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Knowledge Graph Quality Management:
a Comprehensive Survey

Bingcong Xue and Lei Zou

Abstract—As a powerful expression of human knowledge in a structural form, knowledge graph (KG) has drawn great attention from
both the academia and the industry and a large number of construction and application technologies have been proposed. Large-scale
knowledge graphs such as DBpedia, YAGO and Wikidata are published and widely used in various tasks. However, most of them are
far from perfect and have many quality issues. For example, they may contain inaccurate or outdated entries and do not cover enough
facts, which limits their credibility and further utility. Data quality has a long research history in the field of traditional relational data and
recently attracts more knowledge graph experts. In this paper, we provide a systematic and comprehensive review of the quality
management on knowledge graphs, covering overall research topics about not only quality issues, dimentions and metrics, but also
quality management processes from quality assessment and error detection, to error correction and KG completion. We categorize
existing works in terms of target goals and used methods for better understanding. In the end, we discuss some key issues and
possible directions on knowledge graph quality management for further research.

Index Terms—Knowledge Graph, Quality Management, Evaluation, Error Detection, Error Correction, Completion.

F

1 INTRODUCTION

R ECENT years have witnessed vigorous development of
knowledge graph (KG) construction and application.

KG expresses real-world entities and relationships in a struc-
tural way and has great potential to carry human knowl-
edge and promote the development of artificial intelligence.
Many large-scale knowledge graphs, such as DBpeida [1],
YAGO [2], Wikidata [3], NELL [4] and KnowledgeVault [5],
are constructed from various structured, semi-structured or
unstructured data sources. They have been widely used in
several real-world applications, from information retrieval
[6], question answering [7], [8], to recommender systems
[9], [10] and domain-specific tasks [11], [12].

However, as these graphs are often extracted and fused
from different sources automatically or semi-automatically,
they are far from perfect and have a large variation in data
quality [13]. For example, errors and conflicts may come
from the data sources or the extraction and fusion stages,
and the KGs can hardly cover all the facts we need so that
incomplete problem exists. Quality issues have big impact
on the credibility and usability of the knowledge graphs.
In order to further increase the utility of such knowledge
graphs in downstream tasks, quality management processes
need to be taken into consideration carefully, from quality
assessment, problem discovery (e.g., error and inconsistency
detection) to quality improvement (e.g., error correction and
graph completion).

Research on data quality has a long history and it can
be traced back to 1990s, when the MIT Total Data Quality
Management (TDQM) program was formally established to
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treat data quality as a specialized research field [14]. Since
then, a considerable amount of literature has been published
on data quality dimensions and metrics [15], [16], [17]. And
a large number of methods and tools are developed for
assessment, detection, and repair of data quality problems
[18], [19], [20]. With the advent of the Big Data Era, the
characteristics of the 4 V’s (Volume, Velocity, Variety, Value)
bring new challenges to quality management [21], [22], [23].
More and more researchers turn eyes to newly emerging
data structures, such as the widely-used knowledge graphs,
and many graph-specific quality management methods are
proposed.

Quality management methods on traditional relational
data are difficult to be applied to KGs directly for at least
four reasons. First, unlike relational data, graphs are semi-
structured and often do not come with a schema to specify
the integrity and semantics of the data. Heterogeneity and
flexibility make the structures more complex. Second, the
semantic web and knowledge graphs typically follow the
Open World Assumption (OWA) [24], where a statement not
included in the KG can be wrong or just absent. So it’s diffi-
cult to distinguish wrong tuples from missing ones. What’s
more, real-world KGs often contain massive noise, and the
assumption widely adopted in traditional technologies that
the data is basically correct may not hold. Last but not least,
due to the scale of the real-life graphs which is typically
beyond the capacity of existing methods, a direct application
of such techniques often suffers an unbearable time and
complexity. Therefore, new solutions for knowledge graphs
are in urgent need and gradually developed.

In this paper, we aim to review recent researches on
the knowledge graph quality management, from theory to
practice, and provide a systematic and comprehensive sur-
vey on related works, hoping to give an intuitive and clear
overview and inspire new opinions and methods to readers.
We notice that many related but not identical surveys on
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knowledge graphs and data quality have been published in
recent years. Some focus on features and construction tech-
nologies of existing knowledge graphs [25], [26], [27], some
explore reasoning technologies on knowledge graphs as
well as their applications [28], [29], while others focus on sta-
tistical relation learning and embedding learning methods
[30], [31], [32]. On the other hand, traditional data quality
research is still advancing, with surveys about data quality
metrics and assesment [20], [33], data quality theory [34],
[35] and tools [18], [19], and challenges in Big Data Era [22],
[36]. There are also some works studying knowledge graph
quality by combining these two research fields together. For
example, [16] reviews approaches for assessing the quality
of Linking Open Data (LOD) and provides a comprehensive
list of quality dimensions and metrics. [13], [37] and [38]
experimentally evaluate the quality of existing knowledge
graphs by some proposed metrics. And methodological
researches for specific quality issues such as completeness
[39] and duplication [40] are published. However, these
studies remain narrow in focus dealing only with part of
the quality issues and to date there are few studies that
try to give a panoramic overview of knowledge graph
quality management technologies, which covers not only
definition of quality dimensions and metrics, but also the
whole process from assessment, detection to improvement
of knowledge graph quality problems.

The most related work to our focus is [41], written by
Heiko Paulheim and published in 2017. In this paper, Paul-
heim surveys knowledge graph refinement technologies in
terms of approaches and evaluation methods. He distin-
guishes KG completion from error detection, and internal
from external methods, and further categorizes the methods
by the refinement target such as entity types, relations
and literal values. This is a good survey for knowledge
graph quality management and has inspired a number
of subsequent researches. At the same time, however, its
taxonomy is mainly based on shallow features like internal
or external resources and target type, failing to look deep
into the methods used by different works. It focuses only
on tasks of completion and error detection, and does not
take into account other quality management aspects like
quality assessment and error correction. Besides, various
quality dimensions and metrics are not included in, leading
to the fact that it pays too much attention to correctness and
completeness and overlooks other issues such as timeliness
and redundancy. And it doesn’t contain latest methods
published in recent years.

Out of the above reasons, we carrry out a deep and
careful review of works on knowledge graph quality man-
agement, expecially those published in recent six years, and
provide a comprehensive overview with in-depth analysis.
Our main contributions are summarized as follows:

1) Comprehensive and Newest Review. We present a
systematic and comprehensive review on all aspects
of knowledge graph quality management, from the-
ory to practice, including not only quality issues,
dimensions and metrics, but also the whole quality
management process from quality assessment and
error detection, to error correction and KG comple-
tion.

2) In-depth Taxonomies. We categorize existing works
on three orthogonal dimensions. For methods used,
they are generally categorised into human-based,
statistics/learning-based, rule-based, and hybrid
approaches; for processing goals, they fall under
three headings: (1) quality assessment, (2) problem
discovery, and (3) quality improvement; for target
dimensions, accuracy, consistency, completeness,
timeliness and redundancy are adopted for classfi-
cation. This multi-dimensional taxonomy helps to
better understand and analyse existing methods,
which we believe will inspire more fancy ideas and
technologies.

3) Discussions and Outlook on Future Directions. In
the end of the article, we take a closer reflection and
summary of the proposed methods, showing some
interesting findings as well as providing several
potential research directions.

The rest of the paper is organized in the following way.
Section 2 gives a brief introduction on knowledge graph and
data quality foundations, as well as our research objects and
categorization. In Sections 3, 4 and 5, we present knowledge
graph quality management technologies on human-based,
statistics-based, and rule-based methods respectively. Then
we introduce some hybrid approaches with more than one
measure of human, rule and statistics in Section 6. Section
7 gives an in-depth discussion on the listed methods and
presents some interesting findings and further directions.
And in Section 8 we conclude the paper.

2 PRELIMINARIES

2.1 Knowledge Graph and RDF Model

Knowledge base (KB) is a set of rules, facts and assumptions
that stores knowledge in a machine understandable format
[27]. The term knowledge graph, is first proposed by Google in
20121, which can be seen as a specification of KB that stores
knowledge in the from of graphs. Following the definition
of Ji et al. in [42], a knowledge graph is a multi-relational
graph composed of entities and relations which are regarded
as nodes and different types of edges respectively.

The W3C’s Resource Description Framework (RDF)2 is
a general data model for knowledge representation. In RDF
standard, each fact is represented in the form of (subject,
predicate, object) (SPO) triples, where subject and object are en-
tities and predicate reflects the relation between them. There
are also predicates whose objects are literal values instead
of entities, which are used to describe different attributes
of the entities. For example, the statement ”the Capital of
China is Beijing” can be represented as (sub:China, pred:capital,
obj:Beijing) in RDF. Each triple is an atomic element and can
be changed into nodes and edges to form into a graph in
their visual presentation, called RDF graph.

Figure 1 shows an example of a knowledge graph with
its corresponding RDF triples. In this article, we will follow
the RDF standard to represent knowledge graphs.

