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GraphMM: Graph-Based Vehicular Map Matching by
Leveraging Trajectory and Road Correlations
Yu Liu , Qian Ge, Wei Luo, Qiang Huang, Lei Zou , Haixu Wang, Xin Li , and Chang Liu

Abstract—Map matching of sparse vehicle trajectories is a
fundamental problem in location-based services, such as traffic
flow analysis and vehicle routing. Existing literature mainly relies
on sequence-to-sequence (Seq2Seq) models to capture the intra-
trajectory correlation of an input trajectory and to sequentially
predict the matched road segments. Due to the limited expres-
sive capability of sequential models, these methods fall short of
extracting inter-trajectory and trajectory-road correlations as well
as correlation between road segments. We present GraphMM, a
graph-based approach that explicitly utilizes all aforementioned
correlations. Our model exploits the graph nature of map matching
and incorporates graph neural networks and conditional models to
leverage both road and trajectory graph topology, while manages
to align road segments and trajectories in latent space. We formally
analyze the expressive power of our model in capturing various cor-
relations and propose efficient algorithms for model training and
inference. In particular, our optimization techniques dramatically
reduce the computational complexity, making our model feasible on
datasets with thousands of road segments. Extensive experiments
show that our model significantly enhances prediction accuracy,
while improving training and inference efficiency by up to an order
of magnitude over both the industrial implementation of the hidden
Markov model and state-of-the-art Seq2Seq-based methods.

Index Terms—Conditional model, graph neural network, induc-
tive capability, map matching, trajectory and road correlations.

I. INTRODUCTION

MAP matching is a fundamental problem in location-based
services, which aligns vehicle or human trajectories onto

the road network. In particular, vehicular map matching is
of vital importance for industrial communities. For example,
in Tencent Maps, it serves as a critical component for event
detection (e.g., road closure), traffic flow analysis, mining of
daily commute data, and vehicle routing including navigation
and estimated time of arrival (ETA) prediction. As illustrated
in Fig. 1, in many scenarios, the trajectory is recorded as a
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Fig. 1. Map matching and its applications in Tencent Maps.

sequence of trajectory points with a low sampling rate [1], [2].
Here, the blue dots connected by dashed arrows represent their
GPS locations, which are with low positioning accuracy caused
by GPS drifts near high buildings or viaducts. This poses great
challenges for map matching of sparse vehicle trajectories, i.e.,
recovering the corresponding matched road segments (shown in
red lines) of the trajectory.

Considerable work has been devoted to map matching for
sparse vehicle trajectories. In their classic work [3], Newson
and Krumm adopt a hidden Markov model (HMM) by treating
trajectories as observations and the matched road segments as
states, which outperforms previous geometric matching algo-
rithms. Recently, sequence-to-sequence (Seq2Seq) based meth-
ods [4], [5], [6] have achieved state-of-the-art performance.
Given the input trajectory that contains a sequence of geopoints,
the encoder-decoder framework outputs a sequence of recovered
road segments. The accuracy of Seq2Seq-based methods mainly
relies on the explicit modeling of intra-trajectory correlation.
More precisely, each input trajectory is sequentially encoded
while the correlations between trajectory points are captured.
Nonetheless, we emphasize that the following correlations are
equivalently important and should be explicitly considered as
well.
� Inter-trajectory correlation: Trajectories matched to over-

lapping sequences of road segments have inter-trajectory
correlation. This information can be exploited by con-
structing a trajectory graph from the set of input trajectories
by leveraging the well-adopted grid representation [4], [7],
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[8]. In this way, a trajectory can calibrate its matching via
nearby trajectory points in the trajectory graph, possibly
from other similar trajectories.

� Trajectory-road correlation: There exists a natural cor-
relation between trajectories and road segments, since a
trajectory represents the chronologically travelled road
segments of a vehicle. Therefore, it is reasonable for the
model to align a trajectory with its matched road segments,
for example, in latent space.

� Correlation between road segments: A vehicle trajectory
should be matched to a sequence of consecutive road
segments. We can model all road segments as a road
graph, where each node represents a road segment. An
edge is established between two nodes if the corresponding
road segments are connected. Even for a low-sampling-rate
trajectory, two consecutive trajectory points should be
matched to road segments that are reachable in the road
graph. In other words, the correlation of predicted road
segments should also be considered.

We note that existing HMM-based and Seq2Seq-based meth-
ods are unable to fully exploit these correlations due to limited
expressive capability of sequential models, which is formally
proved in Section III. Motivated by the above observations, we
propose a graph-based approach to explicitly model all afore-
mentioned correlations and make the following contributions.

Model Framework. We present GraphMM, a Graph-based
framework for Map Matching of vehicle trajectories. We con-
struct two graphs, namely, the road graph that contains all
road segments and the trajectory graph that incorporates the
input trajectories. Our model heavily exploits the graph nature
of the map matching problem. To the best of our knowledge,
GraphMM is the first map matching framework in which graph
plays a central role. Besides, the necessity of capturing above
correlations as well as the expressive power of our method are
formally proved. Generally speaking, inter-trajectory correlation
and the correlation between road segments enhance the discrim-
inatory power of latent representation, whereas trajectory-road
correlation facilitates the alignment of representations in latent
space.

Graph-Augmented Trajectory Encoder: We leverage the ex-
pressive power of graph neural networks (GNN) to enhance the
features of trajectory points. Specifically, we use a trajectory
graph convolution layer to explicitly integrate information (i.e.,
inter-trajectory correlation) from a set of trajectories. Partially
inspired by the success of label propagation (e.g., [9], [10]), we
additionally propose a road graph convolution layer to augment
the feature of trajectory points by encoding nearby roads. Then,
the whole trajectory is fed into the trajectory representation layer
(e.g., an RNN-based encoder) where intra-trajectory correlation
is extracted.

Trajectory-Road Alignment With Inductive Capability: Given
the representation of the input trajectory, the decoder recovers
the sequence of matched road segments. To explicitly capture
trajectory-road correlation, the hidden similarity computation
layer is introduced. With the help of the road graph convolution
layer, we are able to compute road segment representation. In
each step of the decoder, we align its hidden representation

and those of road segments by matrix-vector multiplication,
which outputs the matching probability distribution over all
road segments. The advantages are three fold. First, we avoid
the fully connected layer (i.e., a large learnable transformation
matrix) in Seq2Seq-based methods and the overfitting problem.
Consequently, our approach significantly enhances model effi-
ciency. Lastly, it guarantees inductive capability, namely, our
model does not necessarily need to train from scratch when the
road network changes.

Graph-Based Conditional Decoder: We further apply a con-
ditional layer based on the conditional random field (CRF) for
an extensive exploitation of correlation between the predicted
road segments. We leverage this correlation (i.e., the road graph)
to define the pairwise potential, which improves prediction accu-
racy and reduces the number of learnable parameters. Intuitively,
this layer enables us to firstly predict the easier part of the
trajectory (e.g., straight roads) and then tackle the difficult part
(e.g., crossroads) by using previous prediction for calibration.

Efficient Model Training and Inference: It is non-trivial to
integrate all aforementioned components while ensuring the
computational tractability of the model. We present efficient
algorithms to facilitate model training and inference. We first
design a mini-batch training algorithm to integrate the encoder-
decoder framework with graph neural networks and conditional
models. We further apply approximation and pruning techniques
to ensure model scalability on real-world problem sizes. Be-
sides, we conduct a detailed complexity analysis in terms of
model parameters as well as training and inference complex-
ity. We show that GraphMM achieves a balance between the
HMM-based method and Seq2Seq-based methods in terms of
model parameters, but indeed has the most expressive capability
for map matching. We conduct extensive experiments on the
Tencent dataset for both transductive and inductive settings,
which contains tens of thousand trajectories and a road net-
work of more than eight thousand road segments. The dataset
is released for public research. Empirical results demonstrate
that compared to the best baselines, our approach significantly
enhances prediction accuracy while improves model efficiency
by up to an order of magnitude, and demonstrates inductive
capability. Our source code and data have been made available
at https://github.com/GraphMMmaster/GraphMM-Master.

