
Materialized View Selection & View-BasedQuery Planning
for Regular PathQueries

YUE PANG, Peking University, China
LEI ZOU, Peking University, China
JEFFREY XU YU, Chinese University of Hong Kong, China

LINGLIN YANG, Peking University, China

A regular path query (RPQ) returns node pairs connected by a path whose edge label sequence satisfies the

given regular expression. Given a workload of RPQs, selecting the shared subqueries as materialized views

to precompute offline can speed up the online processing. Since the available memory is limited, we define

the materialized view selection (MVS) problem for RPQs as minimizing the total workload query cost within

a memory budget. To tackle the problem’s NP-hardness, we design an efficient MVS algorithm based on

heuristics. To prevent redundancies in the selected views, we devise the AND-OR directed acyclic graph with

closure (AODC) as the multi-RPQ query plan representation for the workload, which encodes the relations

between subqueries. In addition to detecting view redundancy, the AODC also incrementally updates itself

during view selection. To support query planning, we design a scalable cost and cardinality estimation scheme

for full-fledged RPQs, including Kleene closures. Our method, when applied to the Wikidata Query Logs,

shows a 9.73× speedup in the total query processing time compared to ad-hoc processing, using the views it

selects.

CCS Concepts: • Information systems→ Query planning; Database views.

Additional Key Words and Phrases: regular path query, materialized view, query planning

ACM Reference Format:
Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang. 2024. Materialized View Selection & View-Based Query

Planning for Regular Path Queries. Proc. ACM Manag. Data 2, 3 (SIGMOD), Article 152 (June 2024), 26 pages.

https://doi.org/10.1145/3654955

1 INTRODUCTION
A regular path query (RPQ) aims to return all the node pairs with a path satisfying the given

regular expression on the set of edge labels in the graph. It can thus help retrieve node pairs

that are complexly related. For example, if we want to get all the users whose direct or indirect

acquaintances moderate a forum in a social network, where the users and forums are nodes and

knows and moderates are edge labels, we can write the following RPQ: knows+/moderates, which
matches paths with one or more knows edges followed by a moderates edge, returning the desired

user-forum pairs. Due to their wide usage in real applications, RPQs are at least partially supported

Authors’ addresses: Yue Pang, michelle.py@pku.edu.cn, Peking University, Beijing, China; Lei Zou, zoulei@pku.edu.cn,

Peking University, Beijing, China; Jeffrey Xu Yu, yu@se.cuhk.edu.hk, Chinese University of Hong Kong, Hong Kong, China;

Linglin Yang, linglinyang@stu.pku.edu.cn, Peking University, Beijing, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/6-ART152

https://doi.org/10.1145/3654955

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0003-3575-8236
HTTPS://ORCID.ORG/0000-0002-8586-4400
HTTPS://ORCID.ORG/0000-0002-9738-827X
HTTPS://ORCID.ORG/0000-0001-9480-6088
https://doi.org/10.1145/3654955
https://orcid.org/0000-0003-3575-8236
https://orcid.org/0000-0002-8586-4400
https://orcid.org/0000-0002-9738-827X
https://orcid.org/0000-0001-9480-6088
https://doi.org/10.1145/3654955

152:2 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

in the most widely used graph query languages, including SPARQL
1
, openCypher [11], and ISO/GQL

[9]. More discussions of RPQ support in these languages will be given in Sec. 2.

Existing works on RPQs primarily study how to speed up an ad-hoc RPQ [27]. However, hardly

any of them studies the optimization of an RPQ workload, i.e., a set of RPQs. One possible way to

speed up the execution of an RPQ workload is to use materialized views. Given an RPQ workload,

if we select some subqueries as materialized views and precompute their results offline, we can

utilize them to accelerate online query processing.

Many applications need to efficiently process an RPQ workload, i.e., a set of RPQs, categorized

as follows:

• Applications with fixed RPQ workloads: Certain highly specialized applications, e.g., signaling

pathway detection in protein interaction networks [22], have limited sets of domain-specific

meaningful RPQs, which can be treated as fixed workloads.

• Applications with query logs involving RPQs: public graph query services, e.g., SPARQL query

endpoints, commonly preserve history queries in the form of query logs, where similar queries

occur over time in streaks [8]. Thus, extracting the RPQs from the query log as a workload speeds

up similar RPQs in the future.

• Applications issuing multiple RPQs simultaneously: For example, visual query systems fuzzily

translate a graphical query representation into multiple similar RPQs [1], forming a workload.

Materializing every RPQ in the workload will lead to the highest online efficiency if it is possible

to do so. However, the available amount of memory may not be sufficient for storing the results of

all the workload RPQs. Thus, it is meaningful to study materialized view selection for RPQs with

the objective of minimizing the total query cost of the workload within a memory budget.

The materialized view selection problem for RPQs is NP-hard (Sec. 5.1). The hardness is intuitively

due to the exponential number of view combinations concerning the workload size. It is thus difficult

to compute the optimal set of materialized views in a reasonable amount of time. Therefore, we aim

to design an efficient heuristic materialized view selection algorithm that returns a good enough

view set. However, a heuristic selection scheme may result in many redundant views, which wastes

memory without improving the efficiency, if it does not consider the relations between subqueries.

In addition, the relations between subqueries are more complex than the string subsumption

relation between their regular expressions, requiring a novel data structure to represent them.

To account for the relations between subqueries, we non-trivially extend the AND-OR directed

acyclic graph (AND-ORDAG) [20], the plan representation formulti-query optimization in relational

databases, which represents subquery relations as edges between subquery nodes. To adapt the

AND-OR DAG for RPQs, we extend it with Kleene closure operators and call the resulting plan

representation the AND-ORDAGwith closure (AODC).We use the AODC to represent the joint plan

of an RPQ workload. To support query planning with the AODC, we devise a cost and cardinality

estimation scheme for RPQs that extends existing work by supporting Kleene closures. On this

basis, we design a greedy materialized view selection algorithm with AODC-based redundancy

detection and removal. We also design an incremental planning algorithm that updates the AODC

with the selection of materialized views, so by the end of the view selection process, the optimal

plans of all the workload queries using these views are ready for execution.

To sum up, our work makes the following contributions:

• We are the first to formally define and propose a principled approach for selecting materialized

views for RPQs that minimizes the query cost of a given workload within a memory budget;

• We propose the AND-OR directed acyclic graph with closure (AODC) for multi-RPQ plan repre-

sentation to detect and remove redundant views during materialized view selection;

1
https://www.w3.org/TR/sparql11-query/

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

https://www.w3.org/TR/sparql11-query/

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:3

Table 1. Notations.

Notation Description

𝐺 = (𝑉 , 𝐸, Σ, 𝑙) An edge-labeled directed graph

Σ The set of edge labels

𝑙 The labeling function where

∀𝑒, 𝑙 (𝑒) ∈ Σ
𝑅 A regular path query (RPQ)

J𝑅K𝐺 , J𝑅K𝐺 .𝑠, J𝑅K𝐺 .𝑡 The set of result node pairs of the

RPQ 𝑅 on the graph 𝐺 , its set of

source and target nodes

v = ⟨𝑅, J𝑅K𝐺 ⟩ A materialized view for the RPQ 𝑅

V A set of materialized views

Table 2. RPQ support in graph query languages.

Graph query

language

SPARQL openCypher ISO/GQL

RPQ support

level

Full LCR Full

Graph data

model

RDF PG PG

• We design a scalable cost and cardinality estimation scheme for full-fledged RPQs, including

Kleene closures;

• We conduct extensive experiments on theWikidata dataset and a collection of challenging queries

from the Wikidata Query Log, showing the the efficiency of our method. Specifically, the speedup

on the workload is 9.73× with than without the materialized views, which use 2.14× memory of

the data graph.

2 PROBLEM STATEMENT
Definition 1 (RPQ). An RPQ 𝑅 has the following form:

𝑅 → 𝜖 | 𝑎 | 𝑎− | 𝑅1/𝑅2 | 𝑅1 |𝑅2 | 𝑅? | 𝑅∗ | 𝑅+ (1)

where 𝜖 matches the empty path, i.e., {⟨𝑣, 𝑣⟩ | 𝑣 ∈ 𝑉 }, 𝑎 and 𝑎− represent a single edge label and

its inverse, and /, |, ?, ∗, + are the concatenation, alternation, zero-or-one, Kleene star, and Kleene

plus operators, respectively. / and | are binary operators, and ?, ∗ and + are unary. ?, ∗ and + has
the same level of precedence, followed by / and lastly |.
Definition 2 (RPQ’s result). An RPQ 𝑅’s result on the edge-labeled directed graph𝐺 = (𝑉 , 𝐸, Σ, 𝑙)
is a set of node pairs, recursively defined as follows:

J𝑎K𝐺 = {⟨𝑢, 𝑣⟩|𝑙 (⟨𝑢, 𝑣⟩) = 𝑎} (Base case) (2)

J𝑎−K𝐺 = {⟨𝑣,𝑢⟩|𝑙 (⟨𝑢, 𝑣⟩) = 𝑎} (Base case, inverse) (3)

J𝑅1/𝑅2K𝐺 = J𝑅1K𝐺 ⊲⊳J𝑅1K𝐺 .𝑡=J𝑅2K𝐺 .𝑠 J𝑅2K𝐺 (Concatenation) (4)

J𝑅1 |𝑅2K𝐺 = J𝑅1K𝐺 ∪ J𝑅2K𝐺 (Alternation) (5)

J𝑅?K𝐺 = {⟨𝑣, 𝑣⟩|𝑣 ∈ 𝑉 } ∪ J𝑅K𝐺 (Zero-or-one) (6)

J𝑅+K𝐺 = ∪∞𝑖=1J𝑅
𝑖K𝐺 (Kleene plus) (7)

J𝑅∗K𝐺 = {⟨𝑣, 𝑣⟩|𝑣 ∈ 𝑉 } ∪ J𝑅+K𝐺 (Kleene star) (8)

where the join in Eqn. 4 treats the sets of node pairs as two-column tables, J𝑅K𝐺 .𝑠 and J𝑅K𝐺 .𝑡
referring to J𝑅K𝐺 ’s source and target nodes, respectively; 𝑅𝑘 is the shorthand for concatenating

𝑅 with itself for 𝑘 times (e.g., 𝑅2 = 𝑅/𝑅). For an example of obtaining an RPQ’s result on a graph,

please refer to Sec. 5.4.