1. https://blog.google/products/search/introducing-knowledge-
graph-things-not/

2. https://www.w3.org/RDF/

Authorized licensed use limited to: Peking University. Downloaded on March 23,2022 at 03:10:47 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3150080, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 3

Fig. 1. An example of a knowledge graph and its corresponding RDF
triples.

2.2 Data Quality Foundations
Data quality (DQ) has been studied for a long time and
many definitions and assessment measures are proposed.
However, there is still no uniform standard accepted by
both academia and industry. One thing for sure is that data
quality depends not only on its own characteristics, but also
on the business environment being used, including business
processes and business users [22].

2.2.1 Data Quality Definition
One generally accepted definition for data quality is ”fit
for use” [43], [44], which means that the assessment of
data quality is highly subject and context-dependent. It
is not an absolute measure, only used to understand the
suitability with specific applications, but is not sufficient to
develop evaluation and improvement algorithms. In terms
of machine implementation, a more technical explanation
is ”free of defects” [45], by which algorithms can detect
violation and errors based on a given criteria, in the form
of logic rules or statistical thresholds, etc.

2.2.2 Data Quality Dimensions
Data quality dimensions give a way to assess data quality
from different aspects, each of which is associated with
various metrics and indicators to be calculated. What di-
mensions to choose depends on the data comsumer and
downstream task. Generally, it can be divided into four cate-
gories: intrinsic, contextual, accessibility and representation
[23], [46], as illustrated in Figure 2. More essentially, these
dimensions fall into two classes of intrinsic and extrinsic
[47], where the former rely on the data itself and the lat-
ter are application-dependent. Intristic dimensions mainly
include:

• Accuracy: It measures whether the data reflects the
facts correctly, i.e., it is the degree to which the data
is close to the realistic value.

• Consistency: It means that the data agrees with each
other and is free of conflicts with respect to particular
integrity constraints.

• Completeness: It describes whether the dataset con-
tains all relevant data of interest, including levels
of schema, property, types, etc. About completeness,
there are Closed World Assumption (CWA), Open
World Assumption (OWA) and Partial-Completeness
Assumption (PCA) [48] to interpret the non-existent
triples.

• Timeliness: It reflects the degree to which the data is
up-to-date [49], and is useful in datasets that often
change dynamically.

Fig. 2. Data quality dimensions and main characteristics.

Fig. 3. Data lifecycle from generation to application.

• Redundancy: It means that the dataset does not con-
tain two identical objects (like entities or attributes)
with different names.

It is important to keep in mind that these dimensions
are not independent of each other and have complex inter-
relationships. For example, a knowledge graph committed
to covering more triples is quite likely to have a lower
accuracy. Thus there is a trade-off among different quality
issues for dataset constructors and they vary in different
fields and application tasks. For data quality practitioners,
selecting quality dimensions also depends on their specific
needs.

2.2.3 Data Quality Metrics

As data quality dimensions are just abstract concepts, it is
required to define specific metrics to apply and measure
these dimensions in practice. These metrics need to build
a connection with the underlying data in spite of intrinsic
or extrinsic aspects. For example, accuracy can be defined
as the percentage of the correct facts. Though the intrinsic
metrics generally can be implemented without relying on
external environment, this is not always the case. An in-
stance is that the measure of completeness largely depends
on its context.

Intrinsic and extrinsic metrics have interactions. As
Sadiq et al. conclude in [50], the aim of intrinsic metrics is
eventually contribute to an extrinsic metric, and the extrinsic
metrics have to be tied to underlying intrinsic metrics.
They have an overlapping relationship and both rely on
downstream applications.

2.2.4 Data Lifecycle

There are a lifecycle and several processing transformations
for data from its generation to actural applications, and
quality issues can occur at any stage. This means that data
quality consideration should be rooted along the whole
pipeline. Figure 3 shows a data lifecycle pipeline [23], [51]
containing five steps, namely, data generation, information
extraction, data integration, analysis and application.
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2.2.5 Data Quality Management
In a previous survey on data quality measurement and mon-
itoring tools [18], the authors divide data quality method-
ologies into four activities: data profiling, data quality mea-
surement, data cleansing and continuous quality monitor-
ing. We reconsider this question and classify data quality
management into the following three processes:

1) Quality Assessment. This is the process of qual-
ity measurement and evaluation using pre-defined
dimensions and metrics to check whether the data
quality can meet the requirement of the application.

2) Problem Discovery. Different from assessment that
only aiming at an overall perception of specific
quality issues, problem discovery devotes to finding
out the inherent wrong assertions, and further, to
deriving higher level patterns to explain why these
errors occur. The identified error assertions can be
removed or modified, and the error patterns help
to reveal the underlying causes, both of which con-
tribute to the further quality improvement.

3) Quality Improvement. This is to improve the over-
all quality of the dataset. Considering the various
quality dimensions, it can be calssified into two
types: error correction, which involves various is-
sues like inaccuracy, inconsistency and outdated,
and completion, which improves the coverage of the
dataset.

These three processes have a progressive relation and
can be implemented at all stages of the data lifecycle.

2.3 Knowledge Graph Quality
As a specfic data type, researches on knowledge graph are
in the same line with general data type. The definition,
dimensions and metrics on data quality can be transferred
to knowledge graphs, as those did in [16], [46]. Due to
the particularity of the knowledge graph structure, there
are also possibilities to develop new dedicated dimensions
and metrics. In this paper, we focus on the intrisic features
and choose five widely used indicators: accuracy, consis-
tency, completeness, timeliness and redundancy, which are
explained in Section 2.2.2.

Like the data lifecycle depicted in Figure 3, knowledge
graph also has a construction and application pipeline. That
is, data sources’ acquisition and evaluation before construc-
tion, knowledge extraction and fusion under construction,
and interesting applications after construction [52]. Simi-
larly, quality issues can happen and be processed at all of
the stages.

Owing to the schemalessness, heterogeneity, Open
World Assumpion, massive noise and scalability issues,
directly applying traditional quality management methods
on knowledge graphs faces some challenges and problems,
which calls for new and dedicated solutions. At the same
time, however, the structure and path characteristics of
graphs bring extra opportunities and possibilities for the
problem. Data quality and knowledge graph quality are
by no means isolated and they can promote each other.
Generic methods can be modified to fit for graphs and the
development of tailored methods will promote data quality
researches as well.

2.4 Coverage of this Article
Due to the wide range of the concepts, it is necessary to ex-
plain the focus and coverage of the article here. In this paper,
we seek to review researches on knowledge graph quality
management. That is to say, for target objects, we focus on
knowledge graphs rather than generic data types. We pay
attention to the whole process of quality management, from
assessment, problem discovery, to quality improvement. In
terms of the lifecycle of knowledge graphs, our focus is on
the assessment and refinement of the constructed graphs,
which omits the source evaluation before construction and
is distinguished from the technologies of knowledge graph
construction like extraction and fusion. For quality dimen-
sions, we focus on the five intrisic features and bypass those
application-dependent extrinsic ones.

Positioning at the given knowledge graphs and the in-
trisic dimensions contributes to focus on generic methods
and technologies. It separates quality issues from different
downstream tasks and is independent of different construc-
tion methods, which helps to better understand the essential
thoughts of various quality management measures. Besides,
since a large amount of knowledge graphs have been con-
structed and released, focusing on the after-construction
technologies has more space for implement and evaluation,
and frees the quality practitioners from the tedious construc-
tion processes.

Based on these ideas, we conduct a systematic review
procedure by using inclusion and exclusion criteria to search
and restrict related publications as [28] and [39] do. The
search strategy is divided into three steps:

• Search on Google Scholar and get the first 100 re-
sults with keywords “knowledge graph quality”.
Check the publication lists of major data manage-
ment and semantic web conferences including SIG-
MOD, ICDE, VLDB, WWW, ISWC and ESWC from
2016 to 2021 (note that the survey of Paulheim’s [41]
is up to 2015.), with at least one of the keywords
(“quality”, “knowledge graph”, “knowledge base”,
“linked open data”, “assessment”, “validation”, “re-
finement”, “link prediction”, “completion”, “detect”,
“clean”, “repair”) appearing in the titles.

• Remove those not related to our purpose from the
candidate publications by checking the titles, ab-
stracts and sometimes the full articles.

• Search more relevant references and citations from
those significant articles iteratively until no more key
articles are found.

This procedure results in more than 1,000 candidate
publications, and by iterative expansion and careful exam-
ination, the core articles are basically included, especially
those published in recent years.

2.5 Taxonomies of this Article
Related works and methods are organized and categorized
from three orthogonal aspects: technologies used, process-
ing goals and target dimensions, which are explained next.

2.5.1 Technologies Used
Based on the inherent technologies used by different meth-
ods, they are divided into several groups:
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(a) Human-based, where manpower plays an important
role, of either experts or crowdsourcing.

(b) Statistics&Learning-based. This branch contains
works of both traditional statistical methods like outlier
detection and classic machine learning algorithms, as well
as the embedding-based representation learning and neural
networks.