II. PRELIMINARIES

A. Problem Definition

Definition 1 (Road Graph): We use a directed graph GR =
(VR, ER) to represent the road network. Each node ui ∈ VR
represents a road segment, while each edge eij = (ui, uj) ∈ ER
represents the intersection of road segment ui and uj , satisfying
that ui precedes uj . The feature of node ui is the starting and
ending GPS location of the corresponding road segment.

Definition 2 (Trajectory): A trajectory T is defined as
a chronological sequence of trajectory point, i.e., T =
(p1, . . . , pl). Each trajectory point (a.k.a. geopoint) pi ∈ T is
represented by its GPS location (lati, lngi) and the correspond-
ing timestamp ti, where lati (resp. lngi) stands for latitude (resp.
longitude).
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TABLE I
TABLE OF NOTATIONS

For many real-world applications, trajectory points are sam-
pled with fixed time interval ε, which is referred to as the
ε-sampling-rate trajectory. Specifically, when ε is sufficiently
large (e.g., 30 seconds), the trajectory is called a sparse trajec-
tory (a.k.a. low-sampling-rate trajectory). We present the formal
definition of our problem as below following existing studies [4],
[5], [6].

Definition 3 (Map Matching of Sparse Vehicle Trajectories):
Given the road graphGR and a set of sparse vehicular trajectories
{T1, . . . , TS}, for each trajectory T = (p1, . . . , pl), map it to a
sequence of nodes in GR, denoted as R = (u1, . . . , ul′). We
refer to R as the map-matched trajectory (a.k.a. the route),
which is essentially a sequence of matched road segments,
where the concatenation of all road segments gives the calibrated
trajectory.

Table I lists the notations that are frequently used in the
remainder of the paper. Note that for simplicity of notation,
throughout this paper we assume all hidden representations are
of dimension d.

B. Graph Neural Networks (GNN)

Substantial progress has been made in various graph learn-
ing tasks such as node classification and link prediction with
the advance of graph convolutional neural networks, for both
transductive and inductive settings [11], [12]. Generally speak-
ing, GNN models compute a d-dimensional representation for
each node to encode the information of nearby graph structure
and node (and edge) features by conducting multiple layers of
graph convolution. From the spatial perspective, for each node
u, the graph convolution layer aggregates information of u’s
neighborhood N(u) to update the representation of u. Most
spatial-based GNN models can be generalized as the following

message-passing framework:

m(l+1)
u = AGGREGATE(l)

(
{h(l)

v , v ∈ N(u)}
)
, (1)

h(l+1)
u = COMBINE(l+1)

(
h(l)
u ,m(l+1)

u

)
, (2)

where h
(l)
u ∈ R

d denotes the latent representation of u at the
l-th layer, whereas the AGGREGATE and COMBINE opera-
tors can be implemented by various mechanisms. In particular,
classical GNN models such as the graph convolutional network
(GCN) [13] can be simplified as follows:

h(l+1)
u = σ

⎛
⎝ ∑

v∈N(u)∪{u}
Puvh

(l)
v W(l)

⎞
⎠ , (3)

where Puv ∈ R denotes the influence of v to u, W(l) ∈ R
d×d

denotes the learnable parameters at the l-th layer, and σ(·)
denotes the activation function such as ReLU. The propaga-
tion matrix P is commonly implemented as a function of the
adjacency matrix A. For example, GCN sets the propagation
matrix as P = D̃− 1

2 ÃD̃− 1
2 , where Ã = A+ I, and D̃ = Ã1

is the diagonal matrix of Ã containing node degrees.
Recent literature has studied GNN’s expressive power

(e.g., [14], [15], [16]), deeper GNN models (e.g., [17], [18]),
and model scalability (e.g., [19], [20]). Specifically, the Graph
Isomorphism Network (GIN) [14] is proved to be as powerful as
the Weisfeiler-Lehman (WL) graph isomorphism test [21]. GIN
adopts the following equation for message passing:

h(l+1)
u = MLP(l)

⎛
⎝(1 + ε(l)) · h(l)

u +
∑

v∈N(u)

h(l)
v

⎞
⎠ , (4)

where MLP(l) denotes a multi-layer perceptron and ε(l) denotes
a learnable parameter at l-th layer.

III. GRAPH-BASED MAP MATCHING (GRAPHMM)

A. Model Overview

In this section, we present Graph-based Map Matching
(GraphMM), which leverages graph structure to model tra-
jectory and road correlations. As shown in Fig. 2, GraphMM
follows the encoder-decoder framework to map an input trajec-
tory T to the map-matched trajectory R, i.e., a sequence of road
segments. In particular, the graph-augmented trajectory encoder
takes the road graphGR, the constructed trajectory graphGT (for
more details see below), and one trajectory T as input and com-
putes the trajectory representation hT for T . The graph-based
conditional decoder first uses a sequential decoder to transform
hT into a sequence of matched road segments, where the hidden
similarity computation layer plays the central role. Next, the
prediction can be optionally refined by the conditional layer,
which explicitly leverages correlation underlying the road graph
structure.
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Fig. 2. Overview of GraphMM.

B. Graph-Augmented Trajectory Encoder

The graph-augmented trajectory encoder contains a trajectory
graph convolution layer which operates on the trajectory graph,
followed by the sequential trajectory representation layer and
preceded by the road graph convolution layer which augments
the feature of each geopoint with road information (we postpone
this layer to the end of Section III-B). Since the encoder depends
on the trajectory graph, we first describe the trajectory graph
construction module.

1) Trajectory Graph Construction: Given a set of input tra-
jectories,1 we construct a trajectory graph by leveraging the
well-adopted grid representation [4], [7], [22]. Specifically, the
whole area of the map is divided into a two dimensional array
of grids, where each grid gi is represented by its index (xi, yi).
Note that every trajectory point p falls into some grid, denoted
as Grid(p).

Definition 4 (Trajectory Graph): Given a set of trajecto-
ries {T1, . . . , TS}, the trajectory graph GT = (VT , ET ) repre-
sents the union of all trajectories. The node set VT is de-
fined as VT = ∪S

k=1{Grid(pi)|pi ∈ Tk}, where Grid(·) is a
function that maps each pi to the grid it falls into. The
edge set ET contains directed edges which can be associ-
ated with edge weights. For each edge eij = (vi, vj , wij),
we can set wij = |{(px, px+1)|Grid(px) = vi, Grid(px+1) =
vj , (px, px+1) ∈ Tk, k ∈ {1, . . . , S}}|. With some abuse of no-
tation, (px, px+1) ∈ Tk means that px and px+1 are two consec-
utive geopoints of Tk.

Note that the trajectory graph is essentially defined on the
grids, but only consider those having intersection with trajecto-
ries. It can be constructed in linear time and space complexity
with respect to the trajectory set. More precisely, both complex-
ity is bounded by O(

∑S
k=1 |Tk|), where |T | is the number of

geopoints in T . The trajectory graph provides an explicit way to

1By default we adopt the transductive setting, where trajectories in both
training set, validation set and test set are used for trajectory graph construction.
For the inductive setting, in model training phase we only use the trajectories
in the training set. In the model inference phase, we can either fix the trajectory
graph or update it on the fly.

Fig. 3. Toy example showing grids, trajectories, and road segments.

take the advantage of inter-trajectory correlations, as opposed
to existing methods that implicitly leverage the correlation via
directly feeding trajectories into sequential models.

Example 1: Consider the toy example in Fig. 3 . We have
two low-sampling-rate trajectories T1 = (p11, p12, p13) (in dark
blue) and T2 = (p21, p22, p23) (in brown) and eleven road seg-
ments from u1 to u11. For T1 we also show the GPS po-
sition of each trajectory point. Both trajectories are matched
to same sequences of road segments (u1, u2, u3, u6, u5, u4).
It can be seen that the GPS drift of trajectory points
p22 and p23 might cause erroneous prediction. The tra-
jectory graph GT contains five nodes {v1, . . . , v5}, with
Grid(p11) = Grid(p21) = v1, Grid(p12) = v2, Grid(p13) =
v3, Grid(p22) = v4, and Grid(p23) = v5. The edge set is
{(v1, v2), (v1, v4), (v2, v3), (v4, v5)}. Note that all edges are
directed and are of weight one. Since p11 and p21 are mapped
to the same node, p12 and p22 (resp. p13 and p23) become 2-hop
(resp. 4-hop) reachable and now it is possible to calibrate the
prediction with the information from other trajectories.