Definition 3 (Materialized View for RPQ). Given an edge-labeled directed graph 𝐺 , any tuple

⟨𝑅, J𝑅K𝐺 ⟩ is a materialized view for RPQ, where 𝑅 is called its query and J𝑅K𝐺 is called its result.

Definition 4 (RPQ Workload). An RPQ workload 𝑆 = {𝑅1, · · · , 𝑅𝑘 } is a finite set of RPQs. To

represent duplicate RPQs, we denote the RPQ 𝑅𝑖 ’s frequency as freq[𝑅𝑖].

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:4 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

Definition 5 (Materialized View Selection (MVS) for RPQ). Given an edge-labeled directed graph

𝐺 , an RPQ workload 𝑆 and a memory budget 𝑏, find the set of materialized views V that minimizes∑
𝑅∈𝑆 𝑐𝑜𝑠𝑡 (𝑅,V) under the constraint

∑
⟨𝑅,J𝑅K𝐺 ⟩∈V |J𝑅K𝐺 | < 𝑏, where 𝑐𝑜𝑠𝑡 (𝑅,V) is the time cost of

executing 𝑅 with V.

RPQ support in graph query languages. Many graph query languages provides support for RPQ,

but not all of them support RPQ fully (Def. 1). Tab. 2 shows the levels of RPQ support in three

prominent graph query languages as examples. SPARQL and ISO/GQL fully supports RPQ, while

openCypher only supports a fragment of RPQ called label-constrained reachability (LCR) [23],

which disallows the concatenation operator. Since our method targets full-fledged RPQs, it supports

the RPQ components in all these query languages, regardless of the graph data models they rely on.

3 METHOD OVERVIEW
As shown in Fig. 1, our method consists of two workflows: 1) query planning (on the left) and 2)

materialized view selection (on the right). Given an RPQ workload and an edge-labeled directed

data graph, the planner produces the multi-query plan for the workload (Sec. 5.3, Alg. 1). Then

the view selector chooses views for materialization to minimize the workload’s total query cost,

with the multi-query plan aiding it to detect and remove redundant views (Sec. 6.1, Alg. 4). During

view selection, the multi-query plan is incrementally updated accordingly to reflect how the query

execution should utilize the selected views (Sec. 6.2, Alg. 5). Finally, the executor executes a workload

query, using the materialized views according to the plan (Sec. 5.4, Alg. 2).

Workload

Alg. 1

Planner

Redundancy detection
Multi-Query

Plan

Alg. 4, Alg. 5

View Selector

Materialized
Views

Cost & cardinality estimation

Data graph
① ②

③Alg. 2

Executor

Query Results

Fig. 1. Method overview.

ABC

AB BC AC

A B C

Fig. 2. An example AND-
OR DAG.

/

+

/ /

/ /

|

/ / /

... ...

|

*

cost = 4
card = 4

cost = 2
card = 2

cost = 3
card = 3

cost = 12
card = 8

cost = 9
card = 2

cost = 9
card = 2

cost = 12
card = 8

cost = 21
card = 8

cost = 19
card = 8

cost = 19
card = 8

s t s t

OR node (RPQs)

AND node (operators)

OR node as
materialized view

s t

Fig. 3. An example AND-OR DAG with closure
(AODC).

4 RELATEDWORK
MVS for RPQs. To our knowledge, the only work that studies MVS for RPQs is [3]. Its method is

not suitable for our setting, because their optimization objective is to minimize the memory usage,

not the workload’s query cost. Since the amount of memory that any materialized view uses is

independent of each other, while a workload query’s cost depends on whether other related queries

are materialized, Afonin’s [3] method is not directly adaptable to our setting. Besides, Afonin’s [3]

method exhaustively enumerates all the possible materialized view combinations without pruning,

which is infeasible even on small workloads. Therefore, we do not compare our method with theirs

experimentally.

Query planning for RPQs. Previous works on query planning for RPQs focus on optimizing

ad-hoc RPQs. The state-of-the-art plan representation for RPQs is the Waveplan, used by the RPQ

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:5

optimizer Waveguide [27]. Waveplans extend finite automata in the following aspects: 1) using

both forward and backward traversals on the data graph (e.g., 𝑎· signifies traversing 𝑎-labeled edges
from their sources to their targets, while ·𝑎 signifies traversing them from their targets to their

sources); 2) allowing an RPQ plan to consist of multiple automata; 3) allowing views (i.e., the results

of the other automata in the plan) as state transitions. With these extensions, Waveplans subsume

the previous works in RPQ query planning, such as [13] which starts searching from the rare labels

in the data graph. [27] also proposes a cost model to assess the efficiency of Waveplans. Since

Waveplans can treat views as state transitions, it is possible to choose the most efficient Waveplan

using a given set of materialized views. However, [27] does not provide a method to determine

which views to select given an RPQ workload.

We use a plan representation different from Waveplans. We will explain why and contrast our

plan space with theirs in Sec. 5.5.

In addition, some works translate RPQs into SQL extended with Kleene closures or Datalog to

utilize their existing query planning mechanisms [10], but they ignore the specific graph query

structure. [18] proposes a cost model for RPQs, which only applies to finite automaton plans. It

is thus used for evaluating parallel RPQ plans, i.e., the ways of splitting an RPQ into a batch of

subqueries or an RPQ workload into several batches for parallel execution, where a batch’s cost

is defined as the cost of its most expensive RPQ. [5] discusses RPQ execution on a space-efficient

graph storage structure based on wavelet trees, outperforming existing graph DBMS on ad-hoc

RPQs, so we also evaluate it experimentally. Other works discuss query planning for RPQs for

distributed [19, 26] or approximate [25] query processing, which are beyond the scope of this paper.

Multi-query optimization (MQO) for RPQs. MQO aims to optimize a batch of queries by sharing

computation. MQO and MVS are similar in that they both aim to optimize multiple queries at once.

However, the difference in their settings leads to diverging optimization objectives. Specifically,

MQO receives ad-hoc query batches, while MVS has a fixed query workload. Thus, MVS has

an offline precomputation phase, where the time overhead is relatively unimportant within a

reasonable range, while MQO does not.

Swarmguide [1, 2] is an MQO framework based on Waveguide [27]. Given an RPQ workload,

Swarmguide clusters the workload queries into batches based on the similarity between their

minimal deterministic finite automata (DFAs), which are unique up to isomorphism, using affinity

propagation [12] on their labels. It then computes the maximum common sub-automaton of the

minimal DFAs in each batch, selects that subquery as the batch’s shared view, and uses Waveguide

to plan it. After executing the shared views, Swarmguide uses them as state transitions and invokes

Waveguide to plan the workload queries.

RTC [15] is an MQO framework with strategies to speed up the computation of the common

Kleene closures 𝑅∗ or 𝑅+ in the given RPQ workload. Since these strategies are also effective on a

single RPQ with Kleene closures according to their experiments, we consider RTC as an efficient

physical implementation of the Kleene closure operator. In contrast, we and Waveguide [27] are

primarily concerned with logical query planning, i.e., the operators’ ordering, and our methods

allows plugging in different physical implementations of the operators. Therefore, it is possible to

incorporate RTC as an add-on to our query plan in the future work.

In our experiments, we compare these MQO methods with our MVS scheme fairly by moving

their time overheads for extracting and conducting the shared computation to the offline phase,

focusing on comparing their online query efficiency (Sec. 8.6).

MQO for relational queries. The AND-OR directed acyclic graph (AND-OR DAG), first proposed

in [20], facilitates MQO in relational databases by representing the alternative plans of multiple

queries in a single DAG. [21] proposes MVS algorithms for relational queries based on the AND-OR

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:6 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

DAG. Since the AND-OR DAG serves as our basis for MVS for RPQs, we briefly introduce it in the

following.

The AND-OR DAG has two types of nodes: AND nodes, representing algebraic operators such

as joins, and OR nodes, representing subqueries. AND nodes and OR nodes are interleaved by layer

in the DAG: an OR node’s out-neighbors can only be AND nodes, denoting alternative ways to

compute the subquery’s results, while an AND node’s out-neighbors can only be OR nodes, denoting

the operator’s operands. For example, the AND-OR DAG in Fig. 2 shows all the possible ways to join

the tables A, B, and C, drawing the OR nodes as squares and the AND nodes as circles. It subsumes

all the alternative query plans of any workload that is a subset of {𝐴𝐵𝐶,𝐴𝐵, 𝐵𝐶,𝐴𝐶,𝐴, 𝐵,𝐶}. When

an OR node has multiple child AND nodes (e.g., 𝐴𝐵𝐶), the cheapest child is selected for execution

based on the cost model.

5 AND-OR DAGWITH CLOSURE
In this section, we describe the AND-OR DAG with closure (AODC), the multi-RPQ plan represen-

tation that we propose as the basis for MVS and view-based query planning.

5.1 Motivation
The motivation for designing the AODC for MVS and view-based query planning is: firstly, the

hardness of MVS necessitates a heuristic MVS algorithm instead of exhaustive search; secondly,

such a heuristic algorithm will lead to redundant views unless it considers the relations between

the views, which is where the AODC comes into play. In the following, we first prove the hardness

of MVS:

Theorem 1. Given a workload, MVS for RPQ is NP-hard.