(c) Rule-based, where rules of different forms are de-
fined, extracted, checked and applied for quality manage-
ment.

(d) Hybrid approaches, where techniques of human in-
telligence, statistical means and rule reasoning are combined
in some way.

2.5.2 Processing Goals
As the data quality management process introduced in
Section 2.2.5, methods are classified into three processing
goals of quality assessment, problem discovery and quality
improvement, where problem discovery can be further sub-
divided into false assertion recognition and error pattern
derivation, and quality improvement contains error correc-
tion and graph completion.

2.5.3 Target Dimensions
We focus on intrinsic quality dimensions and articles can be
grouped and classified according to their attention on var-
ious dimensions, i.e., accuracy, consistency, completeness,
timeliness, and redundancy, as explained in Section 2.2.2.

3 METHODS BASED ON HUMAN

For problems that are diffcult to be solved by machines,
manual methods are generally considered to be intuitive
and credible, though sometimes cost and scalability issues
exist. In this section we talk about methods based mainly on
human intelligence, where the human can be both domain
experts and crowdsourcing workers without specific skills,
and they can participate in all the processes of quality
management. Methods where manpower is introduced as
extra external sources or combined with other technologies
are left in the next sections.

3.1 Methods for Quality Assessment
Quality assessment of knowledge graphs is indispensable
for downstream applications and subsequent improvement.
The overall quality of KGs can quantify the fitness to
various tasks, and fine-grained quality measurements on
single predicates or classes give a way to feedback to the
construction process and do further correction. But this
problem has long been overlooked by academic research.

Manual evaluation is typically the main method to con-
duct quality assessment. Due to the scale of real-life KGs,
it is not possible to exhaust all tuples, thus an alternative
way is to evaluate on a sample set and the sample result is
used to estimate the whole. The simplest and most widely
used sampling technique is simple random sampling [13],
but determining an appropriate number of samples is not
easy: small sample sets prone to deviate from the real value
and oversampling brings more labeling cost. To handle
this, Ojha and Talukdar [53] build a novel crowdsourcing

system, KGEval, for knowledge graph accuracy assessment,
which models dependencies among triples by horn-clause
coupling constraints [54], [55] and adopts a greedy algo-
rithm with accuracy guarantee to iteratively choose a small
set for human labeling. Later Gao et al. [56] provide an
iterative sampling and evaluation framework for both static
and evolving KGs with the thought of clustering, where
various sampling strategies are proposed and compared,
and the whole process is under a statistical framework with
strong quality guarantee and minimal human efforts. They
demonstrate by both theory and practice that to achieve a
certain level of precision, the evaluation cost is only affected
by the underlying KG quality rather than the size, showing
the huge potential of sampling on large-scale knowledge
graph quality assessment.

These works mainly focus on KG accuracy defined by
the percentage of correct triples in the KG, but there are
still large research gaps on other quality dimensions like
completeness and redundancy being effectively evaluated
by humans. And considering that humans make mistakes
sometimes, crowdsouring technologies such as worker qual-
ity estimation and truth inference [57], [58] need to be taken
into account.

3.2 Methods for Problem Discovery
Unlike quality assessment that can be implemented and
estimated on a small sample set, the recognition of false
assertions and error patterns requires in-depth perception
and analysis on the concrete data. In [59], a generialized
methodology for linked data quality analysis is proposed,
comprising of a manual and a semi-automatic process.
They focus on four quality dimensions and first define
a category of 17 kinds of quality problems on DBpedia
[1], and then a crowdsourcing tool, TripleCheckMate [60],
is developed, where workers are allowed to choose and
evaluate on individual resources, detect errors and link to
the predefined error classification. [61] and [62] look deep
into the effectiveness of crowdsourcing approaches on KG
problem discovery. They combine two kinds of tasks: (1)
a contest targeting at experts to find out and classify erro-
neous triples, and (2) microtasks published on the crowd-
sourcing platform Amazon Mechanical Turk3, to be verified
by ordinary workers. Their experiments show that these
two paradigms of crowdsourcing can complement each
other and crowdsourcing-based methods are promising to
identify and address KG quality problems.

3.3 Methods for Quality Improvement
For those detected erroneous triples, one fixing way is to
directly remove them from the database, which may lead to
unnecessary loss of information. And missing facts need to
be added for better completeness. Automated modification
can give rise to new errors and thereby is often avoided
in actual business scenarios [18], but quality improvement
by humans is feasible and often necessary. In [63], Jiang
et al. propose to use database facts and crowdsourcing
verification for knowledge base enhancement on wrong
and missing relationships between entities. They design a

3. https://www.mturk.com/
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dynamic algorithm to select candidates within a limited
budget and maximize the benefit, as well as techniques
for graph updation according to the crowdsourcing results,
where dependencies among triples are considered.

To conclude this section, quality management based on
human is a natural and common way in industrial scenes
but does not attract enough academic researches. People can
easily participate in all aspects of quality controlment, but
cost and scalability issues are quite severe for large-scale
KGs. Sampling and crowdsourcing are two commonly used
methods. How to guarantee accuracy with minimal budget
and how to design suitable user interactions for different
tasks still demand for more studies.

4 METHODS BASED ON STATISTICS/LEARNING

This section discusses about methods based on statistics,
from traditional statistical means like distribution-based
outlier detection and classic machine learning algorithms,
to the currently prevailing embedding-based representation
learning and neural network methods.

4.1 Traditional Statistical Methods

4.1.1 Methods for Problem Discovery
Outlier means the one that appears to be inconsistent with
the remainder of the dataset and outlier detection tech-
niques have long been used to detect and remove anoma-
lous data [64]. In KG quality management, these methods
are helpful to identify errors, especially those numerical lit-
eral values, though sometimes they cannot well distinguish
natural outliers from actual errors. In [65], Paulheim and
Bizer exploit statistical distributions of properties and types
to identify wrong triples and add missing type statements.
They propose SDValidate, which assigns a confidence score
to each statement and spots outliers by a given threshold.
Experiments show that this method outperforms most pre-
vious works without extra knowledges. [66] uses differ-
ent outlier detection methods like interquantile range and
kernel density estimation, combining with various prepro-
cessing strategies to identify numerical errors in DBpedia,
reaches 87% precision and finds out 11 systematic errors to
improve the construction process. [67] further exploits the
owl:sameAs links between resources to alleviate the influence
of natural outliers.

Following the outlier detection technologies based on
statistical distribution, the thoughts of feature extraction
and machine learning classfication are introduced to detect
errors. [68] represents each link as a feature vector in a
higher dimensional vector space and shows the effective-
ness of outlier detection methods to identify wrong links
between datasets. [69] extracts features by path kernels [70]
and trains a binary classifier such as decision tree to con-
duct ontology reasoning and A-box consistency checking,
proving the possibility of machine learning for approxi-
mate inconsistency detection. In [71], the outlier detection
problem in numerical data is decomposed into a set of
supervised learning problems, where a predictive model for
each attribute is learned from other attributes to identify
patterns as well as to derive weights and outlier scores.

It is demonstrated that this method is robust to irrelevant
attributes and is capable of giving concise explanations for
outliers with symbolic methods. In [72], local path and type
features are used to train a classifier for every relation to
detect wrong relation assertions, which is further expanded
in [73] to deduce higher level error patterns.

External resources are exploited in some works for fact
validation and error detection. [74], [75], [76] search evi-
dence from the web, text corpus and query logs, which
are then used to judge the correctness of KG triples, and
in this process technologies of knowledge fusion and truth
discovery [77], [78] are adopted. Apart from these, [79] pro-
poses several predicate matching functions to find identical
resources from other knowledge graphs for validating RDF
triples. And in [80], reference sets of similar entities are
compared to identify unexcepted facts about entities.

Some graph exploration techniques are also proposed to
discover errors in KGs. [81] devotes to detect wrong IsA
relation in large-scale lexical taxonomies, which is modeled
as the detection and elimination of cycles. They use two
models based on DAG (directed acyclic graph) decompo-
sition and level assignment respectively and give efficient
algorithms. Another work is [82], aiming at discovering
exceptional facts about entities in knowledge graphs. It
models an exceptional fact as a context-subspace pair, and
applies beam search as well as two heuristic algorithms to
cope with the exponential search space, where the detected
exceptional facts can be candidates of wrong and inconsis-
tent triples. Both of these two works pay main attention on
the scalability to handle very large graphs.

Besides, a knowledge graph triple trustworthiness mea-
surement model is proposed in [83], which fuses characteris-
tics of three levels from entity, relationship to KG global. For
entity level, they propose an algorithm called ResourceR-
ank to determine whether there is a possible relationship
between entity pairs; for relation level, a translation-based
energy function is used; and for KG level, a reachable paths
inference algorithm is designed to measure the trustworthy
of a given triple. These three features are combined together
into a multi-layer perceptron to output the final triple val-
ues, which can detect incorrect triples in the graph.