2) Trajectory Graph Convolution: Given the trajectory graph
GT as input, the trajectory graph convolution layer can compute
the hidden representation for each node in GT . For simplicity,
we employ a natural extension of the classic graph convolutional
network (GCN) [13]. For each nodev inGT , leth(0)

v ∈ R
d denote

its initial feature. For example, we can pass the index of the
corresponding grid through a fully connected layer to get h(0)

v .
Next, we adopt the graph convolution defined by (3), but change
it slightly to consider edge weights. We conduct L layers of
convolution to get the hidden representation of a trajectory node
v (i.e., a grid), which is denoted as h(L)

v .
Next, h(L)

v is assigned to every geopoint p matched to node
v (i.e., with Grid(p) = v). In the following we denote by
GCN

(L)
T (·) the L-layer graph convolution conducted on tra-

jectory graph GT , and hp the hidden representation for geopoint
p:

hp = GCN
(L)
T (Grid(p)). (5)

To this end, each geopoint aggregates neighborhood information
from the trajectory it belongs to as well as nearby trajectories.
In general, any GNN model applicable to directed and weighted
graphs can be used, and more powerful GNNs might result in
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better prediction accuracy. The following proposition states that
by capturing the inter-trajectory correlation, our encoder has
more expressive power in terms of discernibility.

Proposition 1: Given an input trajectoryT = (p1, . . . , pl), its
latent representation (hp1

, . . . ,hpl
) computed by the trajectory

graph convolution layer has more discriminatory power than that
of T ’s input feature.

Proof: Consider two trajectories T1 = (p11, . . . , p1 l) and
T2 = (p21, . . . , p2 l) with different sequences of matched road
segments R1 and R2. There exists at least one i ∈ [1, l]
with discernible input features, say, Grid(p1i) �= Grid(p2i) or
‖(lat1i, lng1i)− (lat2i, lng2i)‖ > ε, where ε is a predefined
distance threshold. The latter case can be transformed to the
former by adjusting grid size or shifting the position of grids.
Assume that two sequences of latent representations are indis-
cernible, as RNNs cannot guarantee that different input features
are always transformed to distinct representations (i.e., injec-
tive). Let hE

p1i
(resp. hE

p2i
) denote the latent representation at the

i-th step of the encoder for T1 (resp. T2) and assume for all i ∈
[1, l],hE

p1i
≈ hE

p2i
(e.g., ‖hE

p1i
− hE

p2i
‖ ≤ ε for sufficiently small

ε). Consequently, the predicted road segments are identical,
i.e., R̂1 = R̂2. With the trajectory graph convolution layer, it is
possible to havehE

p1i
�= hE

p2i
(e.g., ‖hE

p1i
− hE

p2i
‖ > ε) as we en-

code different graph structural information for v1i = Grid(p1i)
and v2i = Grid(p2i). More precisely, according to (1), we have

h(l+1)
vx

= COMBINE(l+1)
(
h(l)
vx
,AGGREGATE(l)

(
{h(l)

v }
))

,

(6)
for vx = {v1i, v2i} and v ∈ N(vx). As v1i �= v2i, it is very
probably that their computation graphs (i.e., rooted subtrees)
are different, and thus h(L)

v1i �= h
(L)
v2i . Then hE

p1i
�= hE

p2i
follows.

Also note that similar analysis has been conducted for other
graph problems by adopting GNNs, e.g., [23].

3) Trajectory Representation: Once the trajectory graph con-
volution layer computes hpi

for each trajectory point pi, the
trajectory representation layer transforms the input trajectory
T = (p1, . . . , pl) into its vector representation hT ∈ R

d. We
integrate RNN models to sequentially encode the trajectory and
extract intra-trajectory correlation. Specifically, for each step
i ∈ [1, l] we use bidirectional GRU:

hE
i = BiGRU(hE

i−1,hpi
), (7)

where hE
i is the hidden representation at i-th step of the en-

coder, and we set hT = hE
l . With a slightly abuse of nota-

tion, the process is denoted as hT = BiGRU(hp1
, . . . ,hpl

).
The expressive power of sequential encoder in capturing intra-
trajectory correlation is guaranteed by the theoretical analysis
of RNNs [24].

4) Road Graph Convolution: We propose the road graph
convolution layer prior to the trajectory graph convolution layer
for two purposes: 1) to compute latent representations for road
segments which will be utilized in the decoder (see Section III-C)
and 2) to augment the features of trajectory nodes with road
information.

For each node u of road graph GR, let h(0)
u denote its initial

feature, e.g., computed from the grids containing the starting and
ending GPS locations of the road segment. We conduct aL′-layer

graph convolution on GR to get u’s representation h
(L′)
u . We

adopt GIN [14] (see (4)) for that we tend to learn distinguishable
hidden representations for different road segments:2

h(L′)
u = GIN

(L′)
R (u). (8)

Feature Augmentation for Trajectory Nodes: To augment the
features of nodes (i.e., grids) in trajectory graph GT , we only
process the grids that intersect with road graph GR. For each
grid v, we augment its feature h(0)

v with the representation of all
intersecting road segments, e.g., by taking element-wise average
and concatenating it to the original feature:

h(0)
v = Cat(h(0)

v ,Mean{u|u intersects v}{h(L′)
u }). (9)

The advantages are two fold. First, it facilitates the alignment
of the representations of trajectory points and road segments,
which will be illustrated in Section III-C1. Second, recall that
vehicular map matching is essentially modeled as a multi-label
classification problem [3], [4], [5], [6] with the label set being all
road segments. In particular, we are partially inspired by recent
advances for node classification where simple model [9] explic-
itly exploiting label propagation outperforms most sophiscated
GNNs.

Example 2: We elaborate the effectiveness of road graph
convolution by reconsidering the toy example in Fig. 3. Assume
that trajectory node p12 should be matched to road segment u6.
Unfortunately, as the GPS location of p12 is drifted, directly
matching it to u8 in the same grid gives an unreasonable vehicle
routing plan. With the road graph convolution layer, the initial
feature of p12 now contains the information of u6 and thus it is
possible to correct the prediction. Moreover, the additional road
information facilitates to match p11 and p21 to u1.

We formally demonstrate the necessity of road segment repre-
sentation for capturing trajectory-road correlation in Section II-
I-C1.

5) Algorithm Description: The whole process of the graph-
augmented trajectory encoder is described in Algorithm 1. Given
an input trajectory T , for each trajectory point pi ∈ T , let vi be
the grid that pi falls into (Lines 1-2). If vi has intersection with
road graph GR (Line 3), we first conduct L′-layer road graph
convolution for each overlapping road segmentu (Lines 4-5) and
then use the element-wise average of their hidden representation
to augment the initial representation of vi (Line 6). Otherwise,
the initial representation of vi only includes the encoding of its
own features (Lines 7-8). Next, we conduct L-layer trajectory
graph convolution for vi and set the representation of pi accord-
ingly (Line 9). After we get the hidden representation of every
trajectory point pi, we take them as the input features and use
an RNN encoder to compute the trajectory representation hT
(Lines 10-11).

2This layer can be naturally extended to include edge direction information,
for example, to conduct graph convolution on both directions and concatenate
the hidden representations at each layer. In practice, we might have to ignore
road direction because the data is dirty. For the raw datasets used by industrial
communities such as the one in our experiments, a non-negligible portion of
trajectories do not correspond to a connected path on the directed road graph,
and by removing edge direction this problem is almost solved. This is because the
information of a small fraction of roads (e.g., side roads) might be problematic.
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Algorithm 1: Graph-Augmented Trajectory Encoder.