Proof. Given a finite set 𝑁 , if a function 𝑓 : 2
𝑁 → R only gives non-negative value and is

monotone and submodular, finding a set V ⊆ 𝑁 that maximizes 𝑓 (V) is NP-hard [16]. Given a

workload 𝑆 , we define 𝑓 (V) as the materialized view set V’s benefit, i.e., cost reduction, where
V ⊆ 𝑁 and 𝑁 is the set of the workload RPQs’ subqueries. 𝑓 accounts for the memory budget by

ensuring 𝑓 (V ∪ {v}) = 𝑓 (V) if V ∪ {v} exceeds the budget. Thus, finding V ⊆ 𝑁 to maximize 𝑓 (V)
is equivalent to MVS for RPQ (Def. 5). If 𝑓 has all of the three properties above, MVS for RPQ is

NP-hard.

𝑓 obviously takes non-negative value only. For any view set V and view v, 𝑓 (V ∪ {v}) ≥ 𝑓 (V),
since if v does not reduce the workload’s query cost, it will not be used. 𝑓 is also submodular, i.e.,

for any view set V and Uwhere V ⊆ U ⊆ 𝑁 and any view v, 𝑓 (V∪{v}) − 𝑓 (V) ≥ 𝑓 (U∪{v}) − 𝑓 (U).
For brevity, we denote 𝑓 (V ∪ {v}) − 𝑓 (V) by ΔV,v in the following. If neither V nor U’s queries has
subqueries that overlap with v’s query, ΔV,v = ΔU,v. Otherwise, we denote the set of overlapping

subqueries in V’s queries as V′ and those in U’s queries as U′. Since V ⊆ U, V′ ⊆ U′. When

V′ = U′, ΔV,v = ΔU,v; otherwise, the subqueries in (U′ − V′)’s queries can possibly reduce the

workload’s query cost further when materialized in place of v, so ΔV,v ≥ ΔU,v. In all the possible

cases, ΔV,v ≥ ΔU,v, so 𝑓 is submodular. Therefore, MVS for RPQ is NP-hard. □

Since MVS for RPQs is hard (Thm. 1), we have to resort to heuristic selection if we want to

efficiently obtain a near-optimal solution, e.g., greedily selecting the top-ranking candidate views

by some heuristic ordering until the memory exceeds the budget. However, such a selection scheme

may lead to many redundant views if it does not consider the overlapping relations between

the candidate views, which are more complicated than string subsumption. For example, for

the workload query (𝑎/𝑏/𝑐)+/(𝑏/𝑐 |𝑑∗), if 𝑎/𝑏/𝑐 is already materialized, the view 𝑎/𝑏 would be

redundant, but 𝑏/𝑐 would not, though the strings 𝑎/𝑏 and 𝑏/𝑐 are both subsumed by 𝑎/𝑏/𝑐 .

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:7

Hence, we adapt the AND-OR DAG, which originally represents the joint query plan of multiple

relational algebra (RA) queries, for representing the joint query plan of the RPQ workload and the

relations between candidate RPQ views. We call the resulting plan representation the AND-OR

DAG with Closure (AODC).

5.2 Structure & Construction
We extend the AND-OR DAG with the Kleene closure operators, ∗ and +, and call the resulting

plan representation the AND-OR DAG with closure (AODC), defined as follows:

Definition 6 (AND-OR DAG with Closure (AODC)). The AODC of the RPQ workload 𝑆 is a

labeled directed acyclic graph with two types of nodes, AND nodes and OR nodes. Since the AODC

is acyclic, we hereby refer to any of its node’s in- an out-neighbors as its parents and children,

respectively.

An AODC satisfies the following properties:

• Each AND node is labeled by an RPQ opeator (i.e., /, |, ?, *, or +).

• Each OR node is labeled by a distinct RPQ. Those labeled by RPQs in the workload 𝑆 are root

nodes, i.e., they do not have parents.

• Each AND node’s children are OR nodes labeled by the operands of the RPQ operator that labels

it.

• Each OR node’s children, if it has any, are AND nodes labeled by the lowest-precedence operator

in the RPQ associated with it. When there are multiple lowest-precedence operators, specifically

/ or |, each / constitutes a child, while all the |’s are merged into a child taking all the operands,

since /’s execution order affects query time, but |’s does not.
The construction of an RPQ’s AODC is a top-down procedure in the descending order of the

operators’ precedence. To construct the AODC of a workload, we construct each RPQ’s AODC,

sharing OR nodes whenever possible. The ordering of the workload RPQs does not affect the struc-

ture of the resulting AODC. The following example shows the AODC’s structure and construction

procedure.

Example. Fig. 3 shows the AODC of the workload {(𝑎/𝑏/𝑐)+/(𝑏/𝑐 |𝑑∗), 𝑎/𝑏/𝑐/𝑑∗, 𝑏/𝑐 |𝑑}, each RPQ

having a frequency of 1. Construction begins at a root node labeled by a workload RPQ and proceeds

downwards. When there are multiple lowest-precedence operator /’s, e.g., at the OR node labeled

𝑎/𝑏/𝑐 , each / labels one of its children. When the construction finishes from a root node, it starts

from the next, until having spanned from all of them. We omit the descendants of 𝑎/𝑏/𝑐/𝑑∗’s first
two children due to limited space. Note how OR nodes can be shared by parent AND nodes, e.g.,

𝑏/𝑐 .
The purpose of the AODC is twofold: the first is to capture the relations between candidate

materialized views (i.e., OR nodes) via paths, and the second is to share the computation on common

subplans during planning (Sec. 5.3).

5.3 Planning
The AODC incorporates all the possible plans of each workload query, each resulting from a distinct

concatenation order. The key to planning is to choose a near-optimal order. Concatenations are

similar to relational joins except that they enforce a strict left-to-right semantics. For example,

in a relational query, 𝐴𝐵𝐶 can translate to (𝐴 ⊲⊳ 𝐶) ⊲⊳ 𝐵, but the RPQ 𝑎/𝑏/𝑐 cannot translate to
(𝑎/𝑐)/𝑏. Hence, the concatenation order is as crucial to an RPQ plan’s efficiency as the join order

to relational algebra. The planning process chooses the optimal execution tree for each workload

query by conducting a depth-first search (DFS) from each respective node, making choices in a

bottom-up fashion, as shown in Alg. 1.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:8 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

Algorithm 1: Query Planning on the AODC

Input: The AODC 𝑎𝑜𝑑 , the RPQ workload 𝑆 , the graph𝐺 ,

the cost function cost : 𝑉𝑎𝑜𝑑 → R+0 ,
the cardinality estimation function card : 𝑉𝑎𝑜𝑑 → N+0
Output: The annotated AODC 𝑎𝑜𝑑

1 forall 𝑞 ∈ 𝑆 do
2 planNode(𝑞’s node in 𝑎𝑜𝑑)

3 Function planNode(𝑥):
4 if 𝑥 has been planned or has no children then
5 return

6 forall 𝑦 in 𝑥 .children do
7 planNode(𝑦)

8 if 𝑥 is an OR node then
9 𝑥 .cost← +∞

10 for 𝑖 in range(0, 𝑥 .numChild) do
11 if 𝑥 .children[i].cost < 𝑥 .cost then
12 𝑥 .cost← 𝑥 .children[i].cost

13 𝑥 .card← 𝑥 .children[i].card

14 𝑥 .targetChild← 𝑖

15 else
16 𝑥 .cost←estimateCost(𝑥 .opType, 𝑥 .children,𝐺)

17 𝑥 .card←estimateCard(𝑥 .opType, 𝑥 .children,𝐺)

18 if 𝑥 .opType = / then
19 Choose the cheaper direction (→ or←)

Apart from the AODC and the query workload, Alg. 1 also requires inputting a cost and a

cardinality function, mapping each AODC node to their estimated costs and cardinalities. We can

directly obtain the exact cardinalities of the RPQs of single edge labels, i.e., the leaf nodes in the

AODC, and their costs are equal to their cardinalities because answering them is equivalent to

scanning all the edges in the data graph labeled by them; the other nodes’ costs and cardinalities

are initialized as +∞, which planNode, the DFS procedure, will refine later.
planNode starts by checking if the current AODC node 𝑥 has been planned, i.e., visited by a

prior DFS, and returns if so (Lines 4-5), preventing the recomputation of common subplans. Then it

recursively invokes itself on 𝑥 ’s children (Lines 6-7). If 𝑥 is an OR node, it selects the child node

with the lowest estimated cost as the target child for execution and sets its cost and cardinality

equal to its target child’s (Lines 8-14). Otherwise, 𝑥 is an AND node, so we estimate its cost and

cardinality based on its operator type and its children’s estimates (Lines 15-17). Particularly, when

𝑥 is a concatenation node, the direction of its execution (from left to right,→; or from right to left,

←) can significantly impact the efficiency, so the algorithm estimates their respective costs and

chooses the cheaper direction (Lines 18-19). Sec. 7 will introduce the cost and cardinality estimation

schemes, estimateCost and estimateCard.
The output of Alg. 1 is the AODC, each OR node now annotated with its target child, determining

the optimal execution trees of each workload query. As a byproduct, Alg. 1 also annotates each

AODC node with its estimated cost and cardinality.

Alg. 1 works regardless of whether there are materialized views or not, which only changes the

cost function (Sec. 7).

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:9

Example. For brevity, we explain the planning process up to the OR node 𝑎/𝑏/𝑐 in Fig. 3. Planning

starts at the leaf nodes, whose costs are equal to their cardinalities as shown in the blue boxes,

directly available from the data graph (Fig. 6). We can then estimate the costs and cardinalities of

the /’s between single edge labels according to Eqn. 18 and 19 (Sec. 7), which are also the costs and

cardinalities of their parents, 𝑎/𝑏 and 𝑏/𝑐 . Next, we do estimations on the two child nodes of 𝑎/𝑏/𝑐 ,
which represent its two concatenation orders. The child on the right, which indicates concatenating

𝑏 and 𝑐 first and then 𝑎, is selected as the target child for execution due to its lower cost, marked by

the red edge in bold. The arrows in the concatenation nodes denote the chosen execution direction.