Different from the above methods focusing on false
assertions, [84] devotes to reveal common properties of the
errors to explain where and how these errors happen in data
generative process. They propose an error diagnosis frame-
work, Data X-Ray, using feature hierarchies and bayesian
analysis to derive the most likely causes associated with
the errors, and a top-down iterative algorithm as well as
a parallel MapReduce version are implemented to scale to
large datasets. Similarly, [73] derives higher level patterns
from the errors by translating the classifiers of decision trees
into SHACL-SPARQL relation constraints.

4.1.2 Methods for Quality Improvement
Similar to the methods for problem discovery, statistical
distributions and external resources are used for knowl-
edge graph quality improvement, expecially for completing
missing information. In [85], a web-search-based question-
answering technology is used to find missing objects for
a given subject-relation pair on demand. They train the
system by query logs and existing KB facts to learn what
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questions to ask in the web for different subject-relation
pairs. [86] proposes SDType, using the statistical distribu-
tion of types in the subject and object of the property to
predict the instance’s missing type, which they believe has
better tolerance with respect to noise in the data. [87] pays
attention to errors derived from instance confusion (wrong
links to entities with similar names) and attempts to correct
them. They first perform error detection algorithms to find
out potential false assertions, and retrieve candidate entities
to do the replacement. The low accuracy is not satisfactory
enough for practical correction on real-life KGs that the
authors recommend to work as suggestions for users, which
at the same time demonstrates the intractability of automatic
error correction tasks.

In general, the trend of traditional statistics-based meth-
ods is moving from pure statistical distribution to explicit
feature extraction and supervised machine learning, and
more and more works try to absorb external resources
and propose methods specific to graphs for KG problem
discovery and quality improvement. The next direction is
to substitute manual feature engineering with embedding
techniques, which are discussed below.

4.2 Embedding-based Methods

Motivated by the booming development of deep learn-
ing, the paradigm of graph mining and graph analysis
is changing from traditional feature engineering to graph
representation learning, by which the vertices, edges and
subgraphs of a graph are converted into low-dimensional
dense embeddings to be fed into various machine learning
models for downstream applications. This is such a hot
research direction with a large number of publications and
surveys [31], [32], [88], [89] that we don’t seek to cover all
related works on graph embedding, but give an overview of
how these methods can be used for knowledge graph qual-
ity management, with some classic embedding technologies
presented and state the pros and cons of such embedding-
based methods. To get a more comprehensive and in-depth
understanding of embedding techniques, we recommend
readers to read the surveys listed above.

4.2.1 Overview of Embedding-based Methods
The key idea behind KG embedding is to learn the repre-
sentation of graph components like nodes and edges into
continuous vector spaces, with the structure and attribute
characteristics being reserved. Early methods solely make
use of the observed triples in knowledge graphs with vari-
ous embedding spaces and learning models, and more and
more works commit to introducing additional resources,
such as entity types [90], textual descriptions [91] and logical
rules [92], for better embeddings. And the learning model is
getting more complex, from shallow distributed representa-
tion, to multilayer neural networks.

Typically, a KG embedding method can be decomposed
into three steps [32]: (1) determining the representation
space of entities and relations, where entities are usually
represented as vectors, and relations are generally regarded
as the operation between entities, represented as vectors,
matrices, tensors, and so on; (2) defining a score function

to capture features from the graph; and (3) designing a
suitable model and corresponding algorithms to solve the
optimization problem.

The output of the representation learning methods is
a set of low-dimensional embeddings for different entities
and relations, and one can access the accuracy of triples as
well as inferring new facts by calculating on the learned
embeddings. Typical evaluation and application tasks in-
clude link prediction [93], triple classification [91], entity
classification [94] and open information extraction [95], all
of which handle quality issues about completeness from
different perspectives.

4.2.2 Graph Embedding Techniques: a Taxonomy
Here we talk about the main methods of knowledge graph
embedding, which generally fall under four headings: trans-
lational distance models, tensor decomposition models,
deep learning models, and models with additional infor-
mation.

Translational Distance Models. This kind of models regard
relations as geometric transformations in the vector space
and measure the score of a fact by calculating the distance
between the resulting vector after transformation and the
tail entity. The most representative one of this kind is TransE
[96], which is inspired by Word2Vec [120] and enforces that
the embedding of the tail entity should be close to the sum
of the head and relation embeddings for the right triples.
It is simple enough to be trained on very large graphs and
has been shown to be of effectiveness in many scenes, but
cannot perform well on 1-to-N, N-to-1 and N-to-N relations.
In order to overcome this disadvantage, many variants of
TransE are proposed. For example, TransH [97] models a re-
lation as a hyperplane together with a translation operation,
thus enables an entity to have different roles in different
relations. TransR [98] represents each relation as a dynamic
mapping matrix, which is further simplified in TransD [99]
and TranSparse [100]. Other works include TransM [101],
CrossE [102], RotatE [103], and etc.

Tensor Decomposition Models. Models based on tensor
decomposition represent the connections between nodes in
the form of matrices or higher-order tensors, and obtain
the node embedding by factorizing these tensors [88]. They
vary in the representation space and the decomposition
algorithm. RESCAL [104] represents each entity as a vector
and each relation as a matrix, and the scoring function is
computed as a bilinear product. It is simplified in DistMult
[105], where all relation embeddings are restricted to be
diagonal matrices and therefore the space of parameters is
reduced. SimplE [106] learns two vectors for each entity and
each relation like Canonical Polyadix (CP) decomposition
[107], and enhances CP by capturing the dependency of
the two vectors, which is fully expressive and is able to
model asymmetric relations. HolE [108] employs circular
correlation to create compositional representations, which
can be seen as a compression of the tensor product and
reduce the time and space complexity.

Deep Learning Models. Deep learning-based models adopt
neural networks to capture the non-linearity in graphs,
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TABLE 1
Summary of Statistics-based Methods. Abbreviations used: Goals (A = Assessment, ED = error detection, EPD = error pattern derivation, EC =
error correction, GC = graph completion), Dimensions (A = accuracy, CS = consistency, CP = completeness, T = timeliness, R = redundancy),

Objects (E = entity, ET = entity type, R = relation, A = attribute, NA = numerical attribute, L = link).

Paper Goals Dimensions Objects Techniques Resources
[86] (2013) GC CP ET statistical distribution KG
[65] (2014) ED, GC A, CP ET, R statistical distribution KG
[66] (2014) ED A NA outlier detection methods KG
[67] (2014) ED A NA outlier detection with external links KG, sameAs links
[68] (2014) ED A L outlier detection with feature engineering KG, sameAs links
[85] (2014) GC CP R web fact validation KG, web, query logs
[71] (2015) ED A NA supervised machine learning KG
[74] (2015) ED A, T R, A web fact validation KG, web
[80] (2015) ED A A outlier detection with external resources KG, reference entity sets
[84] (2015) EPD A ET, R, A Bayesian analysis KG
[69] (2016) ED A, CS ET, R, A supervised machine learning KG, ontology
[72] (2017) ED A R supervised machine learning KG
[76] (2017) ED A R, A web fact validation KG, web, query logs
[79] (2017) ED A A semantic matching KG, external KGs
[81] (2017) ED A R(IsA) graph based models KG
[87] (2017) EC A, R E supervised machine learning KG, external links
[82] (2018) ED A, CS R, A graph exploration KG
[75] (2019) ED A R, A web fact validation KG, web, text corpus
[83] (2019) ED A R neural network KG
[73] (2020) ED, EPD, EC A E, R supervised machine learning KG, external links

[96], [97], [98], [99],
[100], [101], [102], [103], etc. GC CP ET, R embedding (translational distance model) KG

[104], [105], [106],
[107], [108], etc. GC CP ET, R embedding (tensor decomposition model) KG

[109], [110], [111], [112],
[113], [114], [115], [116],

[117], [118], etc.
GC CP ET, R embedding (deep learning model) KG

[92], [94], [119], etc. GC CP ET, R embedding (with additional information) KG, external resources

where parameters are organized into separate layers with
different non-linear activation functions. Modern graph
neural networks (GNNs) can address the embedding prob-
lem through a graph autoencoder framework [121], which
typically use the connectivity and features of the graph
and iteratively aggregate the node embeddings of local
neighborhood.

There are many different kinds of GNNs depending
on the various extraction and aggregation functions, in-
cluding graph convolutional networks like GCN [109] and
GraphSAGE [110], graph attention networks like GAT [111]
and HGT [112], graph autoencoders [113], [114] and graph
spatial-temporal networks [115], [116]. And inspired by the
development of pre-trained models in natural language
processing (NLP) and computer vision (CV), many self-
supervised learning methods and pre-trained GNNs are
proposed for better transferring among datasets and tasks
[117], [118].