C. Graph-Based Conditional Decoder

The decoder recovers a sequence of matched road segments
from the hidden representation of the input trajectory T . We first
employ an RNN-based decoder similar to existing works [4],
[5], [6], [7], but additionally present the notion of hidden
similarity computation to improve model accuracy, efficiency
and interpretability. To be precise, by exploiting trajectory-road
correlation, we manage to align trajectories and road segments in
latent space. We further observe that (attentional) RNN decoders
cannot fully make use of the correlation between predicted road
segments, and put forward the conditional layer to calibrate
the prediction. The intuition is that consecutive geopoints in a
trajectory (even for a low-sampling-rate one) should be matched
to road segments inter-reachable by a few hops in GR. Note
that the conditional layer is optional, which enables the tradeoff
between accuracy and efficiency.

1) Hidden Similarity Computation: At each step of the de-
coder, the hidden similarity computation layer is employed
to convert the d-dimensional hidden representation hD

i to an
nR-dimensional probability vector ỹi, of which the j-th com-
ponent ỹij indicates the probability of the j-th road segment
being matched. In particular, we are motivated by the following
observations and substitute the well-adopted fully connected
layer [4], [5], [7] by hidden similarity computation.

Motivation. We note that the number of road segments nR
is large (at least in thousands), thus simply using a fully con-
nected (FC) layer [4], [5], [7] to convert hD

i ∈ R
d to ỹi ∈

R
nR needs tremendous parameters. We denote by WFC the

d× nR-dimensional learnable matrix. For the Tencent dataset
adopted in our experiments, if d is set to 512 following [4], with
nR > 8, 000, the FC layer contains more than 4 million learnable
parameters. Take MTrajRec [4] as an example, together with
the road segment ID embedding layer that transforms ỹi to the
input of the (i+ 1)-th step (the input dimension is set to 128),
it consists of nearly 95% of model parameters. However, the
number of trajectories are not on par with the parameter size.
For the Tencent dataset, we only have about 64 K trajectories.

Therefore, we are facing the overfitting problem. Besides, the
FC layer lacks interpretability, that is, the meaning of WFC is
not clear.

Instead, with the help of the road graph convolution layer in
Section III-B, we devise a more interpretable solution to convert
hD
i to ỹi. Recall that we can compute the vector representation of

each road segment u (i.e., node u of GR), thus we concatenate
all nR node representations and get the representation matrix
HR ∈ R

d×nR . It is important to note that HR are not learnable
parameters; we just reuse the road graph convolution layer. We
then multiply HR and hD

i to get the nR-dimensional prediction.
Intuitively, if the part of trajectory represented byhD

i is to match
with road segment ui, we want the dot product ofhD

i and the ui-
th column of HR to be large. Our solution contains much fewer
parameters and therefore is easier to train. Meanwhile, it also
has better interpretability as the alignment is done in latent space
rather than relying on distance-based heuristics. The following
proposition guarantees that our solution explicitly utilizes the
trajectory-road correlation.

Proposition 2: With the hidden similarity computation layer
and the road graph convolution layer, we manage to align repre-
sentations of trajectory points and road segments in latent space.

Proof: Given the representation matrix HR for all road seg-
ments and the latent state hD

i at i-th step of the decoder, the
hidden similarity computation layer (followed by Softmax) out-
puts predicted probability distribution ỹi = Softmax(Hᵀ

Rh
D
i ).

Let ui denote the ground truth road segment for this step, our
objective is to maximize ỹiui

and consequently hᵀ
ui
hD
i . In other

words, the trajectory point and its matched road segment are
aligned in latent space. To understand why the road graph
convolution layer is adopted to compute HR, note that for
two road segments ui and uj , if we have hMLP

ui
�= hMLP

uj
, then

hGIN
ui

�= hGIN
uj

but not vice versa. Here hMLP
ui

and hGIN
ui

denote
the latent representation computed by an MLP and GIN, respec-
tively. Meanwhile, the objective suggests that better discerniblity
between road segment representations helps to improve predic-
tion accuracy.

Example 3: Recall our toy example in Fig. 3. Assume two
roads (u6, u5, u4) and (u11, u10, u9) never intersect in the road
map. Unfortunately, trajectory points p22 and p23 ofT2 are closer
to road (u11, u10, u9), even though they should be matched
to (u6, u5, u4) for a reasonable vehicle route. Distance-based
mask layer (e.g., [4]) filters out road segments that are be-
yond a predefined distance from p21, p22 and p23. Thus, it
might falsely prune the ground truth road segments of p22
and p23. Moreover, to recover the matched road segments
(û21, ûa, û22, ûb, ûc, û23) from the low-sampling-rate trajectory
T2 [4], the distance-based mask layer can only be applied
to û2i corresponding to p2i for i ∈ [1, 3]. In comparison, our
model provides a more flexible approach to align all latent
representations (hD

21,h
D
a ,h

D
22,h

D
b ,h

D
c ,h

D
23) with those of the

road segments.
Inductive Capability: Another important advantage of our

approach is the inductive capability. In particular, our model
can handle changes of road network, for example, adding new
road segments. Representative methods [4], [5], [6] have to train
the model from scratch since the dimensions of the learned
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parameter matrix need to be updated. The inductive capability
of GraphMM is guaranteed by the following model design
strategy. We employ graph neural networks to compute the repre-
sentation of road segments and thus road segment ID embedding
is excluded. On the other hand, we use the hidden similarity com-
putation layer to replace the fully connected layer. Consequently,
our model is able to borrow the inductive capability from GNNs.

2) Conditional Layer: Few approaches have considered the
correlation between matched road segments of the input tra-
jectory, of which the importance is illustrated by the following
example.

Example 4: Let us consider trajectory T1 = (p11, p12, p13)
in Fig. 3. Whether to match p12 to u6 or u7 mainly depends its
successor p13 rather than its precursor p11. In other words, it
depends on whether the vehicle turns left or right at the corner.

However, Seq2Seq-based approaches model this correlation
implicitly by encoding the whole input trajectory, which is
proved to have limited expressive power by the following propo-
sition.

Proposition 3: By explicitly considering the correlation be-
tween road segments, it is possible to correctly predicted tra-
jectories with indiscernible input features but with different
matched road segments (i.e., labels).

Proof: Let us consider two trajectories T1 = (p11, . . . , p1 l)
and T2 = (p21, . . . , p2 l) with different sequences of matched
road segments R1 = (u11, . . . , u1 l) and R2 = (u21, . . . , u2 l).
We set the trajectories and matched road segments to have the
same length l for simplicity. Specifically, there exists at least one
iwithu1i �= u2i. However, their input features are indiscernible,
with p1i ≈ p2i for all i ∈ [1, l]. This is possible due to GPS
drifts for two vehicle trajectories corresponding to nearby roads.
Except for the objective function, if the model structure does
not explicitly exploit label information from the matched road
segments, it cannot make the correct prediction for both T1 and
T2 since all latent representations are also indiscernible.�

We observe that there might be multiple ways to model
the correlation between road segments. Apart from the road
graph convolution layer that explicitly incorporates labels, we
employ an additional conditional random field (CRF) layer in the
decoder. In contrast to the sequential decoder that predicts each
road segment only based on its precursors, the conditional layer
utilizes the information of the whole trajectory. In particular, it
is built on the output of the RNN-based decoder and maximizes
the conditional probability P (Y|Ỹ), where Ỹ ∈ R

l′×nR are
predicted probability vectors of the l′ matched road segments
by the hidden similarity computation layer, which is taken as
the input feature of CRF, and Y ∈ R

l′×nR denotes the ground
truth. More precisely, the i-th row of Ỹ (resp. Y), denoted
as ỹi (resp. yi), is an nR-dimensional vector representing the
predicted (resp. ground truth) matching probability of each road
segment. We define the conditional probability as follows:

P (Y|Ỹ) =
1

Z(Ỹ)
exp

(
l′∑

i=1

ψ(yi, ỹi) +
l′∑

i=2

φ(yi−1,yi)

)
,

(10)
whereZ(Ỹ) =

∑
Y′ exp(

∑l′

i=1 ψ(y
′
i, ỹi) +

∑l′

i=2 φ(y
′
i−1,y

′
i))

is the partition function, which summarizes the energy score of

all possible prediction Y′. We use ψ(·) and φ(·) to denote the
unary and pairwise potential respectively. For our problem, the
unary potential is simply defined as the predicted probability of
the ground truth road segment:

ψ(yi, ỹi) = ỹiui
, (11)

where ỹiui
represents the ui-th element of ỹi, and ui is the

ground truth road segment.
However, it is non-trivial to define the pairwise potential.