5.4 Execution
Given an AODC 𝑎𝑜𝑑 annotated by Alg. 1, a workload RPQ 𝑞 in 𝑎𝑜𝑑 , and a data graph 𝐺 , Alg. 2

executes 𝑞 according to 𝑎𝑜𝑑 to get J𝑞K𝐺 . The execution procedure, executeNode, also has a DFS

framework. Besides the node to execute, it has two other inputs, lCand and rCand, which are the

candidate source and target data nodes, respectively. These are initialized as empty sets, since

there is no constraint on a workload RPQ’s source or target. However, Alg. 2 fills them during

the execution of concatenation nodes, facilitating sideways information passing [7] between the

concatenated subqueries, which reduces the search space (details below).

The base case is OR nodes that have been materialized or single labels, whose results we can

directly obtain. If there are candidate source or target data nodes, we apply a filter on the results

accordingly (Lines 4-5). The other OR nodes’ results need computing. They invoke the execution

of their target children, which represent their most efficient execution plan, passing along the

candidate sets (Line 6).

The AND nodes’ execution differs with their operator types, following Def. 2. The execution of

concatenation and Kleene closure nodes are particularly noteworthy. A concatenation node has two

execution directions,→ and←, executing the left or right child first, respectively. Alg. 1 chooses

the cheaper one and annotates the concatenation node accordingly. Taking the→ direction as

an example (Lines 9-14), when executing the left child, we pass in the candidate sources that we

currently have. In addition, having executed the left child, its targets can serve as the right child’s

candidate sources, with the exception of the left child’s result set having an 𝜖 , where the right

child’s sources should be unconstrained. The case is similar for the← direction (Lines 15-20). The

Kleene closure nodes computes the fix-point of its child node’s result set (Lines 34-40). In practice,

we append the newly produced results to the end of childRes in each iteration, so we don’t need to

explicitly implement the set minus in Line 35 or the unionRes call in Line 40.

The lazy treatment of 𝜖 . As described in Sec. 5.2, an 𝜖 produced by the ? or ∗ operator will lead to

{⟨𝑣, 𝑣⟩ | 𝑣 ∈ 𝑉 } in its results, which contains |𝑉 | tuples. Instead of immediately materializing this

set when encountering an 𝜖 , we mark the respective nodes’ result sets with 𝜖 to save memory and

time (Lines 29 and 38). When a marked result set joins with another on the left (right), joinRes
implements a right-(left-)outer join. If a workload query’s result set is marked, it will finally emit

{⟨𝑣, 𝑣⟩ | 𝑣 ∈ 𝑉 }.
Example. Like the planning process, the execution of the AODC in Fig. 3 starts at the leaf nodes

and proceeds upwards. Taking 𝑏/𝑐 as an example, if it has not been materialized, we follow the

→ direction annotating its child concatenation node, and try matching the target nodes in J𝑏K𝐺
to source nodes in J𝑐K𝐺 , getting two matches, which form J𝑏/𝑐K𝐺 . The results are shown in the

green tables in Fig. 3. Afterwards, we join J𝑏/𝑐K𝐺 with J𝑎K𝐺 to get J𝑎/𝑏/𝑐K𝐺 according to the

concatenation order dictated by the chosen target child. Note that the targets of J𝑎/𝑏/𝑐K𝐺 serving

as 𝑑∗’s candidate sources when executing 𝑎/𝑏/𝑐/𝑑∗ greatly reduces the search space, since most of

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:10 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

Algorithm 2: Executing a query on the AODC

Input: The AODC 𝑎𝑜𝑑 , the workload RPQ 𝑞, the graph𝐺

Output: J𝑞K𝐺
1 executeNode(𝑞’s node in 𝑎𝑜𝑑 , ∅, ∅)
2 Function executeNode(𝑥 , lCand, rCand):
3 if 𝑥 is an OR node then
4 if 𝑥 is materialized or a single label then
5 return filter(𝑥 .res, lCand, rCand)

6 return executeNode(𝑥 .targetChild, lCand, rCand)

7 else
8 if 𝑥 .opType = / then
9 if 𝑥 .direction =→ then
10 lRes← executeNode(𝑥 .children[0], lCand, ∅)
11 if lRes has 𝜖 then
12 rRes← executeNode(𝑥 .children[1], ∅, rCand)
13 else
14 rRes← executeNode(𝑥 .children[1], lRes.t, rCand)

15 else
16 rRes← executeNode(𝑥 .children[1], ∅, rCand)
17 if rRes has 𝜖 then
18 lRes← executeNode(𝑥 .children[0], lCand, ∅)
19 else
20 lRes← executeNode(𝑥 .children[0], lCand, rRes.s)

21 return joinRes(lRes, rRes)

22 else if 𝑥 .opType = | then
23 curRes← ∅
24 forall 𝑦 in 𝑥 .children do
25 curRes← unionRes(curRes, executeNode(𝑦, lCand, rCand))

26 return curRes

27 else if 𝑥 .opType = ? then
28 curRes← executeNode(𝑥 .children[0], lCand, rCand)

29 Mark curRes with 𝜖

30 return curRes

31 else if 𝑥 .opType = + or 𝑥 .opType = ∗ then
32 childRes← executeNode(𝑥 .children[0], lCand, rCand)

33 deltaRes← childRes, curRes← childRes

34 while true do
35 deltaRes← joinRes(deltaRes, childRes) - curRes

36 if deltaRes = ∅ then
37 if 𝑥 .opType = ∗ then
38 Mark curRes with 𝜖

39 return curRes

40 curRes← unionRes(curRes, deltaRes)

the 𝑑 edges in the data graph (Fig. 6) do not follow an 𝑎/𝑏/𝑐 path, thus excluded from the search.

On the other hand, if 𝑏/𝑐 has been materialized, we can directly obtain its results.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:11

a b c

a:

S

(a) No LC

U

:

bc a

a:

S

(b) Partial LC

U

:

abc S

:

(c) Full LC

Fig. 4. Waveplans with different LC strategies.

Executing queries outside of the workload. Our method can support planning and executing

queries that are not in the original workload. Specifically, given such a query, we first add it to the

AODC, then run Alg. 1 and Alg. 2 on it. If this query shares a subplan with a workload query, Alg.

1 will skip the subplan’s planning, preventing recomputation.

5.5 Discussion: Comparison with Waveplans
The state-of-the-art RPQ plan representation, Waveplans [27], has a plan space that properly

subsumes those of finite automata and relational algebra extended with the fix-point operator 𝛼

(𝛼-RA). The plans that Waveplan can express but 𝛼-RA cannot be “no loop caching” and “partial

loop caching” plans for Kleene closures. In contrast, they call the fix-point operator in 𝛼-RA “full

loop caching”. Fig. 4 shows the Waveplans for (𝑎/𝑏/𝑐)+ using no/partial/full loop caching (LC),

respectively. The fundamental difference between the different LC strategies is how much of the

cycle representing the Kleene closure in the automaton is computed in a separate automaton. No

LC does not have a separate automaton, partial LC has a separate automaton for part of the loop,

and full LC has a separate automaton for the whole loop.

The AODC is equivalent to multiple 𝛼-RA plans sharing their common sub-plans, implementing

Kleene closures as full LC. Therefore, the plan space of AODC is the same as that of 𝛼-RA. Though

it can be extended to support no LC and partial LC plans by annotating the Kleene closure nodes

accordingly, we find in our preliminary experiments that no LC and partial LC plans are hardly ever

faster than 𝛼-RA plans, which is consistent with the findings in Sec. 5.2 of [27]. We thus exclude

these plans in this work.

We also note that it is possible but difficult to design a multi-RPQ plan representation based on

Waveplans, since the graph structure of automata complicates the merging of alternative plans.

6 MATERIALIZED VIEW SELECTION
As explained in Sec. 5.1, a straightforward greedy solution to the hard MVS for RPQ problem can

lead to many redundant materialized views, not only wasting memory but also obstructing other

useful views from materialization. We thus introduce the AODC for redundancy detection and

removal. Sec. 6.1 gives our MVS algorithm (Alg. 4) and explains how it uses the AODC to detect

redundant views. Since whether a view is redundant depends on the current AODC, Alg. 4 requires

an algorithm that updates the AODC with changes in the view materialization status, which we

introduce in Sec. 6.2 (Alg. 5).

6.1 View Selection Algorithm
Heuristic. We adopt the frequency of candidate views in the workload as the ordering heuristic

in the greedy selection scheme. We have tried other heuristics, such as the frequency multiplied by

the cost or the difference between the cost and the cardinality of the candidate view, since these

are upper bounds on how much cost it can save. However, their experimental effects are all slightly

less significant than the frequency heuristics, probably due to the looseness of the upper bounds.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:12 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

Algorithm 3: AODC node’s usage count maintenance

Input: The AODC node 𝑥 , the delta usage count 𝛿

1 Function propagateUseCnt(𝑥 , 𝛿):
2 useCnt[𝑥]← useCnt[𝑥] + 𝛿

3 if 𝑥 has no children then
4 return

5 if 𝑥 is an OR node then
/* x.targetChild is x’s chosen child for execution (Alg. 1) */

6 propagateUseCnt(𝑥 .targetChild, 𝛿)

7 else
8 for 𝑦 in 𝑥 .children do
9 propagateUseCnt(𝑦, 𝛿)

Basic idea of redundancy detection. The key idea is: a materialized view is redundant if and only

if the AODC node denoting it is not used in any workload RPQ’s optimal execution tree chosen by

Alg. 1 We define the number of optimal execution trees that an AODC node appear in as its usage
count. A view is redundant if and only if its usage count is 0. We maintain each node’s usage count

for redundancy detection with Alg. 3. Alg. 3 has the same DFS framework as Alg. 2, but it only

traverses the target child when encountering an OR node to track whether a node is in the optimal

execution trees. We call Alg. 3 at two points in the workflow:

• After Alg. 1: for each RPQ 𝑞 in the workload, initialize the usage count of its node as 0, then call

propagateUseCnt(𝑞’s node, 1);
• During Alg. 4: when the AODC updates due to newly materialized views.