Models with Additional Information. In addition to the
evolution of models and algorithms, many researches at-
tempt to integrate more external resources, from textual
information to logical rules. [119] presents a comprehensive
survey about KG embedding techniques with additional
literals such as text and numerical values. DKRL [94] learns
the semantics of entity descriptions by two encoders, contin-
uous bag-of-words and deep concolutional neural models,
which are associated with the TransE [96] embedding for
each entity to handle the zero-shot scenarios. [92] proposes a
general framework to jointly model triples and rules, where

rules help to get better entity and relation embeddings for
tasks like link prediction, showing the effectiveness of joint
learning.

Though embedding-based methods have shown great po-
tential in efficiently mining and analysing on large-scale
graphs and have many successful applications even be-
yond in-KG quality management, however, they still face
many deficiencies. In terms of knowledge graph quality
management, the problems can be solved by embedding
are limited. Embedding-based methods can predict and
complete missing information, such as entity types and
relations, and sometimes help to identify redundant en-
tities with other resources [122], but they cannot assess
the overall KG quality. They learn from data and make
predictions accordingly, assuming most (or all) of the input
data is correct, which departs from our setting where the
input KB has many quality issues, leading to the fact that
they don’t have good abilities to find and correct wrong
triples. Experiments have shown that KG embeddings are
quite sensitive to sparse and unreliable data [123]. And
[124] finds that reverse triples and other redundancy in
existing benchmarks lead to a substantial over-estimation
of the embedding models’ accuracy, and argues that link
prediction doesn’t have truly effective automated solution.
These works remind us to re-consider the effectiveness of
embedding methods on real-life KGs. Besides, embedding-
based methods typically encode entities and relations into
vectors, but overlook the semantics and dependencies of
literal values. Apart from these, the poor interpretability and
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complex parameter selection of these methods are always
mentioned. And the problem of transferring across different
datasets and tasks has not been fully resolved yet. In sum-
mary, embedding-based methods are potential solutions for
knowledge graph quality management, but they are far
from enough and still have a long way to go.

5 METHODS BASED ON RULES

Unlike the above two categories of methods that need
different designs for different tasks, rules can put all qual-
ity management processes into a unify framework, which
typically contains four steps: the definition of rules, rule
extraction, rule assessment and evaluation, rule application
to conduct problem discovery and quality improvement.
Various forms of rules have been proposed together with
mining and application algorithms, all of which have to
make a balance between expressivity and computational
complexity. Next we first present an overview of rule-based
methods and move on to several types of rules for KG
quality management.

5.1 Overview of Rule-based Methods
As a classic symbolic reasoning technique, rule and rule
learning have a long research history, from early inductive
logic programming [167], to those studied in relational data
mining in databases [168], and rules in KGs [29]. Rules rep-
resent knowledge in an explicit way and can be enhanced
with human intelligence easily, which makes it keep an
important position even in the era of deep learning and
neural networks. Manual writing is the most direct way to
generate rules, but it is diffcult for humans to exhaust all.
Rule learning makes it possible to automatically discover
rules and has become an important subfield of machine
learning.

Rule learning algorithms can be roughly divided into
two groups, those frequent pattern mining methods that
aim to discover typical patterns from the dataset to be
transformed into corrseponding rules, e.g. [126], [127], and
those enhanced by embedding techniques for efficiency and
accuracy [133], [134]. It often comes with a rule assess-
ment stage with some statistical metrics like support and
confidence in an automatic rule mining process (see [169]
for more metrics). And in case of KGs where issues like
inaccuracy and incompleteness widely exist, new evaluation
metrics are being proposed, such as those in [170], [171].
Many works suggest to check the extracted rules by domain
experts before applying, and a latest work [172] introduces
the thought of human-in-the-loop and designs a few-shot
knowledge validation framework for interactive quality as-
sessment of rules, which takes the rule validation forward
one step.

Rules can be directly used to discover and correct quality
issues like errors and incompleteness in KGs, but often face
the problem of efficiency and scalability, which is explored
in different researches.

5.2 Predicate Logic Rules
First-order predicate logic rules are main reasoning methods
in early statistical relational learning field [28] and have

been widely studied in inductive logic programming (ILP),
e.g. [173], [174]. Classical ILP systems usually cannot be
applied to KGs due to the open world assumption and the
scalability problem. And more and more successful methods
have been proposed in KGs. Horn rule, a proper subset of
First-order predicate logic, is the most commonly adopted
rule form. It is a formula of the form B1 ∧ ... ∧ Bn ⇒ H ,
where B1∧...∧Bn is a set of body atoms showing conditions
and H is the head atom. Here each atom is a relation pair
r(X,Y), meaning that there is a relation r between entities X
and Y. For example, bellow is a horn rule, which means that
if Y is the daughter of X and Z is the wife of X, then Y is
also the daughter of Z.

daughter(X,Y ) ∧ wife(X,Z) ⇒ daughter(Z, Y )

AMIE [48] is a classic rule mining system for horn
rules on large RDF knowledge bases based on the partial
completeness assumption (PCA). It defines a set of mining
operators and explores the search space by iteratively ex-
tending rules. And a suite of optimization strategies are
proposed in AMIE+ [125] and AMIE 3 [126] to further
speed up the rule mining process. The mined rules are used
to predict missing relations in KGs, i.e., for completeness
improvement, with satisfactory accuracy. But they remove
all facts with literals (such as attribute and type information)
and thus the expressivity and applicability of the rules are
limited.

RDF2Rules [127] is another rule learning method, which
generates rules by searching for frequent predicate cycles
evaluated with a confidence score. Compared to AMIE+, it
takes additional advantage of entity type information for
accuracy and runs faster. But it still faces the problem of
expressivity and applicability as AMIE does. [128] devotes
to revise the given horn rules by adding negated atoms
into the bodies, which enhances the ability to catch possible
exceptions to some extent.

RuDiK [129], [130] models the rule mining process as an
incremental graph exploration problem and adopts the A∗

graph traversal algorithm [175] to get the most promising
path at each iteration. It reconsiders the open world as-
sumption and presents a generation algorithm of negative
examples to mine rules over erroneous and incomplete KBs.
Both positive and negative rules are mined from RuDiK,
where the former can identify missing relationships be-
tween entities, and the later helps to detect errors and
contradictions. Besides, it allows literal comparisons and
constant selections in the rules, which enables much more
patterns to be expressed.

[131] is a pioneering work to learn completeness asser-
tions for relations in KGs, which can be used to measure
the fine-grained completeness for single predicates, as well
as to identify missing relations and improve the precision
of fact prediction. They propose a set of signals indicating
completeness of properties and by combining and injecting
these signals into AMIE, they obtain high-quality complete-
ness rules which can achieve a up to 100% precision for
some relations on real KBs.

Meilicke et al. strongly emphasize the advantages of
rule methods in KG completion tasks and propose Any-
BURL [132], an efficient bottom-up rule learning system
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for uncertain horn rules by exploring KG paths. The rules
are used to predicate missing objects with reusability and
interpretability, and the algorithm is proved to be faster than
previous systems.

Apart from these, more and more works try to learn logic
rules with the help of embedding techniques. RLvLR [133]
reduces the task of rule learning into that of searching for
plausible paths of predicates. It proposes a new sampling
method to start from the target predicates and path rules are
extended iteratively by using the embeddings of the sample
graph, which are then evaluated and pruned according to
some novel scoring functions. It is demonstrated that RLvLR
is faster and is able to mine more quality rules than AIME+,
and outperforms Neural LP [176] in terms of efficiency and
accuracy in link prediction tasks. In [134], rule learning is
guided by a precomputed embedding model and external
information sources like text corpora, where the efficiency
and link prediction precision are improved. DRUM [135],
an end-to-end differentiable rule mining system, adopts
bidirectional RNNs to learn rule structures and scores simul-
taneously, where the learned rules are used for knowledge
graph completion.

Although embedding techniques have shown potential
to assist logic rule learning for efficiency and accuracy, most
of these works are limited to predicate paths, where the
rules are able to do link prediction and complete missing
relations in an interpretable way, but not capable of identi-
fying errors and handling literal facts. How to exploit the
embedding methods to learn more complex rules for more
tasks still needs a lot of exploration and endeavor.

What’s more, RuleHub [136] aims to build an extensible
corpus of rules for public KGs, where the rules are learned
by existing methods like AMIE and RuDiK, and evaluated
by both statistical metrics and human beings. These rules
can be used as metadata and help to manage quality for
public KGs. And [137] proposes a human-in-the-loop rule
learning approach, where a GAN-based method is used to
learn a confidence score for each rule, and a game-based
crowdsourcing framework is devised to refine the rules,
showing means to combine machine and human intelligence
in rule learning.

5.3 Ontology Rules

In the context of semantic web, ontology reasoning and RDF
validation have been studied for a long time and many
constraint languages have been designed, which can be used
as constarint rules for quality management. [177] gives a
clear classification that such languages can be either existing
frameworks like the RDF query language SPARQL [178]
and the web ontology language (OWL) [179], or specific
languages only designed for validation, such as SHACL
[180] and ShEx [181]. And their execution is based on either
reasoning or querying frameworks.