Canonical CRF models use a learnable transition matrix, which
is inapplicable to our problem for the following reasons. Since
the transition matrix has nR × nR parameters, we still face the
overfitting problem. Actually, a naive implementation of the
pairwise potential renders inferior accuracy compared to totally
excluding the CRF layer. Moreover, such an implementation has
severe scalability problems. It is very time consuming to train
the CRF with thousands of labels.

We adopt the following pairwise potential, which reflects the
label correlation of two consecutive road segments:

φ(yi−1,yi) = ReLU(hᵀ
ui−1

WCRFhui
)(Ak

R)ui−1ui
, (12)

where hui
is the hidden representation of road segment ui, and

WCRF is a d× d-dimensional parameter matrix.Ak
R denotes the

k-hop transition matrix of GR and is defined as

(Ak
R)u,v =

{
1 if u can reach v in k hops,
−λ otherwise.

(13)

Here, the hyper-parameter λ is set to 10,000 to penalize those
predictions in which two consecutive road segments are unreach-
able on road network. In this case, the energy score of the whole
prediction will approach zero.

Remark: It is worth noticing that the employment of cor-
relation between road segments is not limited to the above
approach. For example, we can calculate higher order transition
probabilities from the trajectory set and use (12) to capture
travel patterns [25] instead of the adjacency info, or add another
objective to minimize the gap between hᵀ

ui−1
hui

and transition
probabilities, which is beyond the scope of this paper.

3) Algorithm Description: The whole process of graph-
based conditional decoder is demonstrated in Algorithm 2.
Given the hidden representation of trajectory T , we use the
attentional GRU as the sequential decoder (Lines 1-3), and con-
duct hidden similarity computation to get the initial prediction
(ỹ1, . . . , ỹl′) (Line 4). It can be further refined by the CRF layer,
denoted as (ŷ1, . . . , ŷl′) (Line 5) (this step is optional). Finally
the algorithm returns the sequence of all matched road segments
(Line 6).

IV. MODEL TRAINING AND OPTIMIZATION

A. Model Training and Inference

Objective Function: We denote by GraphMM and
GraphMM w/o CRF the model variants with and without the
CRF layer, respectively. For GraphMM w/o CRF, we adopt
the cross-entropy loss (Equation 23) as in [4]. For GraphMM,
we maximize the conditional probability over all training data,
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Algorithm 2: Graph-Based Conditional Decoder.

Algorithm 3: Mini-Batch Training.

which is equivalent to maximize

L =
∑

(T ,R)∈Tr

logP (Y|Ỹ), (14)

where Y contains the ground truth of matched road segments,
and Ỹ denotes the input to the CRF layer which has the same
dimension to Y. More detailed definition of the conditional
probability including the unary and pairwise potentials is re-
ferred to (10)–(13).

Mini-Batch Training: We use the mini-batch strategy for
model training, as illustrated in Algorithm 3. Each minibatch B
composes of B data instances (Ti,Ri), i ∈ [1, B] (Lines 1-2).
For each data instance (Ti,Ri) and for every trajectory point
pij ∈ Ti, we first conduct forward pass of the road and trajectory
graph convolution layer, respectively (Lines 3-5). In practice,
for simplicity of implementation, both GNNs are computed by
the full-batch process, i.e., for each minibatch B, we compute
the nR × d-dimensional road segment representation and the
nT × d-dimensional trajectory node representation for GR and
GT respectively. However, empirical study shows that it is suf-
ficiently fast for the datasets tested. Next, we use mini-batch
training and run the forward pass on the whole trajectory (Line
6), followed by the forward and backward pass for the decoder
(Line 7). We use the backward pass to compute the gradients for

the encoder (Line 8), and update model parameters via stochastic
gradient descent (Line 9).

Remark: Both the road and the trajectory graph convolution
layer can be easily converted to mini-batch training. For each
trajectory node pij , we only fetch its L-hop neighbors in tra-
jectory graph GT . For each node v in this receptive field, we
find all overlapping road segments. For each road segment u,
we fetch its L′-hop neighbors in road graph GR. Then we can
invoke Algorithm 1 to compute the hidden representation of pij .
We leave more details to future work.

Model Inference: This stage is quite straightforward as we
sequentially invoke Algorithms 1 and 2 to predict the matched
road segments of an input trajectory. If the CRF layer is included,
we adopt the Viterbi algorithm to compute the final prediction.
To ensure model efficiency, we need the following optimization
techniques.

B. Optimizations

We propose several optimizations for efficient training and
inference of the CRF layer, as the label set usually contains
thousands or more road segments.

Approximation of Z(Ỹ) : Recall that the computation of
Z(Ỹ) in (10) involves all possible Y′. If the map-matched
trajectory is of length l′, there existO(nl

′
R) possible predictions,

which are computationally intractable. However, we note that
most Y′s are unreasonable, namely, they do not obey the con-
straint that two consecutive road segments are inter-reachable.
Moreover, these predictions are penalized by our design of
pairwise potential, and will have minor contribution to Z(Ỹ).

With the mini-batch strategy, we only consider a small subset
of all possible Y′. More specifically, for each trajectory T in
a minibatch B, let Ỹ = {ỹ1, . . . , ỹl′ } ∈ R

l′×nR be the input of
CRF, i.e., the prediction made by the sequential layer. For each
ỹi ∈ R

nR , we find its top-r component with the largest values
(e.g., r = 2 or 3), and fetch the corresponding road segments.
We also include the ground truth road segments for each index i.
Then we use the union of fetched road segments of this minibatch
rather than all nR road segments to compute an approximation
of Z(Ỹ). The approximation is generally accurate because we
indeed consider the predictions with large energy score for each
trajectory. On the other hand, the number of considered road
segments is limited and can be easily manipulated. In practice,
we manage to reduce the road segments by orders of magnitude.

Pruning Unnecessary Computation byGR :A straightforward
implementation of the Viterbi algorithm incurs O(ln2R) time on
an l-sized sequence withnR states, which is very costly for large
nR. However, for map matching the state transition is determined
by the road graph topology. In particular, assume at step i, the
conditional decoder predicts road segment ûi. For the next step,
our pairwise potential effectively prunes most states other than
its k-hop neighbors inGR. That is, the remaining states are only
the non-zero components of Ak

Reûi
. To this end, for a trajectory

of length l, the computing complexity is reduced from O(ln2R)

toO(lnR(
mR
nR

)k), where mR
nR

denotes the average degree of road
graph GR. Both k and the average degree are considered as
small constants as the road network is a grid-like sparse graph
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TABLE II
COMPLEXITY ANALYSIS OF HMM, SEQ2SEQ-BASED METHODS, AND GRAPHMM (WE OMIT ALL CONSTANT FACTORS)

and are omitted in the asymptotical analysis, which leads to a
complexity of O(lnR).

C. Complexity Analysis

We compare GraphMM with the classic HMM [3] and a
line of Seq2Seq-based methods [4], [5], [6]. Since the core
components of the Seq2Seq-based methods are identical, we
choose MTrajRec [4] for comparison. Specifically, we analyze
the number of parameters, the training time complexity (per
epoch) and the inference time complexity (of one input trajec-
tory) for three types of models (see Table II).

We model the problem input as follows. The road net-
work contains nR road segments. The training set has totally
S trajectories T1, . . . , TS of length l1, . . . , lS , with lmax =
max{l1, . . . , lS}. Assume that all hidden representations are of
dimension d, and all deep models are trained with minibatches
of sizeB. In the inference phase, we consider an input trajectory
T of length l, while the map-matched trajectory has lengthO(l).
For GraphMM, the constructed road graph GR has nR nodes
andmR edges. SinceGR is a grid-like sparse graph, the average
degree mR/nR is considered as a constant. The constructed
trajectory graph GT has nT nodes and mT edges, satisfying
that nT ,mT ≤

∑S
i=1 li = O(lmaxS).