MVS algorithm. Alg. 4 is our greedy MVS algorithm using the AODC to detect and remove

redundant views. The memory budget 𝑏 is in terms of the total cardinality, i.e., result node pairs.

We first sort the candidate views in the descending order of frequency (Line 1) and initialize the

amount of memory used as 0 and the set of materialized views as empty (Lines 2-3). Then we scan

each candidate view in the sorted order, skipping a candidate view if it is redundant or will cause

exceeding the memory budget (Lines 5-6). A qualified candidate view triggers the AODC update

procedure, replanWithMat (Alg. 5), which returns the candidate view’s benefit (i.e., the workload

query cost reduced by its materialization) and the changes in the AODC, including the changes in

the nodes’ costs and target children (Line 7). If the candidate view does not reduce the workload

query cost and has non-zero estimated cardinality, we skip it without applying Δ to 𝑎𝑜𝑑 (Lines

8-9). We keep the views with zero benefit and zero estimated cardinality because they are not

expected to take up much memory and are thus harmless to materialize. The candidate views that

pass the three tests above will be materialized, so we apply Δ to 𝑎𝑜𝑑 (Line 10) and increment the

used amount of memory accordingly (Line 11).

The key to view redundancy detection using the AODC is maintaining the usage counts in

applyChanges. Changes in an AODC node’s usage count reflect it leaving or joining optimal

execution trees in the following occasions:

• An AND node that was originally an OR node’s target child but gets replaced due to a view’s

materialization causes itself and all its descendants in its optimal execution tree to leave the trees
that its parent OR node is in (Line 20);

• An AND node that newly becomes the target child of an OR node causes itself and all its

descendants in its optimal execution tree to join the trees that its parent OR node is in (Line 21);

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:13

Algorithm 4:MVS for RPQs

Input: The AODC 𝑎𝑜𝑑 , the memory budget 𝑏

Output: The set of materialized views V
1 rankedViews← sort(candViews, freq, desc)
2 usedMem← 0

3 V← ∅
4 forall 𝑥 in rankedViews do
5 if useCnt[𝑥] = 0 or usedMem + 𝑥 .card > 𝑏 then
6 continue

7 benefit, Δ← replanWithMat(𝑎𝑜𝑑 , 𝑥)
8 if benefit = 0 and 𝑥 .card > 0 then
9 continue

10 applyChanges(𝑎𝑜𝑑 , 𝑥 , Δ)
11 usedMem← usedMem + 𝑥 .card

12 V← V ∪ {𝑥 }
13 forall 𝑦 ∈ V do
14 if useCnt[𝑦] = 0 then
15 usedMem← usedMem - 𝑦.card

16 V← V − {𝑦}

17 Function applyChanges(𝑎𝑜𝑑 , 𝑥 , Δ):
18 Update the costs and cardinalities according to Δ

19 forall 𝑦 whose target child changed in Δ do
20 propagateUseCnt(𝑦.oldTargetChild, -useCnt[𝑦])

21 propagateUseCnt(𝑦.targetChild, useCnt[𝑦])

22 tmpUseCnt← useCnt[𝑥]

23 propagateUseCnt(𝑥 , -tmpUseCnt)

24 useCnt[𝑥]← tmpUseCnt

• A newly materialized node causes all its descendants in its optimal execution tree to leave the
tree, since they will no longer be executed to get the materialized node’s results. Note that the

materialized node’s usage count does not change (Lines 22-24). Intuitively, its descendants are

detached from it.

Therefore, applyChanges may reduce some of the already selected views’ usage counts to 0,

meaning that they are rendered redundant by newly selected views. They are thus removed from

the set and the memory budget is restored to incorporate more useful views (Lines 13-16). Since

these views have zero usage count, indicating that no workload query uses them, removing them

will not change the AODC, so there is no need to call replanWithMat.
Note that Alg. 4 will never wrongly remove a view that is non-redundant in the final state,

because once a view becomes redundant during selection, it will always be redundant. The intuition

is: even if the view B that originally makes the view A redundant is removed from the set, it

would be because a newly materialized view C has made B redundant; therefore, C also makes A

redundant.

Remarkably, Alg. 4 also gives us the view-based query plans with the lowest estimated cost,

integrating the two workflows.

Example. Tab. 3 shows a possible MVS process of the AODC in Fig. 3 with the memory budget

𝑏 = 12; there are multiple possibilities because Alg. 4 breaks ties arbitrarily when candidate views

have the same frequency. V is the set of selected views after examining 𝑥 ; usedMem is the sum

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:14 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

Table 3. Example MVS process.

𝑥 (Candidate

view)

V (Selected

view set)

usedMem

Step 1 𝑏/𝑐 {𝑏/𝑐 } 2

Step 2 𝑑∗ {𝑏/𝑐 } 2

Step 3 𝑎/𝑏/𝑐 {𝑏/𝑐, 𝑎/𝑏/𝑐 } 10

Step 4 𝑎/𝑏 {𝑏/𝑐, 𝑎/𝑏/𝑐 } 10

...

...

...

...

...

...

Fig. 5. The effect of sideways
information passing.

Fig. 6. Example data
graph.

of the views’ cardinalities in V. Alg. 4 selects the three views with positive benefits out of the

five candidates examined. Even though the selected 𝑏/𝑐 and 𝑎/𝑏/𝑐 hold a string subsumption

relation, each is non-redundant, since materializing 𝑎/𝑏/𝑐 reduces the cost of executing (𝑎/𝑏/𝑐)+
and 𝑎/𝑏/𝑐/𝑑∗ further than solely materializing 𝑏/𝑐 , and materializing 𝑏/𝑐 speeds up the execution of
the workload query 𝑏/𝑐 |𝑑 and the subquery (𝑏/𝑐 |𝑑∗). 𝑑∗ is not selected because its large cardinality
will cause exceeding the budget; 𝑎/𝑏 is not selected because 𝑎/𝑏/𝑐 renders it redundant. Though
not shown in Tab. 3, all the other candidate views are examined after 𝑎/𝑏, but none is selected
because of either exceeding the budget or redundancy.

Materializing the selected views. After MVS, we need to materialize the selected views. We can

directly invoke Alg. 2 to do so, while being careful to flag a view as materialized after finishing its

execution. Since amaterialized view can be used during other views’materialization, wematerialized

the set of selected views in descending topological order of the AODC, i.e., materializing the views

close to the leafs first so that their ancestors can use them.

6.2 Incremental View-Based Planning
In Alg. 4, each time a candidate view is newly selected for materialization, we update the AODC

by calling the replanWithMat procedure. The fundamental reason why a view’s materialization

affects the query plan is that an AODC node’s cost turns into its cardinality when materialized,

since instead of computing its result by matching it onto the data graph, we can directly read its

precomputed results. Thus, a naive implementation of replanWithMatwould be to call Alg. 1 again
with a cost function accordingly updated. However, it is more efficient to incrementally update the

plan, as shown in Alg. 5.

Incremental update of the AODC is possible because the change in a node’s cost will only affect

its ancestors’. Alg. 5 propagates the cost change by a reverse DFS from the materialized node 𝑥 .

When the reverse DFS visits an ancestor node, it recomputes the ancestor node’s cost based on the

updated costs of its children using the cost estimation scheme in Sec. 7. When a visited ancestor

node represents a workload query, we accumulate its cost reduction into the benefit, taking its

frequency into account (Lines 8-9). Though replanNode’s pseudocode directly updates the AODC

for convenience, we actually save the changes in Δ and refrain from applying them before ensuring

that we will indeed materialize 𝑥 (Alg. 4).

Notably, the reverse DFS in Alg. 5 does not necessarily traverse all the ancestors of 𝑥 , but stops

traversing from an ancestor when its cost does not change (Lines 6-7).

6.3 Discussion: MVS for RPQ in Graph DBMS
MVS for RPQ clearly benefits applications that directly evaluate an RPQ workload. However, with

the wide usage of graph DBMS (e.g., as the backend of SPARQL query endpoints), it is worth

discussing how to apply the proposed MVS for RPQ techniques in the context of graph DBMS. As

introduced in Sec. 1, graph DBMS query languages such as SPARQL, ISO/GQL, and openCypher at

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:15

Algorithm 5: Incremental View-Based Planning

Input: The AODC 𝑎𝑜𝑑 , the node to materialize 𝑥

Output: The benefit of 𝑥 , The changes in the AODC Δ
1 Function replanWithMat(𝑎𝑜𝑑 , 𝑥):
2 benefit← 0

3 replanNode(𝑎𝑜𝑑 , 𝑥 , 𝑥 .card, benefit, Δ)

4 return benefit, Δ

5 Function replanNode(𝑎𝑜𝑑 , 𝑥 , newCost, benefit, Δ):
6 if newCost >= 𝑥 .cost then
7 return

8 if 𝑥 ’s query is in the workload then
9 benefit← benefit + (cost[𝑥] - newCost) × freq[𝑥]

10 cost[𝑥]← newCost

11 if 𝑥 is an OR node then
12 forall 𝑦 in 𝑥 .parents do
13 replanNode(𝑎𝑜𝑑 , 𝑦, newCost, benefit)

14 else
15 forall 𝑦 in 𝑥 .parents do
16 newCost← estimateCost(𝑦.opType, 𝑦.children,𝐺)

17 if 𝑥 has the lowest cost in 𝑦.children then
18 𝑦.targetChild← 𝑥

19 if 𝑦.opType = / then
20 Choose the cheaper direction (→ or←)

least partially support RPQ, but there are often other constructs in the query, making it non-trivial

to apply our MVS for RPQ techniques.

On one hand, the processing of a graph DBMS query workload can benefit from our method

as long as they contain RPQs, since we can extract their RPQ components as the input to our

method, which returns a set of materialized views for RPQ. During query execution, if the sources

or targets of the RPQ’s result are constrained by other query constructs, a lookup in the respective

materialized view using the constrained source or target nodes as keys finds the results.