[182] proposes 81 types of constraints for various data
applications, studies the role of reasoning for each constraint
type, and compares the expressivity of five commonly
used constraint languages. And [183] is another survey to
overview and compare the characteristics and expressive-
ness of different RDF validation languages, hoping to point
out directions for further development of such constraint

languages. Based on these studies, Meester et al. [138]
present a rule-based reasoning framework for RDF valida-
tion, which relies on N3Logic and EYE reasoner, and is in-
dependent of constraint languages. It can identify constraint
violations and generate root cause explanation, which helps
to discover false assertions as well as error patterns in
KGs. In [139], [140], DBpedia ontology is aligned to the
foundational ontology DOLCE-Zero, which is then used to
reason on the graph and cluster conflicts for identifying
systematic errors. And [141] adopts description logic axioms
as constraints and learns to fix constraint violations from the
edit history of KBs, and their evaluation on Wikidata shows
significant improvement.

As for the querying framework, SPARQL language is
usually used as the constraint rules. In [142], an ontology-
based data quality management architecture is proposed,
where generic SPARQL query templates are defined to
discover data quality problems including syntax errors,
missing types, unique value violations, value range excess
and functional dependency violations. Further more, Kon-
tokostas et al. [143] create a set of 17 Data Quality Test
Patterns (DQTP) to cover common quality issues according
to their analysis on DBpedia, which can be instantiated
into SPARQL queries and tested on the RDF dataset. They
adopt these queries to evaluate five LOD datasets and reveal
many quality issues. This work is then integrated into a
platform called RDFUnit4, where test cases can be created
in five ways: changing from RDFS/OWL constraints, en-
riching constraints by tools like DL-Learner [184], re-using
tests based on common vocabularies, instantiating existing
DQTPs and writing own DQTPs. This set of templates
points out common types of KG errors and can be directly
used by running SPARQL queries, and at the same time
serves as an important bridge between machine learning
and domain experts, which is a potential method for KG
quality assessment and problem detection.

5.4 Graph-pattern Rules
In recent years, more and more works start to propose
rules dedicated to graphs, where graph patterns are often
included in rule bodies.

Following the research paradigm of dependencies in
relational data, Fan et al. propose graph functional depen-
dency (GFD) [144] and a set of extensions [148], [149], [150],
[151], [152], which provide means to specify the semantics
of the schemaless graphs and help to identify and correct
quality issues. These graph dependencies are defined in the
form of Q[x](X ⇒ Y ), where Q[x] is a graph pattern, and X
and Y are conjunctions of literals of x. A basic GFD has two
types of literals: constant literal x.A = c, where c is a constant
and A is an attribute except for id, and variable literal x.A
= y.B, where A and B are attributes that are not id. Literals
are extended in GED [147], [148] to support id literals to
express keys, and in NGD [149] to contain linear arithmetic
expressions and built-in comparison predicates. And in
[152], timestamps are associated to the variables to specify
the time span, which forms into TGFD to handle temporal
graphs. This kind of definitions combine classic attribute
dependencies with topological structures of graphs, able to

4. http://rdfunit.aksw.org
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express dependencies like those in relational data, and at
the same time deal with the heterogeneity and flexibility of
graphs.

Graph dependencies have stronger expressive power in
comparison with those in relational data, and it is harder to
mine and reason as well, which is studied in detail in [145],
[148]. A parallel scalable algorithm for discovering GFDs
is developed in [146], which combines pattern mining and
functional dependency discovery in a single process and
provides effective pruning strategies, showing the feasibility
and scalability to find frequent and reduced GFDs in large
graphs. The extracted graph dependencies are capable of
capturing various semantic constraints on graphs, and can
be used to detect errors and inconsistencies as well as
completing and correcting issues in terms of KG quality
management. [144], [151] and [149] explore parallel and
incremental algorithms to detect errors and [150] attempts
to deduce certain fixes based on the rules with the assistance
of user interaction. This line of research has solid theoretical
foundation, but actually effective algorithms are just getting
started.

Apart from these graph dependencies, association rules
with graph patterns (GPARs) are proposed in [153], which
aims to mine frequent patterns in the graphs that can be
used to predict missing relations. Its semantics are not
sufficient to handle other quality issues, which are extended
in [154]. In that paper, association rules, graph functional de-
pendencies and even machine learning classifiers are incor-
porated into a uniform framework, which makes use of both
rule-based and ML-based methods and is able to capture
and solve incomplete and inconsistent information. And
[155] develops graph temporal association rules (GTARs) to
capture temporal associations of complex events.

Some rules focusing solely on graph-repairing are stud-
ied. Neighborhood constraints (NC) are used to detect
and repair vertex labels in [156], [157], where several ap-
proximate algorithms are proposed to solve the NP-hard
problem. [158] and [159] consider three kinds of repairing
semantics including incompleteness, conflicts and redun-
dancies, and design the Graph-Repairing Rules (GRRs) with
corresponding repairing algorithms, which have similar
structures with GFD while adding more literal types to carry
out more kinds of repairing operations.

What’s more, Belth et al. [160] adopt the idea of com-
pression in information theory that compression techniques
can find patterns in data and in turn reveal anomalies. They
therefore use labeled and rooted summarization graphs as
soft rules and build a system called KGist, to show what
is normal and then identify strange and missing informa-
tion. They learn the summarization based on the Minimum
Description Length principle, and experiments of error and
incompleteness identification on real KGs demonstrate the
efficiency and effectiveness of such rules.

5.5 Other Rules

In addition to the above methods, there are some other rules
for KG quality management.

In [161], class hierarchy is used to automatically deter-
mine obligatory attributes in graphs, which can be used
to assess the completeness, identify missing information

and help to improve the coverage. [162] presents RDFind,
a distributed system to discover conditional inclusion de-
pendency (CIND) in RDF data. Though not directly applied
to quality management, CIND is capable of describing in-
clusion semantics and identifying quality issues. In order
to speed up the process of detecting and explaining in-
consistency in large KGs, [163] gives an abstraction-based
framework to find ontology rules on the partitioned graph
modules, where their main focus is on splitting and summa-
rying the graph and identifying inconsistency explanations
from local modules.

Some works pay attention to uncertain knowledge bases,
where Markov Logic Networks (MLNs) and probabilistic
soft logic (PSL) are often used. [164] presents ProbKB, a
probabilistic knowledge base which uses a relational DBMS
to infer missing facts by an efficient SQL-based inference
algorithm. [165] uses a numerical extension of MLN and a
set of Datalog constraints to detect inconsistencies in uncer-
tain temporal knowledge graphs (UTKGs), and a maximum
a-posteriori inference (MAP) is carried out to get a most
probable and conflict-free temporal KG. And TeCoRe [166],
a system for temporal inference and conflict resolution in
UTKGs is developed, where domain experts specify rules
and constraints to be reasoned by several MLN and PSL
solvers to detect and remove noisy temporal facts. These
works need more effort on the problem of scalability and
the automatic derivation of rules.

In summary, rule is a classic and enduring symbolic reson-
ing technique and various types of rules have been pro-
posed and adopted in KG quality management. Rules are
highly interpretable and partially reusable, able to absorb
human intelligence and transfer among different datasets.
They can identify and solve various quality issues in a
uniform framework with high precision, and such meth-
ods generally don’t require to learn dataset-specific hyper
parameters, showing advantages different from statistical
methods. However, it is always a challenging task to obtain
useful rules. No matter by manual writing or machine min-
ing, the collected rules are hard to be complete and probably
to cover only a subset of patterns in KGs. And there is
always a trade-off between expressivity and complexity of
the rules. How to select appropriate rule form with tolerable
time and space overhead for different task requirements
remains to be further explored.

6 HYBRID METHODS

Here we talk about hybrid methods, where more than one
technique of human intelligence, statistical/learning means
and rule reasoning play an important role.

6.1 Human & Statistics/Learning
Due to the intractability of many realistic problems, human
intelligence is often introduced in automatic methods and
the technique of human-in-the-loop is helpful in the entire
machine-learning pipeline [185]. In terms of KG quality
management, methods combining human and statistics are
showing great potential.

In [186], [187], a human and machine cooperation frame-
work, HUMO, is proposed for entity resolution, which
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aims to divide the workload between human and machine
such that a given quality requirement can be met with
minimal cost. They present three optimization approaches
based on monotonicity assumption of precision, sampling
and hybrid techniques, which solve the problem of entity
redundancy and are potential to be applied to other quality
issues. [188] proposes a human-in-the-loop outlier detection
approach, where humans are introduced to check the can-
didate outliers generated by the unsupervised algorithms.
To discover all outliers with minimum human efforts, clus-
tering and question selection methods are adopted. Based
on whether noisy type labels and additional annotations
are used, [189] categorizes typing error detection methods
into four paradigms and experimentally shows that semi-
supervised noise models are the most feasible and effective
solution. They combine a neural network architecture with
a probabilistic noise model for the type error detection task,
where an active learning algorithm is used to iteratively get
human-verified gold labels and the learning-rate is dynam-
ically adjusted.