For HMM, it has only two parameters, the standard deviation
of the presumed Gaussian distribution of GPS noise, and the
parameter for exponentially distributed transition probability.
Each parameter estimation needs a full scan of all S trajectories,
resulting in a complexity of O(lmaxS). For model inference,
the Viterbi algorithm incurs O(ln2R) complexity for the input
trajectory T of length l. We believe that in the inference phase,
the large number of road segments leads to the inefficiency of
HMM.

For the Seq2Seq-based methods, e.g., MTrajRec [4], the
RNN-based encoder and decoder contain O(d2) parameters,
while the FC layer and road segment ID embedding layer have
O(nRd) parameters. Since nR 	 d, the number of parame-
ters is asymptotically O(nRd). In each epoch of the training
phase, each step of an RNN incurs O(d2) time to multiply a d-
dimensional vector with d× d-dimensional parameter matrices
(we omit constant factors here for multiple gates). Therefore,
this step takes O(lmaxSd

2) time per epoch. For each trajec-
tory and each step of the decoder, the FC layer takes O(nRd)
time, leading to O(lmaxSnRd) time per epoch. Putting it all
together, the training time is O(lmaxSd

2) +O(lmaxSnRd) =
O(lmaxSnRd) per epoch. (We omit the additional cost of the
attention mechanism, which isO(l2maxSd

2) for the training set.)
We can similarly conclude that the inference time for trajectory
T is O(lnRd).

As for GraphMM, it needsO(d2) parameters for RNN-based
encoder and decoder, O((L+ L′)d2) parameters for L′-layer
road graph convolution and L-layer trajectory graph convolu-
tion, and O(d2) parameters for the conditional layer. Note that
L, L′ are small constants (we set L = L′ = 2 in this paper),
therefore the number of parameters is asymptotically O(d2).
Therefore, GraphMM achieves a balance between HMM and
MTrajRec in terms of model parameters.

Next, we analyze the training efficiency of GraphMM.
In each epoch, the encoder takes O(L′mRd+ L′nRd

2)
(resp. O(LmT d+ LnT d

2)) time for road (resp. trajectory)
graph convolution using the full-batch strategy. Note that
the first term is the cost of neighborhood aggregation, while
the second terms is for feature transformation. As there
are S/B minibatches per epoch, the time cost of graph
convolution is O( S

B ((mR +mT )d+ (nR + nT )d
2)) (we

omit the small constants L and L′). The RNN layers in the
encoder and the decoder take O(lmaxSd

2) time per epoch as
Seq2Seq-based methods. For the decoder, hidden similarity
computation needs O(lmaxnRd) time for every trajectory.
Summing it all up, the training time for GraphMM w/o CRF
is O( S

B ((mR +mT )d+ (nR + nT )d
2)) +O(lmaxSd

2) +

O(lmaxSnRd) = O((mR+mT +(nR+nT )d
B + lmaxnR)Sd). For

each epoch, with our optimization techniques, the CRF layer
has at most (r + 1)lmaxB states. Therefore, the training
cost per epoch is bounded by O(lmax((r + 1)lmaxB)2 ·
d2 · S/B) = O(l3maxSBd

2). (We omit r, the small
constant.) Consequently, the training cost of GraphMM
is O((mR+mT +(nR+nT )d

B + lmaxnR + l3maxBd)Sd). We can
similarly derive the inference time for an input trajectory T .
The details are omitted due to space constraints.

Remark: The asymptotical time complexities of GraphMM
for training and inference are comparable to those of MTrajRec,
as the terms mR+mT +(nR+nT )d

B and l3maxBd do not necessarily
dominate lmaxnR. As we will show in the experiments, it turns
out that GraphMM is about 4 times faster than MTrajRec,
while GraphMM w/o CRF achieves more than one order of
magnitude speedup because our parameter size is very much
limited.

V. EXPERIMENTAL EVALUATION

A. Experimental Settings

1) Datasets: We use the dataset collected by Tencent Maps
for a comprehensive experimental study. We evaluate model
accuracy as well as training and inference time. Ablation study
and investigation of parameter sensitivity are also conducted.
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Tencent: This dataset collects vehicle trajectories for a dura-
tion of 3 months, which covers an area of 8.69 km × 7.67 km in
the northeast of Beijing. It includes both the road network and a
set of vehicle trajectories. The road network contains 8.5 K road
segments and 15 K edges between them. Each road segment is
associated with the starting and ending GPS location. We totally
have 64 K trajectories sampled at a time interval of 15 seconds.
Note that the dataset is large in terms of the number of road
segments. Meanwhile, the size of available vehicle trajectories is
limited, making the problem more difficult. We divide the dataset
into training set, validation set and test set with the splitting ratio
of 7: 1: 2. We set the resampling rate as 50%, 25%, and 12.5%
to simulate sparse trajectories with sampling time interval of 30
seconds, 1 minute and 2 minutes, respectively. Each geopoint
in the original trajectory is independently sampled. We also use
this dataset to evaluate the inductive capability of our model.

2) Baselines: We include the following methods as base-
lines.

HMM. Adapted from the state-of-the-art method used in
Tencent Maps, it is an optimized version of the hidden markov
model for efficiency and is associated with several heuristic
refinements for accuracy. In particular, the emission probabil-
ities are computed by considering 1)the distance from the GPS
location to the road segment and 2)the consistency of travel
direction shown by the trajectory and road segment direction. For
the computation of transition probabilities, we eliminate most
unrelated road segments and keep a small candidate set for each
step of prediction, which greatly improves model efficiency. For
each trajectory point, we define its candidate road segments as
those of which the minimal distances to the current and five
previous trajectory points is less than 200 meters.

MTrajRec and MTrajRec w/o CM [4]: It is the state-of-the-art
method for vehicular map matching. We adopt the following
modifications for our problem. As it is impossible to get the
moving ratio for the aforementioned real-world datasets, we
deactivate the multi-task learning module. Similarly, we do not
use any external attributes such as weather conditions and POI
distributions. However, the time information (i.e., timestamp for
each trajectory point) is preserved. Besides, MTrajRec w/o CM
denotes the variant without the constraint mask layer, which
contributes most to model accuracy as shown in [4].

Note that we do not include DeepMM [5], [6], DHTR [7] and
other related approaches (e.g., [26]) for comparison for the fol-
lowing reasons. First, as shown in [4], MTrajRec outperforms
most methods [7], [26]. Second, the main component of [5]
and [7] are identical to MTrajRec w/o CM. Third, we cannot
get the implementation of [5] and [7] from the authors.

3) Implementation: We implement GraphMM in PyTorch
and adopt PyTorch Geometric, and get the code of MTrajRec
from the authors. By default we fix the grid length as 50 m as
suggested by [4]. We adapt the same parameter configuration
as described in the source code of MTrajRec, except that 1)the
learning rate is modified to 0.0005 and 2)we train the model for
100 epochs for better accuracy. (The model does not converge
for 20 epoches.) For GraphMM, we fix the learning rate as
0.0001 and the hidden dimensions as 256. To speed up the CRF
layer, we set r = 3 to approximate Z(Ỹ) in model training and

set r = 5 during inference, and set k = 4 for pairwise potential
(13). We train our models for 200 epochs. All experiments are
conducted on a Ubuntu server with an NVIDIA GeForce RTX
3090 Ti GPU of 24 GB memory. Our source code and data have
been made available at https://github.com/GraphMMmaster/
GraphMM-Master.

4) Evaluation Metrics: Let Ts = {T1, . . . , TS′ } denote the
test set, which contains S ′ trajectories. For each trajectory
Ti = (pi1, . . . , pili), let li denote its length, i.e., the number
of trajectory points. Motivated by real-world applications in
Tencent Maps, we adopt the following two metrics for model
evaluation.