On the other hand, the above approach will not lead to the optimal efficiency, since it does not

optimize the execution order of possibly multiple RPQs and the other query constructs. To our

knowledge, the only work that considers optimizing this order is [4], which assumes fixed minimal

DFA plans for RPQs. We believe optimizing the execution order based on query planning and MVS

for RPQ is an important direction for future work.

7 COST & CARDINALITY ESTIMATION
Both the query planning (Alg. 1) and the materialized view selection (Alg. 4) algorithms depend

on the cost and cardinality estimates of the workload RPQs and their subqueries. We devise our

own cost and cardinality estimation schemes, since no existing method meets our needs to our

knowledge. Sec. 7.1 will introduce the recently proposed cardinality estimation method in [7] for

RPQs with concatenations only and the reasons why it is not suited to our setting. Sec. 7.2 will give

our method that improves on theirs.

Assumption on the storage layout. Our method works as long as iterating over a node 𝑣 ’s out-

or in-neighbors connected by edges labeled 𝑙 takes time linear to the number of such neighbors,

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:16 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

supported by most native graph databases with indexes for each node’s neighborhood, regardless

of the graph data model [6].

7.1 Existing Approach
Sec. 8.3.1 of [7] describes a cardinality estimation method for RPQs with concatenations only. Since

our approach stems from theirs, we introduce the derivation of their estimations in detail. Their

method starts from concatenating two edge labels 𝑙1/𝑙2, observing that the following equation

calculates its exact cardinality:

|J𝑙1/𝑙2K𝐺 | =
∑︁

𝑗 ∈ 𝐽𝑙
1
/𝑙
2

|𝜎𝑡=𝑗 (J𝑙1K𝐺) | · |𝜎𝑠=𝑗 (J𝑙2K𝐺) | (9)

where the join set 𝐽𝑙1/𝑙2 is the set of data nodes that are both targets of 𝑙1 and sources of 𝑙2 in 𝐺 ,

i.e., 𝐽𝑙1/𝑙2 = J𝑙1K𝐺 .𝑡 ∩ J𝑙2K𝐺 .𝑠 . However, it is infeasible to compute and store 𝐽 for each label pair on

large graphs, since it takes 𝑂 (|𝑉 | · |Σ|2) time and memory. To solve this problem, [7] introduces

the uniformity assumption, i.e., all nodes in the join set have the same number of tuples associated

with them in both J𝑙1K𝐺 and J𝑙2K𝐺 . They thus simplify Eqn. 9 as Eqn. 10:

|J𝑙1/𝑙2K𝐺 | = | 𝐽𝑙1/𝑙2 | ·
|J𝑙1K𝐺 |
|J𝑙1K𝐺 .𝑡 | ·

|J𝑙2K𝐺 |
|J𝑙2K𝐺 .𝑠 | (10)

where |J𝑙1K𝐺 |, |J𝑙1K𝐺 .𝑡 |, |J𝑙2K𝐺 |, and |J𝑙2K𝐺 .𝑠 | are all directly available from the graph, so they only

need to estimate |𝐽𝑙1/𝑙2 |.
They then extendEqn. 10 to the more general case of estimating |J𝑅/𝑙2K𝐺 |:

|J𝑅/𝑙2K𝐺 | = | 𝐽𝑅/𝑙2 | ·
|J𝑅K𝐺 |
|J𝑅K𝐺 .𝑡 | ·

|J𝑙2K𝐺 |
|J𝑙2K𝐺 .𝑠 | (11)

where |J𝑅K𝐺 | and |J𝑅K𝐺 .𝑡 | are from the previous estimation step.

To estimate |𝐽𝑅/𝑙2 |, they rewrite 𝑅 in the form of 𝑅′𝑙1, where 𝑙1 is 𝑅’s ending label. Considering a

data node 𝑣 in J𝑙1K𝐺 .𝑡 , the probability that it is in 𝐽𝑅/𝑙2 is:

Pr[𝑣 ∈ 𝐽𝑅/𝑙2] = Pr[𝑣 ∈ J𝑅K𝐺 .𝑡 ∩ 𝐽𝑙1/𝑙2] (12)

Assuming 𝑣 ∈ J𝑅K𝐺 .𝑡 and 𝑣 ∈ 𝐽𝑙1/𝑙2 are independent, they derive:

Pr[𝑣 ∈ 𝐽𝑅/𝑙2] =
|J𝑅K𝐺 .𝑡 |
|J𝑙1K𝐺 .𝑡 | ·

| 𝐽𝑙1/𝑙2 |
|J𝑙1K𝐺 .𝑡 | (13)

|𝐽𝑅/𝑙2 | follows a binomial distribution with 𝑝 = Pr[𝑣 ∈ 𝐽𝑅/𝑙2] and 𝑛 = |J𝑙1K𝐺 .𝑡 |, so they can

estimate it as its expectation as follows:

E[| 𝐽𝑅/𝑙2 |] = 𝑛 · 𝑝 =
|J𝑅K𝐺 .𝑡 | · | 𝐽𝑙1/𝑙2 |
|J𝑙1K𝐺 .𝑡 | (14)

Substituting |𝐽𝑅/𝑙2 | by E[|𝐽𝑅/𝑙2 |] in Eqn. 10, they get the final estimation of 𝑅/𝑙2’s cardinality:

|J𝑅/𝑙2K𝐺 | =
| 𝐽𝑙1/𝑙2 | · |J𝑅K𝐺 | · |J𝑙2K𝐺 |
|J𝑙1K𝐺 .𝑡 | · |J𝑙2K𝐺 .𝑠 | (15)

where |J𝑙2K𝐺 |, |J𝑙1K𝐺 .𝑡 |, and |J𝑙2K𝐺 .𝑠 | are directly available from the data graph and |J𝑅K𝐺 | is available
from the previous estimation step. [7] uses a synopsis to record |𝐽𝑙1/𝑙2 | for each label pair, which

requires 𝑂 (|𝐸 | · |Σ|) computation time and 𝑂 (|Σ|2) memory.

Besides, [7] also estimates 𝑅/𝑙2’s distinct number of source and target data nodes assuming

uniformity:

|J𝑅/𝑙2K𝐺 .𝑠 | = |J𝑅K𝐺 .𝑠 | ·
| 𝐽𝑙1/𝑙2 |
|J𝑙1K𝐺 .𝑡 | (16)

|J𝑅/𝑙2K𝐺 .𝑡 | = |J𝑅K𝐺 .𝑡 | · |J𝑙1/𝑙2K𝐺 .𝑡 |
|J𝑙1K𝐺 .𝑡 | (17)

where |J𝑙1/𝑙2K𝐺 .𝑡 | is also collated as part of the synopsis.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:17

If 𝑅 has multiple ending labels as the result of |, ∗, or ?, it is necessary to substitute 𝑙1 by each

ending label in Eqn. 15, Eqn. 16, or Eqn. 17 and sum them to get |J𝑅/𝑙2K𝐺 |, |J𝑅/𝑙2K𝐺 .𝑠 |, or |J𝑅/𝑙2K𝐺 .𝑡 |.

Remarks. [7]’s cardinality estimation method does not suit our setting due to two reasons.

Firstly, the estimation scheme of extending a single label at a time does not suit the AODC, whose

concatenation operator concatenates two arbitrary RPQs. Secondly, the synopsis, which consists of

the exact join set sizes of all the edge label pairs, is too expensive to construct on large graphs with

many edge labels. For example, the synopsis of the Wikidata graph [24] used in our experiments

takes over two hours to construct. Our approach addresses these problems.

We are also aware of a recent work on RPQ cost estimation [18], but it only applies to finite

automata (FA) plans, not AODC plans.

7.2 Our Approach
We devise cost and cardinality estimation schemes suited to our AODC-based query planning

procedure by extending the existing approach (Sec. 7.1). Specifically, we extend the existing car-

dinality estimation method to the general case of concatenating two arbitrary RPQs and replace

the time-consuming synopsis construction by Monte Carlo sampling. Besides, we propose a cardi-

nality estimation method for Kleene closures, which has not been studied in the literature to our

knowledge.

7.2.1 Concatenation. We extend [7]’s cardinality estimation method to handle concatenating

arbitrary RPQs. Specifically, we substitute the label 𝑙2 by the arbitrary RPQ 𝑅2 in Eqn. 15, extending

the uniformity and independence assumptions accordingly:

|J𝑅1/𝑅2K𝐺 | =
| 𝐽𝑙1/𝑅2

| · |J𝑅1K𝐺 | · |J𝑅2K𝐺 |
|J𝑙1K𝐺 .𝑡 | · |J𝑅2K𝐺 .𝑠 | (18)

where the newly emerged |J𝑅2K𝐺 | and |J𝑅2K𝐺 .𝑠 | are available as the estimations of the concatenation

node’s children. On the other hand, |𝐽𝑙1/𝑅2
|, if stored as part of a synopsis like |𝐽𝑙1/𝑙2 |, will lead to a

synopsis that’s larger and more expensive to compute. Fortunately, we can estimate it by Monte

Carlo sampling (Sec. 7.2.5).

The cost of the concatenation node consists of its children’s evaluation cost and the cost of

joining their results. Notably, due to the sideways information passing [7] optimization on Alg. 2,

if the child executed first does not have an 𝜖 , the other child’s evaluation cost will decrease because

of the constraints on its source or target data nodes. Fig. 5 illustrates this phenomenon, taking the

→ direction as an example, where 𝑅2’s sources are constrained.
Therefore, we estimate a concatenation node’s cost as Eqn. 19:

𝑐𝑜𝑠𝑡 (𝑅1/𝑅2) = min {𝑐𝑜𝑠𝑡 (𝑅1) +
| 𝐽𝑙1/𝑅2

|
|J𝑅2K𝐺 .𝑠 | 𝑐𝑜𝑠𝑡 (𝑅2), 𝑐𝑜𝑠𝑡 (𝑅2) +

| 𝐽𝑙1/𝑅2
|

|J𝑅1K𝐺 .𝑡 | 𝑐𝑜𝑠𝑡 (𝑅1) } + |J𝑅1K𝐺 | + |J𝑅2K𝐺 | (19)

where |J𝑅1K𝐺 | + |J𝑅2K𝐺 | is the estimated join cost.