6.2 Human & Rules
There is a natural connection between rules and humans
that rules can be created and examined by human experts,
but this interaction is long neglected in researches. [137]
presents a human-in-the-loop rule learning framework with
high coverage and high quality, where candidate rules are
first generated by machine algorithms and evaluated by a
GAN-based method to get a confidence score, and then a
game-based crowdsourcing framework is devised to refine
the rules. It also tries to sovle the possible conflicts when
using various rules. In [172], embedding techniques and
user feedback are used interactively to assess the quality
of a particular rule, which leads to better estimation of the
confidence score than simple statistical measures.

Human and rules can also work together in a quality
management process. Arioua and Bonifati present a user-
guided KB repairing method based on update in [190],
where tuple-generating dependencies (TGDs) and contra-
diction detecting dependencies (CDDs) are used as the logic
rules to give candidate repairing suggestions, and the final
repairing strategy is further guided by user interaction,
by which means the repairing can be implemented semi-
automatically to meet the user’s requirements.

6.3 Statistics/Learning & Rules
As two classic reasoning methods, there is a two-way in-
teraction between statistics and rule techniques. On the one
hand, rule learning often comes with statistical metrics to
define the confidence, and many embedding methods are
adopted to guide the rule learning process [133], [134].
On the other hand, rules can serve as additional resources
to assist embedding learning [92]. And apart from these
interactions, statistics and rules can have more diverse ways
to promote and complement each other in processes of
knowledge graph quality management.

In [191], a fine-grained evaluation for knowledge graph
completion is conducted on several rule- and embedding-
based systems, where the test sets are partitioned by in-
volved rule types. Experiments show that both rule- and

embedding-based methods have problems in solving certain
types of completion tasks and an ensemble learning method
is proposed to combine these two families of approaches,
where ensemble weights are learned for each realtion to
fully utilize the advantages of different methods on different
tasks. [192] attempts to correct erroneous assertions of enti-
ties and literals with the help of both deep learning and rule
reasoning. In this framework, multi-relational sub-graphs
are extracted according to semantic relatedness for each
identified wrong assertion, where a link prediction model
is learned by both semantic embeddings and observed path
and node features to predict possible substitutions. And
semantic consistency checking with property range and
cardinality constraints is then conducted to help to make the
final correction decision. Experiments on two datasets have
shown the effectiveness of this framework on both general
and enterprise KGs.

[193] proposes a new iterative framework to learn
embeddings and rules at the same time and make their
advantages complement to each other. This framework con-
tains three parts: (1) embedding learning based on existed
triples and those inferred by rules; (2) rule learning as-
sisted by embeddings; and (3) axiom injection to add new
triples derived by rules into KGs. These steps are conducted
iteratively during training. In this process, rules and the
injected triples help to improve the embedding quality on
sparse entities, embeddings assist to learn more quality rules
more efficiently, and the whole performance to complete
missing facts is improved, which shows the huge charm of
interactive learning.

In [154], rule-based and machine learning-based meth-
ods are further unified, where embedding-based ML classi-
fiers are incorporated into the rules as predicates, i.e., a ML
classifier here becomes part of the rule itself. They define
graph association rules (GARs) that have similar semantics
like GFDs [148], and any well-trained ML classifiers can be
added into the literal constraints. Theoretical analysis and
parallel incremental inference algorithms are well studied,
showing a new direction to combine rule and ML tech-
niques.

6.4 Human & Statistics/Learning & Rules

Hao et al. [194] together use machine learning, human-in-
the-loop approach and logic rules to detect outdated facts
in KGs. In this framework, a binary classifier is trained with
features like historical update frequency and time span to
predict the likelihood of each fact being outdated, then veri-
fication is conducted by humans and the human answers are
further expanded by logic rules to get new facts, which are
added back to the machine classifier. The processes move on
iteratively until the accuracy requirement is met.

To sum up, each family of human-, statistics- and rule-
based methods has deficiency and limitation for knowledge
graph quality management, and their combinations are
showing great potential with many researches proposed.
How to design more delicate methods to make full use of
these different technologies remains an open question worth
exploring.
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TABLE 3
Summary of Hybrid Methods. Abbreviations used: Goals (A = Assessment, ED = error detection, EPD = error pattern derivation, EC = error

correction, GC = graph completion), Dimensions (A = accuracy, CS = consistency, CP = completeness, T = timeliness, R = redundancy), Objects
(E = entity, ET = entity type, R = relation, A = attribute), Type (H-S = human + statistics, H-R = human + rules, S-R = statistics + rules, H-S-R =

human + statistics + rules).

Paper Goals Dimensions Objects Type Techniques
[186], [187] (2018) ED R E H-S workload distribution with quality assurance

[188] (2020) ED A, CS NA H-S clustering and question selection methods
[189] (2021) ED A, CS ET H-S neural network, probabilistic model, active learning
[137] (2018) ED, EC, GC A, CS, R, CP E, R H-R machine learning, GAN, crowdsourcing
[172] (2021) ED, GC A, CS, CP R H-R machine learning, embedding, interactive learning
[190] (2018) EC CS R, A H-R human-machine interaction
[191] (2018) GC CP R S-R ensemble learning
[192] (2020) EC A, CS R, A S-R deep learning, consistency reasoning
[193] (2019) GC CP R S-R joint learning framework
[154] (2020) ED, GC A, CS, CP, R R, ET, A, E S-R machine learning, rule reasoning
[194] (2020) ED A, CS, T R, A H-S-R machine learning, interactive learning

7 DISCUSSIONS AND FUTURE WORK

To give readers an overall perspective about the literature,
we plan to conclude some key issues and propose several
future directions here. Specifically, in Section 7.1 we discuss
about what is focusing on and what is missing in existing
works, and in Section 7.2 we recommend what is next.

7.1 Discussions

7.1.1 Technologies
Human can take part in all processes of knowledge graph
quality management with high precision and interpretabil-
ity, and human-based methods are quite common in prac-
tice. But due to the scale of real-life KGs, it is impossible
for humans to check all facts and purely artificial methods
do not arouse much academic interest. Recent works start
to study the sample framework to assess KG quality with
accuracy guarantee and acceptable cost, showing a great
potential in both theory and practice. And crowdsourcing
technologies are introduced to identify and correct KG
issues. But these works mainly focus on dimensions of ac-
curacy and sometimes completeness that other dimensions
with delicate user interactions remain to be explored.

Statistics-based methods are listed in Table 1, which dis-
plays main works with not only processing goals, target
dimensions and typical techniques, but also the object types
like relation and attribute, and the column of resources is
used to show whether external information is introduced.

We can conclude that, from traditional outlier detection
and classic machine learning algorithms, to those various
embedding-based techniques that gradually replace man-
ual feature engineering, the statistics-based methods have
shown their efficiency and strong ability for KG quality
management, especially in error detection (e.g., outlier de-
tection techniques) and graph completion (e.g., link predic-
tion by embedding methods). And the embedding-based
deep learning and neural networks are playing important
roles in more fields than quality management.

However, it can be seen from the table that most of
these works are limited in tasks of error detection and graph
completion with dimensions of accuracy and completeness,
showing their deficiency in handling various problems and

dimensions. Statistics-based methods learn from the data,
which may perform poor when the dataset has many quality
issues such as errors and sparsity, and therefore how to in-
corporate external resources into such methods is becoming
a popular direction. And most of these works (especially
those embedding-based ones) focus mainly on relations and
overlook the semantic dependencies of attributes and literal
values, which is worth further exploring. What’s more, this
type of methods is known for poor interpretability and
complex parameter selection, and thus further research is
required on model interpretation and transferring learning.

Rule-based methods are concluded in Table 2. This table
is organized according to the four-step framework of rule
definition, rule extraction, rule assessment and rule applica-
tion with corresponding works and techniques. And for rule
application, target goals, dimensions and objects are also
listed. The elements with placeholder ’/’ mean the issues
not paid attention to by the papers.

From Table 2, it is clear that rule-based methods have
attracted much research interest with various forms of rules
as well as extraction, evaluation and application techniques
being proposed. Most researches on predicate logic rules
pay main attention to efficient rule mining algorithms and
the most used evaluation strategy is statistical measures,
except that [136] and [137] introduce humans to assist the
assessment. Closed horn rule is the most adopted rule form
for predicting missing relations. Some attempt to enhance
the expressivity for more tasks, like [129] to discover both
positive and negative rules with literal comparisons so that
error detection and attribute issues can also be handled. The
mined rules are used directly, where the complexity and
possible conflicts during the application is omitted by these
works and further research needs to be done.

Ontology rules generally show more powerful expres-
sivity to cover various quality dimensions. Both reasoning-
and querying-based methods mainly commit to defining an
integrated error detection framework with existing constaint
languages or formulated query templates, and the rules are
usually obtained by human-written, where [141] to mine
from edit history and [143] to learn from data make some
progress. Besides, it remains to be explored that how these
ontology rules can be used for other tasks like graph com-

Authorized licensed use limited to: Peking University. Downloaded on March 23,2022 at 03:10:47 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3150080, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 15

TABLE 4
Summary of Different Kinds of Methods.