Trajectory-level Accuracy: This is the evaluation metric used
by Tencent Maps. For each trajectory Ti, let (ui1, . . . , uili) be
the ground truth route, and (ûi1, . . . , ûili) the predicted road
segments. The prediction accuracy for Ti is defined as

Accuracy for Ti =
∑li

j=1 I[uij = ûij ]

li
, (15)

where I[A] is the indicator variable, which takes value 1 if
condition A is satisfied, and takes value 0 otherwise. The
trajectory-level accuracy is then defined as the average of predic-
tion accuracy over all trajectories in Ts (referred to as Accuracy
(T)):

Accuracy (T) for Ts =

∑S′

i=1 Accuracy for Ti
S ′ . (16)

Ratio of Longest Common Subsequence (R-LCS): We also adopt
longest common subsequence (LCS) to evaluate the similarity
of two sequences of same length. In particular, it is defined as

R-LCS for Ti =
LCS{(ui1, . . . , uili), (ûi1, . . . , ûili)}

li
, (17)

R-LCS for Ts =

∑S′

i=1 R-LCS for Ti
S ′ . (18)

Note that we are the first to adopt prediction accuracy for eval-
uation, while both metrics take the ground truth and the predicted
routes as sequences. This is because the order of predicted road
segments is of vital importance for real-world applications. As
a consequence, we will not focus on the evaluation metrics for
sets such as precision and recall. Although the distance between
a GPS location and its matched coordinates is an important
measure, we do not adopt it because 1)for real-world application
data such as Tencent, this information is unavailable, and 2) the
reported GPS location might have large deviation from the exact
position of the vehicle, and distance-based metrics are not good
choices.

B. Evaluation of Prediction Accuracy

We evaluate the prediction accuracy of HMM, MTrajRec,
and GraphMM on the Tencent dataset, as illustrated in Ta-
ble III. For the transductive setting, we use the bold font to
highlight the best result, and use underline for the second
best values. Surprisingly, HMM is quite robust with different
keep ratio, probably due to various optimizations adopted in
the industrial implementation. Note that our version of HMM
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TABLE III
EVALUATION OF PREDICTION ACCURACY ON THE TENCENT DATASET UNDER TRANSDUCTIVE AND INDUCTIVE SETTINGS

directly makes prediction on the sparse trajectory rather than
first recovering a high-sampling-rate one. However, it is still
surpassed by the deep learning models as they are able to
extract complicated spatiotemporal patterns from the training
data. On the other hand, for MTrajRec, the distance-based mask
layer has a large impact on the performance. Nonetheless, even
without the CRF layer, our approach (GraphMM w/o CRF)
consistently achieves better accuracy than MTrajRec in terms
of Accuracy(T) (by 6.76%, 4.65%, and 12.55% respectively)
and has better or comparable performance on R-LCS, as our
model is able to utilize more types of correlations between tra-
jectories and roads. For GraphMM, it has the best performance
over all settings. It outperforms MTrajRec by 9.08%, 6.89%,
and 14.71% in terms of Accuracy(T) and by 6.25%, 3.32%,
and 6.39% for R-LCS, for resampling rate of 50%, 25%, and
12.5% respectively. Notably, all methods achieve better results
on R-LCS, because it is more tolerable to position-wise error.
As the resampling rate decreases, the performance of all deep
models degrade significantly. We believe that this phenomenon
can be alleviated with more sophisticated representation learning
methods for sparse trajectories, such as more powerful GNNs
for trajectory graph convolution. We also note that there exists
a large room for accuracy improvement by exploiting the cor-
relation of road segments, e.g., by adding more features to the
input of the conditional layer. This observation is derived from
the fact that our method manages to identify the ground truth as
one of the top candidates but fails to distinguish it from others.
We leave it as future work.

Evaluation of Inductive Capability: Our experimental setting
for inductive map matching follows that of GNN [11], [12].
For our baselines, note that HMM can be directly applied to
this setting because it does not have the training phase, and
consequently it has the same prediction accuracy. However,
MTrajRec and other existing Seq2Seq-based methods cannot
be adapted to this scenario (see Section III-C1). To be precise,
we only use trajectories of the training set to construct the
trajectory graph, and train the model on a subset of all road
segments which covers all training data. In the model inference
phase, remaining road segments are added to the road network,
and we update the trajectory graph accordingly with the test
set. However, the model is not retrained but directly used for
prediction.

We show the experimental results of our models in the
bottom of Table III. Interestingly, our models have nearly no
degeneration of prediction accuracy, and significantly surpass
all baselines conducted in transductive setting. Probably this is

Fig. 4. Training time per epoch and inference time on the test set, with a
resampling rate of 50%.

because the training data already contains important patterns of
roads and trajectories as well as the correlations.

C. Evaluation of Model Efficiency

Fig. 4 demonstrates the efficiency of different methods with
a resampling rate of 50%. We omit other settings of resampling
rate because they demonstrate similar conclusions. We report
the training time per epoch and the inference time on the test set
with about 12 K trajectories.

HMM does not have model training time as it is adapted from
industrial systems. Unfortunately, it incurs the longest inference
time even with various optimizations. This is in consistent with
previous literature and coincides with our theoretical analysis.
MTrajRec and its variant take much time for training because
they contain tremendous numbers of parameters. Actually, the
model training of MTrajRec (with 100 epochs) takes more than
two days. With the same number of epoches, it converges slower
than our models. In contrast, GraphMM w/o CRF is more
than 10× (resp. 35×) faster than MTrajRec w/o CM (resp.
MTrajRec) for model training, and is about 5× and 18× faster
for model inference, respectively. Even with the CRF layer, our
model is significantly faster than MTrajRec w/o CM. It also has
4 × speedup for model training and 8 × speedup for inference
compared to MTrajRec. This is because our model has much
fewer parameters as we employ two graph representation layers
for the encoder along with the hidden similarity computation
layer for the decoder. Besides, our proposed acceleration tech-
niques are proved effective for the CRF layer with over 8 K
labels.
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Fig. 5. Ablation study of our models (with grid size of 50 meters and a
resampling rate of 25%).

Fig. 6. Prediction accuracy varying grid size (resampling rate = 25%).

D. Ablation Study

To validate the effectiveness of different modules, we replace
the road graph convolution layer (denoted as “-RC”) and the
trajectory graph convolution layer (denoted as “-TC”) as an
MLP with same hidden dimension and number of layers, re-
spectively. Note that we cannot fully remove these two modules
nor the hidden similarity computation layer. Otherwise, our
model degenerates to a Seq2Seq model. Notably, the road graph
convolution and the hidden similarity computation layers are
inseparable as the latter relies on the former to compute road
representations. Without modeling trajectory-road correlation,
the model becomes a variant of [4].

It can be concluded from Fig. 5 that road graph convolution
plays an important role in model accuracy. On the other hand, the
contribution of the trajectory graph convolution layer is not that
significant. We believe that a major reason is the limited power of
GCN. Also note that our model totally ignores the timestamp of
each geopoint and only focuses on the spatial information, thus
does not utilize temporal patterns in the trajectories as opposed to
most existing studies. We leave the application of more powerful
GNNs (e.g., temporal GNNs) as future work.

E. Parameter Sensitivity

We conduct parameter sensitivity study for grid size, which is
believed to have non-negligible impact on model performance.
As Fig. 6 shows, reducing grid size from the default value (50
meters) generally enhances the accuracy of both GraphMM and
MTrajRec as well as their gap. Meanwhile, enlarging grid size
deteriorates the accuracy of both models but has greater affect

on GraphMM. This is reasonable as both graph convolution
layers of GraphMM depend on the grids, and a fine-grained
partition of the map keeps more geographical information.

VI. RELATED WORK

A. State-of-The-Art Methods for Map Matching

Existing studies of the vehicular map matching problem can
be roughly categorized as the traditional hidden Markov model-
based method [3] and the recent methods [4], [5], [7] that employ
the Seq2Seq model [27] with various model improvements.