We can also estimate the distinct number of source and target nodes of 𝑅1/𝑅2, substituting 𝑙2
by 𝑅2, which results in |J𝑙1/𝑅2K𝐺 .𝑡 | in the numerator of Eqn. 17. Since it is not available unless we

execute 𝑙1/𝑅2, we expand it as follows by the uniformity assumption:

|J𝑙1/𝑅2K𝐺 .𝑡 | = | 𝐽𝑙1/𝑅2
| · |J𝑅2K𝐺 .𝑡 |
|J𝑅2K𝐺 .𝑠 | (20)

Combining Eqn. 16, Eqn. 17, and Eqn. 20, we estimate the distinct number of source and target

nodes of 𝑅1/𝑅2 as follows:

|J𝑅1/𝑅2K𝐺 .𝑠 | = |J𝑅1K𝐺 .𝑠 | ·
| 𝐽𝑙1/𝑅2

|
|J𝑙1K𝐺 .𝑡 | (21)

|J𝑅1/𝑅2K𝐺 .𝑡 | = |J𝑅1K𝐺 .𝑡 | ·
| 𝐽𝑙1/𝑅2

|
|J𝑙1K𝐺 .𝑡 | ·

|J𝑅2K𝐺 .𝑡 |
|J𝑅2K𝐺 .𝑠 | (22)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:18 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

7.2.2 Kleene closures. Since we lazily handle 𝜖 (Sec. 5.4), a Kleene closure’s result size in memory is

the same whether the operator is ∗ or +. Hence, without loss of generality, we discuss the cardinality
estimation of + in the following.

The following Eqn. 23 represents the exact cardinality of 𝑅+:

|J𝑅+K𝐺 | = |J𝑅K𝐺 | +
∞∑︁
𝑖=2

|J𝑅𝑖K𝐺 −
𝑖−1⋃
𝑗=1

J𝑅 𝑗 K𝐺 | (23)

Intuitively, Eqn. 23 gathers the newly produced result tuples step by step, subtracting all the

previous tuples,

⋃𝑖−1
𝑗=1J𝑅 𝑗 K𝐺 |, from the current concatenation step’s result J𝑅𝑖K𝐺 , like the fix-point

execution in Lines 34-40, Alg. 2.

We can estimate | |J𝑅𝑖K𝐺 | | (𝑖 > 1) using the cardinality estimation method of concatenation (Eqn.

18), since 𝑅𝑖 = 𝑅𝑖−1/𝑅:
|J𝑅𝑖K𝐺 | =

| 𝐽𝑙1/𝑅 | · |J𝑅K𝐺 |
|J𝑙1K𝐺 .𝑡 | · |J𝑅K𝐺 .𝑠 | · |J𝑅

𝑖−1K𝐺 | (24)

where 𝑙1 is 𝑅’s ending label. Interestingly, we can view Eqn. 24 as a recursive formula that computes

|J𝑅𝑖K𝐺 | from |J𝑅𝑖−1K𝐺 | and the fraction on its right hand side as a constant coefficient, since all the

estimations related to 𝑅 are available at the time of estimating |J𝑅+K𝐺 |. We denote this constant

coefficient by 𝑐 . Thus, recursively expanding Eqn. 24 will give us:

|J𝑅𝑖K𝐺 | = 𝑐𝑖−1 |J𝑅K𝐺 | (25)

Though we can now estimate |J𝑅𝑖K𝐺 | for any 𝑖 , it is still difficult to estimate |J𝑅𝑖K𝐺 −
⋃𝑖−1

𝑗=1J𝑅 𝑗 K𝐺 |.
We leave it as future work and make the following relaxation, which is always an overestimate:

|J𝑅𝑖K𝐺 −
𝑖−1⋃
𝑗=1

J𝑅 𝑗 K𝐺 | ≈ |J𝑅𝑖K𝐺 | (26)

Hence combining Eqn. 23, Eqn. 25, and the relaxation gives us the final cardinality estimation

formula for Kleene closures:

|J𝑅+K𝐺 | =
𝐷−1∑︁
𝑖=0

𝑐𝑖 |J𝑅K𝐺 | =
1 − 𝑐𝐷
1 − 𝑐 |J𝑅K𝐺 | (27)

where 𝐷 is the maximum number of useful concatenation steps, i.e., the number of iterations that

the fix-point procedure terminates at. That is, if J𝑅𝑖−1K𝐺 still produces new tuples but J𝑅𝑖K𝐺 does

not, 𝐷 = 𝑖 − 1. We cannot know 𝑑 exactly without executing 𝑅+. However, due to Eqn. 25, when
𝑐 < 1, we can bound 𝑑 by 𝑐𝐷−1 |J𝑅K𝐺 | >= 𝜖 and 𝑐𝐷 |J𝑅K𝐺 | < 𝜖 , where 𝜖 is a threshold parameter,

meaning that nearly no new result tuples will emerge beyond 𝐷 steps. On the other hand, when

𝑐 >= 1, we fix 𝐷 = 6 according to the small world assumption [17]. Note that the number of new

result tuples will not actually increase indefinitely with 𝑐 >= 1; Eqn. 27 exhibits this phenomenon

because of the relaxation (Eqn. 26).

Regarding the distinct number of source data nodes, we observe that ∀𝑖 >= 1, J𝑅𝑖K𝐺 .𝑠 ∈ J𝑅K𝐺 .𝑠 ,
since any 𝑅𝑖 ’s evaluation starts from 𝑅. The case is similar for target nodes. Therefore, we have

J𝑅+K𝐺 .𝑠 = J𝑅K𝐺 .𝑠 (28)

J𝑅+K𝐺 .𝑡 = J𝑅K𝐺 .𝑡 (29)

and the equality of their cardinalities follows.

Lastly, we discuss the cost of evaluating a Kleene closure. Extending on Eqn. 19, each concate-

nation step incurs

| 𝐽𝑅𝑖 /𝑅 |
|J𝑅K𝐺 .𝑠 | · 𝑐𝑜𝑠𝑡 (𝑅), where |𝐽𝑅𝑖/𝑅 | =

|J𝑅𝑖K𝐺 .𝑡 | · | 𝐽𝑙
1
/𝑅 |

|J𝑙K𝐺 .𝑡 | and 𝑙1 is 𝑅’s ending label. Since

we have inferred ∀𝑖, J𝑅𝑖K𝐺 .𝑡 ⊆ J𝑅K𝐺 .𝑡 during the derivation of Eqn. 28 and Eqn. 29, we uniformly

approximate |J𝑅𝑖K𝐺 .𝑡 | by |J𝑅K𝐺 .𝑡 |, which gives us the following cost estimation formula:

𝑐𝑜𝑠𝑡 (𝑅+) = (1 + (𝐷 − 1) ·
|J𝑅K𝐺 .𝑡 | · | 𝐽𝑙1/𝑅 |
|J𝑅K𝐺 .𝑠 | · |J𝑙K𝐺 .𝑡 |) · 𝑐𝑜𝑠𝑡 (𝑅) + (𝐷 − 1 + 1 − 𝑐𝐷

1 − 𝑐) |J𝑅K𝐺 | (30)

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:19

where (𝐷 − 1 + 1−𝑐𝐷
1−𝑐) |J𝑅K𝐺 | is the estimated join cost.

7.2.3 Alternation. We estimate an alternation node’s cardinality and distinct number of source

and target data nodes as the sum of its children’s respective estimates. Note that we apply a similar

relaxation as Eqn. 26, discounting the set overlaps:

|J𝑅1 |𝑅2 | · · · |𝑅𝑘K𝐺 | = |
𝑘⋃
𝑖=1

J𝑅𝑖K𝐺 | ≈
𝑘∑︁
𝑖=1

|J𝑅𝑖K𝐺 | (31)

An alternation node’s cost is the sum of its children’s evaluation costs and the set union cost,

which we estimate by the sum of the children’s cardinalities:

𝑐𝑜𝑠𝑡 (𝑅1 |𝑅2 | · · · |𝑅𝑘) =
𝑘∑︁
𝑖=1

(𝑐𝑜𝑠𝑡 (𝑅𝑖) + |J𝑅𝑖K𝐺 |) (32)

7.2.4 Zero-or-one. Due to the lazy treatment of 𝜖 (Sec. 5.4), the estimates of a zero-or-one node’s

cost, cardinality, and distinct number of source and target data nodes are equal to its child’s.

7.2.5 Monte Carlo Sampling. We use Monte Carlo sampling for estimating the sizes of join sets,

|𝐽𝑙/𝑅 |, where 𝑙 is a single label and 𝑅 is an arbitrary RPQ. Recall that [7] uses a synopsis of the graph

to record the exact join set sizes of label pairs. We use Monte Carlo sampling instead of synposes

to reduce the computation cost and to support the case where 𝑅 is an arbitrary RPQ.