Methods Advantages Disadvantages Representative Works

Human-based high precision, high interpretability,
flexible, easy to conduct in all processes

costly and time consuming,
inexhaustible on large KGs

assessment [53], [56]
error detection and correction [60], [63]

Stastics/Learning-based efficient, powerful reasoning ability

limited in task form and dimensions,
sensitive to input data quality,

poor interpretability and complex
parameter selection, hard to transfer

distribution-based outlier detection [65], [67]
classic machine learning [71], [73]

embedding-based methods [96], [109]

Rule-based
high precision, high interpretability,
reusable, simple parameter setting,
easy to absorb human intelligence

hard to extract rules,
difficult to cover all patterns,

lack of uniform rule form

predicate logic rules [126], [129]
ontology rules [138], [143]

graph-pattern rules [144], [160]
other rules [161], [165]

pletion and error correction.
Graph-pattern rules incorporate graph structures into

the rule body, which are capable of expressing complex
semantics and coping with more tasks. As technologies ded-
icated to graphs, they are attracting more and more attention
in recent years, and various types of rules are proposed
with different expressivity for different task requirements.
The main extraction technique for these rules is to discover
frequent graph patterns with statistical measures, and rea-
soning is used to check and reduce the mined rules. Though
in works of graph dependencies it is suggested to check the
rules by experts before actually using, the interaction is not
studied yet. Many of these works notice the complexity of
rule application, and they have made some attemption on
parallel or incremental algorithms for large-scale knowledge
graphs. Graph-pattern rules are showing huge potential in
KG quality management, but they are still in the initial stage,
where more effective extraction, evaluation and application
algorithms need to be proposed, and a general rule form
with flexible and optional complexity is to be determined.

Besides, other kinds of rules such as probabilistic soft
logic are also studied for KG quality management. And they
also face the problems of rule extraction, trade-off between
complexity and expressivity as well as scalability on large
graphs.

Hybrid methods are shown in Table 3. As the advantages
and disadvantages of different types of methods summaried
in Table 4, hybrid methods have the ability to combine
the strengths of different techniques and many researches
are proposed for various combination frameworks in recent
years. It is an ascendant and potential field to be further
explored.

7.1.2 Goals
Looking back into the previous tables, one interesting find-
ing is that most works focus only on tasks of error detection
and graph completion, while other quality management
processes like assessment, error pattern deduction and error
correction are generally overlooked. Quality assessment is a
necessary step to quantify the fitness of KGs for downstream
tasks and for further improvement. A few explorations
have been done by manual sampling [53], [56] and rules
[131], [161], but the problems of granularity and various
dimensions remain unsolved. Error pattern deduction helps
to find out the causes of errors so that the KG quality
can be improved from the source. Statistics- and rule-based
methods have a little preliminary attempt on this task [73],

[84], [140] and more work is required. Error correction is
long recognized as an intractable problem even in relational
data. As it is possible to introduce new errors in the correc-
tion process, purely automatic methods are often avoided.
Human can play an important role in this task and we are
pleased to see more and more rules and hybrid methods are
proposed to cope with it.

Additionally, most of the works pay attention to only
one or two goals and few of them try to give an overall
framework to cover all problems. We say that rule-based
methods have such ability, but out of the complexity they
typically focus on one thing. Further study on a flexible and
unify overall solution is therefore recommended.

As for the target objects, relation has the most focus,
while attributes, expecially the semantic dependencies in
literal values are required to be further studied.

7.1.3 Dimensions
Though we have tried our best to search for works on
different kinds of quality dimensions, it has to be admitted
that accuracy and completeness have attracted the most
attention. Besides, outlier detection techniques and expres-
sive rules can identify inconsistent facts in the graphs so
that the consistency issue is being solved gradually. But
there are still many unanswered questions about redun-
dancy and timeliness. A possible explanation for the lack
of researches on timeliness issues is that KGs with rich time
information are not common at present. And redundancy
is often considered as the task of entity disambiguation in
the process of KG construction and fusion, so the detection
and elimination of redundancy on built KGs are not talked
much. Although inaccuracy and incompleteness are indeed
the two most common KG quality problems, more research
should be undertaken to investigate other dimensions to
present a comprehensive view of knowledge graph quality
management.

7.2 Future Work
The findings above show a number of important implica-
tions for future practice, which are listed below.
Overall Solution. The ultimate goal of quality management
is to get satisfactory knowledge graphs, which lies in three
progressive processes of assessment, problem discovery and
quality improvement, as well as various dimensions and
objects. However, most current works focus only on some
of the process goals and dimensions, and therefore a flexible
and configurable framework for all kinds of task require-
ments is in urgent need.
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Various Dimensions. Knowledge graph quality issues go
beyond inaccuracy and incompleteness. And thus other
dimensions like timeliness and redundancy need to be paid
more attention to.
Objects beyond Relations. Regardless of human-, statistics-
, rule-based or hybrid methods, we can see that relation
is the most targeted object. However, literal attributes also
play an important role in KGs. How to identify and correct
literals with rich semantics and infinite values by automatic
methods remains a cool research area.
Human Participation. Humans are the initial source and
ultimate beneficiary of knowledge, and manpower plays a
significant role for quality management in industrial scenes.
But academic researches on this are not enough. How to
introduce human intelligence in more ingenious ways for
more tasks is still lacking.
Combination Strategies. Different types of techniques have
their own advantages and disadvantages, where hybrid
methods can make them complement to each other. For
example, rules and human intelligence may be potential
supplements to improve the interpretability of deep learn-
ing models. It remains to be further studied for various com-
bination strategies, especially a framework to put humans,
statistics and rules together.
External Resources. As there are potential quality issues in
the input KGs, learning purely from the data is prone to be
misled. Therefore how to incorporate external information
and knowledge to correct the deviation is a rising and
promising direction.
Efficiency and Scalability. Although various researches
have been done to cope with large-scale knowledge graphs,
the problem of efficiency and scalability is by no means
solved. More studies on actually usable algorithms, such
as parallel, incremental, or approximate strategies, are still
required.
Dynamical knowledge graphs. Most existing works focus
mainly on static graphs. However, real-life KGs often evolve
with time. As the emerging of more and more temporal
knowledge graphs [195], quality management on dynamical
KGs may become a research hotspot in the future.

Taken together, knowledge graph quality management
is a comprehensive research topic covering various tasks,
dimensions and objects. And there is an internal integra-
tion of data, rules, manpower and learning models behind
the means. No matter focusing on dedicated or general
methods, static or dynamic graphs, theory or application
algorithms, there is broad research space worth exploring.

8 CONCLUSION

In this paper, we present a comprehensive survey on knowl-
edge graph quality management, from basic concepts of
quality issues, dimensions and metrics, to various works
on different quality management processes. A new and in-
depth taxonomy is proposed to look deep into the existing
methods. And in the end, we discuss some key issues and
provide several directions for further researches. We believe
that this work can not only give a clear overview of current
researches, but encourage more opinions and solutions for
KG quality management.
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[111] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv:1710.10903, 2017.

Authorized licensed use limited to: Peking University. Downloaded on March 23,2022 at 03:10:47 UTC from IEEE Xplore.  Restrictions apply. 



1041-4347 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2022.3150080, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 14, NO. 8, AUGUST 2015 19

[112] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph
transformer,” in Proceedings of The Web Conference 2020, 2020, pp.
2704–2710.

[113] T. N. Kipf and M. Welling, “Variational graph auto-encoders,”
arXiv preprint arXiv:1611.07308, 2016.

[114] M. Simonovsky and N. Komodakis, “Graphvae: Towards gener-
ation of small graphs using variational autoencoders,” in Interna-
tional conference on artificial neural networks. Springer, 2018, pp.
412–422.

[115] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting,” arXiv
preprint arXiv:1707.01926, 2017.

[116] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-rnn:
Deep learning on spatio-temporal graphs,” in Proceedings of the
ieee conference on computer vision and pattern recognition, 2016, pp.
5308–5317.

[117] W. Hu, B. Liu, J. Gomes, M. Zitnik, P. Liang, V. Pande, and
J. Leskovec, “Strategies for pre-training graph neural networks,”
arXiv preprint arXiv:1905.12265, 2019.

[118] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and
J. Tang, “Self-supervised learning: Generative or contrastive,”
IEEE Transactions on Knowledge and Data Engineering, 2021.

[119] G. A. Gesese, R. Biswas, and H. Sack, “A comprehensive survey
of knowledge graph embeddings with literals: Techniques and
applications.” in DL4KG@ ESWC, 2019, pp. 31–40.

[120] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[121] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip,
“A comprehensive survey on graph neural networks,” IEEE
transactions on neural networks and learning systems, vol. 32, no. 1,
pp. 4–24, 2020.
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[125] L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek, “Fast rule
mining in ontological knowledge bases with amie+,” The VLDB
Journal, vol. 24, no. 6, pp. 707–730, 2015.
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