1) HMM: It treats sparse trajectories as observations and
road segments as states. Specifically, given an input trajectory
T = (p1, . . . , pl) of length l, HMM predicts an l-length se-
quence of road segments R = (r1, . . . , rl), by maximizing the
joint probability over T and R:

P (T ,R) = π(r1)

l∏
i=1

P (pi|ri)
l−1∏
i=1

P (ri+1|ri), (19)

where the initial state probabilities π(r1) follow the uniform
distribution over all road segments, whereas the emission prob-
abilities P (pi|ri) and transition probabilities P (ri+1|ri) are
empirically set to follow some predefined probability distribu-
tions of estimated driving distance, with only a few learnable
parameters. Given a sparse trajectory, the Viterbi algorithm is
adopted to recover the matched road segments. Although HMM
is effective for high-sampling-rate trajectories, it is incapable
of learning complicated spatial or temporal patterns from the
trajectory data, which leads to low accuracy when dealing with
sparse trajectories.

2) Seq2Seq-Based Methods: Nearly all Seq2Seq-based
methods [4], [5], [6], [7] apply the following encoder-decoder
paradigm as the main component of the model:

hT = RNNEncoder(T ), (20)

R = (Attentional)RNNDecoder(hT ). (21)

First, the RNN-based encoder transforms the input trajectory
T into hT , the hidden representation of the trajectory. Next,
the RNN-based decoder recovers the map-matched trajectory R
from hT . If the attention mechanism is employed, hidden infor-
mation at every step of the encoder will be explicitly exploited in
the decoding stage. As a consequence, for most Seq2Seq-based
models, their main components have almost identical expressive
capability for map matching. Among them, MTrajRec [4] is
the state-of-the-art method for map matching of sparse vehicle
trajectories.

MTrajRec [4]: It follows the encoder-decoder paradigm,
where the encoder is based on GRU and includes an attribute
module by considering additional environmental and road fea-
tures, and the RNN-based decoder is carefully designed to
integrate the standard attention mechanism, the constraint mask
layer, and the multi-task learning module to improve accuracy.
Particularly, the most powerful component is the constraint
mask layer, which prunes impossible trajectory-road matchings
according to their Euclidean distance. The intuition is that a
trajectory point should not be matched to road segments too
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far away. To be precise, at the i-th step of the decoder, the
hidden representationhi ∈ R

d is multiplied by a fully connected
(FC) layer with learnable matrixWFC ∈ R

d×nR and then passed
through the softmax function to derive the probability vector
ŷi ∈ R

nR :

P (ûi|hi) = ŷiûi
=

exp(hᵀ
i WFCeûi

)
 ciûi∑
j∈[1,nR]

exp(hᵀ
i WFCej)
 cij

. (22)

Note that ŷiûi
, the ûi-th component of ŷi, indicates the proba-

bility that road segment ûi is matched, while ei is the indicator
vector with i-th component set to 1 and all others set to 0.
MTrajRec uses a mask ci ∈ R

nR to filter out road segments
of distance larger than a predefined threshold τ . Specifically,

the j-th component of ci is set to cij = exp(−d2
ij

β2 ), where dij
is the Euclidean distance between the i-th trajectory point and
the j-th road segment. Moreover, if the distance is larger than
τ , cij is set to 0. In [4], τ and β are set to 50 (in meters) and 15,
respectively.

Along with other previous work, MTrajRec formulates the
map matching problem as the multi-label classification problem,
by taking the set of all road segments as labels. Thus, it is natural
to adopt the cross-entropy loss:

LCE = −
∑

(T ,R)∈Tr

|R|∑
i=1

nR∑
k=1

yiklogŷik, (23)

where Tr denotes the training set. Each training data instance
is a pair of sparse trajectory T and matched road sequence R,
whereas yi = (yi1, . . . , yinR) is a one-hot vector indicating the
ground truth for each index i of the matched road sequence.
For other representative Seq2Seq-based models, DeepMM [5],
[6] leverages BiLSTM as the encoder and LSTM as the de-
coder, and incorporates the standard attention mechanism [28].
Another refinement step based on heuristic strategies for the
topology continuity of trajectory is employed as postprocess-
ing. In addition, DeepMM studies the techniques for trajectory
augmentation, which is considered as an orthogonal contribution
to model design. DHTR [7] adopts a similar model framework
to DeepMM. Besides, it improves the decoder by considering
region constraint by utilizing the information of current input
trajectory. It also incorporates a Kalman Filter component with
the Seq2Seq model to calibrate estimation. The model does
not make use of the road network or any other graph-based
information.

Remark: As for the modeling of correlations proposed in our
paper, note that these models [4], [5], [6], [7] explicitly capture
intra-trajectory correlation by the adopted sequential models, of
which the expressive power is guaranteed by that of RNN [24].
In contrast, inter-trajectory correlation can only be implicitly
learned by feeding all trajectories to the deep model. By adding
various components and mechanisms other correlations might
be implicitly considered. For example, the road segment ID em-
bedding layer along with teacher forcing partially captures the
correlation between road segments. However, it is still limited by
the sequential nature of RNNs. It seems that existing approaches
cannot leverage trajectory-road correlation as they cannot learn
effective representation of road segments.

Another interesting observation is that existing deep mod-
els [4], [5], [6], [7] lack inductive capability, say, training on one
region of the map and conducting inference on another region.
Note that even for the same region but with one road segment
added, these models have to be retrained from scratch. This is
because the modification of the label set results in the change
of model structure, for example, the dimension of the FC layer
needs to be updated.

B. Other Related Work

Other Variants of Map Matching: A line of works [29],
[30] investigate pedestrian map matching, a more difficult task
as pedestrians can be either indoors or outdoors, while road
information might be unavailable. Online map matching [31],
[32], [33], [34] aims to predict the partial route by collecting
the real-time trajectory and poses greater challenges in terms of
prediction accuracy and response time.

Other Related Problems: A similar problem to map matching
is the next-step location prediction [26], [35], [36], which pre-
dicts the next few locations based on the travel history. Recently,
a few studies [7], [8] focus on trajectory recovery, which recov-
ers the high-sampling-rate trajectory from a low-sampling-rate
one. Another line of research [37], [38], [39] studies travel
time prediction, and the main idea is to capture spatiotemporal
dependencies.

Existing Studies Sharing Similar Ideas: We observe that a
few recent studies adopt similar ideas for model design. For
example, TrajNet [40] and Trajectory WaveNet [25] tackle the
traffic forecasting problem which predicts the traffic speeds in
the near future given historical data and the trajectories. For the
first time, they treat vehicle trajectories as first-class citizens. In
particular, these models first extract temporal patterns of the
road segments and then pass them to a sequential model in
which feature propagation along a trajectory is conducted. This
shares some resemblance with our graph-augmented trajectory
encoder. From the perspective of adopted deep neural networks,
except for the Seq2Seq models, other techniques have been
employed such as the attentional neural network [8]. We note
that a few work has adopted graph learning techniques for road
segment or trajectory representation [36], [41], [42]. However,
they focus on other problem settings and their models cannot be
directly applied to our problem.

VII. CONCLUSION

We propose GraphMM, a graph-based approach for ve-
hicular map matching. Apart from leveraging sequential mod-
els to extract intra-trajectory correlation, our model improves
matching accuracy by integrating inter-trajectory correlation
via trajectory graph convolution and trajectory-road correlation
via road graph convolution and hidden similarity computation.
Additionally, we enhance the classic sequential decoder with
a graph-based conditional model to incorporate correlation be-
tween road segments. The necessity of capturing these correla-
tions and the expressive capability of our proposed model are
formally proved. GraphMM is the first map matching model
that explicitly considers various data and label correlations via
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graph modeling, and the first to provide inductive capability.
Experimental results show that GraphMM outperforms both
industrial implementation of the hidden Markov model as well
as state-of-the-art Seq2Seq-based methods in terms of prediction
accuracy, while enhances training and inference efficiency by up
to an order of magnitude. In the future, we plan to extend our
model to larger problem sizes and the online problem setting.
From the technical point of view, we will conduct more extensive
investigation on the correlation of road segments to further
improve model accuracy.
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