rithm. We compute the Average Relative Error (ARE) of the
estimated distance between each node in the graph and the
source node. We present the result in Table 5. The result
shows that GSS always has an ARE below 1%. We also
show the average execution time of SSSP with adjacency
lists and GSS in Table 6 (GSSnb is used). Due to the matrix
structure, GSS has a lower speed in topology queries. It has
to scan rows or columns in the matrix to get successors /
precursors. But GSS can still finish SSSP, which has a time
complexity of OðjEjlogðjV jÞÞ, in graph as large as billions of
edges (Twitter) in about 4 hours. We believe the drawback
in query speed is a necessary cost of high update speed and
small memory usage. GSS is suitable for situations where
the demand on update speed and memory consumption is
the major concern, like network measurement in routers.

9 CONCLUSION

Graph stream summarization is a problem rising in many
fields. However, as far as we know, there is no prior work
with high update speed, small memory usage and high
accuracy. In this paper, we propose graph stream summari-
zation data structure Graph Stream Sketch (GSS). It has

OðjEjÞ memory usage and high update speed. It supports
most graph queries and has accuracy higher than state-of-
the-art by magnitudes. Both mathematical analysis and
experiment results confirm the superiority of our work.
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