The basis of estimating |𝐽𝑙/𝑅 | by Monte Carlo sampling is: considering a data node 𝑣 ∈ J𝑙K𝐺 .𝑡 , if
we can estimate the probability that it is in 𝐽𝑙/𝑅 , we can estimate the join set size by E[|𝐽𝑙/𝑅 |] =
Pr[𝑣 ∈ 𝐽𝑙/𝑅] · |J𝑙K𝐺 .𝑡 |, similar to Eqn. 14. Suppose we sample 𝑠 nodes independently and uniformly

at random from J𝑙K𝐺 .𝑡 and 𝑝 · 𝑠 of them are in J𝑅K𝐺 .𝑠 , we can estimate the join set size with:

| 𝐽𝑙/𝑅 | = 𝑝 · |J𝑙K𝐺 .𝑡 | (33)

To get 𝑝 in Eqn. 33, we need to check if each sampled node is in J𝑅K𝐺 .𝑠 . For this purpose, we
compile the minimum DFA for 𝑅 and conduct a DFA-guided DFS from the sampled node 𝑣 in the

data graph, which immediately returns true when it finds a result tuple, preventing the extra cost

of computing the full J𝑅K𝐺 .
Example. Fig. 6 shows the example data graph serving as the basis of the planning, execution,

and MVS of the AODC in Fig. 3. Here, we use it to illustrate the cost and cardinality estimation

of concatenation and Kleene closures, taking 𝑏/𝑐 and 𝑑∗ as examples. (Due to lazily treating 𝜖
(Sec. 5.4), it suffices to do estimations for 𝑑+.) For simplicity, we assume the Monte Carlo sampling

returns the exact join set sizes and 𝐷 = 6. Note that 𝑏/𝑐 and 𝑑+’s estimated cardinalities are close

to the real values, which are 2 and 12, respectively. 𝑏/𝑐’s execution direction is chosen as→ due to

its lower cost.

|J𝑏/𝑐K𝐺 | =
| 𝐽𝑏/𝑐 | · |J𝑏K𝐺 | · |J𝑐K𝐺 |
|J𝑏K𝐺 .𝑡 | · |J𝑐K𝐺 .𝑠 | =

2 × 2 × 3

2 × 3

= 2 (34)

𝑐𝑜𝑠𝑡 (𝑏/𝑐) = min {𝑐𝑜𝑠𝑡 (𝑏) +
| 𝐽𝑏/𝑐 |
|J𝑐K𝐺 .𝑠 | 𝑐𝑜𝑠𝑡 (𝑐), 𝑐𝑜𝑠𝑡 (𝑐) +

| 𝐽𝑏/𝑐 |
|J𝑏K𝐺 .𝑡 | 𝑐𝑜𝑠𝑡 (𝑏) } + |J𝑏K𝐺 | + |J𝑐K𝐺 | = 9

|J𝑑+K𝐺 | =
1 − 𝑐𝐷
1 − 𝑐 |J𝑑K𝐺 | ≈ 11 (𝑐 =

| 𝐽𝑑/𝑑 | · |J𝑑K𝐺 |
|J𝑑K𝐺 .𝑡 | · |J𝑑K𝐺 .𝑠 | =

3 × 6

6 × 6

= 0.5) (35)

𝑐𝑜𝑠𝑡 (𝑑+) = (1 + (𝐷 − 1) ·
|J𝑑K𝐺 .𝑡 | · | 𝐽𝑑/𝑑 |
|J𝑑K𝐺 .𝑠 | · |J𝑑K𝐺 .𝑡 |) · 𝑐𝑜𝑠𝑡 (𝑑) + (𝐷 − 1 + 1 − 𝑐𝐷

1 − 𝑐) |J𝑑K𝐺 | = 57 (36)

8 EXPERIMENTAL EVALUATION
8.1 Setting
8.1.1 Environment. We conduct all our experiments on a machine with an Intel Xeon 2.1GHz CPU

and 1TB RAM. We report a run as out of memory when the memory usage exceed 256GB. All

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:20 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

the evaluated algorithms are implemented in C++
2
. All the experiments run sequentially unless

explicitly specified otherwise.

8.1.2 Dataset & Workload. We use the Wikidata graph [24] as the dataset and the RPQs extracted

from the Wikidata Query Logs [14] as the workload. The Wikidata graph has |𝑉 | = 348, 945, 080

nodes, |𝐸 | = 958, 844, 164 edges, and |Σ| = 5, 419 edge labels. During the experiments, we load the

graph into memory with a compressed sparse row (CSR) structure for each edge label, taking up

61GB memory. We also store the results of each materialized view as a CSR in main memory. The

Wikidata Query Logs consist of SPARQL queries, some of which contains property path clauses,

i.e., RPQs in SPARQL syntax. Following the methodology in [5], we extract the RPQs from the

code-500 (timeout) sections of [14], which include the SPARQL queries taking over 60 seconds to

answer by the Wikidata SPARQL service endpoint, disregarding constant source and target nodes

as dictated by Def. 1. We filter out the RPQs with non-existent edge labels. We also filter out the

RPQs subsuming the pattern 𝑎/𝑎− or 𝑎 − /𝑎, since they return all the wedges in the graph with

𝑎-edges and are unlikely to optimize unless by factorization, which is beyond the scope of this

paper. After filtering, we get 1,930 queries, 442 of which are distinct. The most frequent query

patterns and their respective percentages are shown in Tab. 5.

8.2 Effectiveness ofQuery Planning with AODC
In this experiment, we compare the efficiency of AODC query plans generated by Alg. 1 and

minimal DFA query plans without materialized views in terms of the workload’s total query time.

The total query time using the AODC plan without any materialized views is 30187.6 s, while

that of using the minimal DFAs is 68552.4 s. The speedup is 2.27×, proving the AODC-based

query planning effective. Note that the AODC-based query planning (Alg. 1) takes 13.9 s, which is

negligible compared with the query time.

To further examine the contributing factors to the speedup, we plot the speedup distribution of

AODC plans without materialized views compared with minimal DFA plans in Fig. 7. Since the

workload contains duplicate RPQs, we plot both the original and the deduplicated distributions. We

observe that the majority of queries achieve over 2× speedup by using AODC plans. Interestingly,

quite a few queries achieve over 10× or even 100× speedup, which are mainly queries with few

final results but many intermediate results if executed according to the minimal DFA. These queries

benefit much from AODC-based query planning, which detects a favorable ordering of operators

leading to fewer intermediate results.

On the other hand, some queries run slower with AODC plans than minimal DFA plans, the

lowest speedup being 0.58×. These are queries with Kleene closures that are processed faster by the

no LC or partial LC plans than the full LC plans, while the AODC currently supports full LC plans

only. Since such queries are scarce, they do not impact the workload’s total query time significantly.

8.3 Proof of Concept: MVS for RPQ
The purpose of this proof of concept experiment is to show the necessity of designing a MVS for

RPQ algorithm that considers subqueries and the relations between them. Indeed, if an algorithm

can select a set of materialized views without considering subquery relations but leads to the same

query efficiency as our AODC-based view selection algorithm (Alg. 4), Alg. 4 is unnecessary.

We consider the algorithm that materializes the workload queries in the descending order of

frequency until exceeding the memory budget as the representative of materialized view selection

algorithms that disregard subquery relations. In the following, we call this algorithm the no-

subquery algorithm. We aim to compare its output materialized view set’s efficiency with the best

2
Our implementation resides at https://github.com/pkumod/rpq-view.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

https://github.com/pkumod/rpq-view

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:21

(0,1] (1,2] (2,10] (10,100] (100,+∞)
Speedup

0.00

0.25

0.50

Pe
rc

en
ta

ge

(a) Original distribution.

(0,1] (1,2] (2,10] (10,100] (100,+∞)
Speedup

0.00

0.25

0.50

Pe
rc

en
ta

ge

(b) Deduplicated distribution.

Fig. 7. The speedup distribution of AODC
plans compared with minimal DFA plans.

107 109

Memory budgets (cardinality)

0

10000

20000

To
ta

lq
ue

ry
tim

e
(s

)

(a) Query time.

107 109

Memory budgets (cardinality)

0

2000

V
ie

w
se

le
ct

io
n

tim
e

(m
s)

(b) View selection time.

107 109

Memory budgets (cardinality)

0

1000

M
at

er
ia

liz
at

io
n

tim
e

(s
)

(c) Materialization time.

106 107 108 109

Memory budgets (cardinality)

0

1

2

V
ie

w
-g

ra
ph

m
em

or
y

ra
tio

(d) View-graph memory ratio.

Fig. 8. The impact of the memory budget on performance.

output of Alg. 4, i.e., with the memory budget equal to 10
9
. Therefore, we set a hard memory budget

for the no-subquery algorithm in terms of the number of gigabytes used in the actual run of Alg. 4,

which is 131GB, instead of the estimated cardinality. We then compare the workload’s total query

time using the no-subquery algorithm’s output set of materialized views and ours.

The total query time using the materialized views selected by Alg. 4 is 3102.02 s, while that of

using the no-subquery algorithm is 6661.38 s. The speedup is 2.15×. In addition, Alg. 4 also selects

more materialized views (206 views) than the no-subquery algorithm (70 views), which is due to

Alg. 4 making use of the cardinality estimation scheme and skipping views that can cause exceeding

the memory budget. Such a strategy skips the views with a low speedup-memory ratio, further

enhancing the query efficiency.

8.4 Impact of the Memory Budget
In this section, we test the impact of the memory budget (𝑏 in Alg. 4) on the efficiency of MVS and

view-based querying. The Monte Carlo sampling size (Sec. 7.2.5) is fixed as 10, since it does not

significantly impact the performance within [10, 100]. Fig. 8 shows the query time, view selection

time, materialization time, and view-graph memory ratio varying 𝑏 across 10
6
, 10

8
, and 10

9
.

8.4.1 Materialization Time & View-Graph Memory Ratio. These have the same growth trend

as the memory budget increases. Though the memory budget grows exponentially, the actual

memory usage grows almost linearly due to underestimating the cardinalities of some views. The

underestimation seems counter-intuitive, since we emphasize the possibility of overestimation

in Sec. 7.2.2 and 7.2.3 due to ignoring the overlap between result sets that are to be merged. We

conjecture that the underestimation is due to the uniformity assumption, which we plan to relax in

the future work.

8.4.2 Query Time. Theworkload’s total query time achieves linear speedupwith the actual memory

usage. The speedup is 9.73× when the budget = 10
9
, close to an order of magnitude, showing the

effectiveness of the selected materialized views in querying.

8.4.3 View Selection Time. The view selection time also grows with the memory budget, since it

mainly consists of the incremental planning (Alg. 5) time, and a small budget skips the views with

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:22 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

ad-hoc 106 108 1090

10000

20000

30000

M
at

er
ia

liz
at

io
n

&
qu

er
y

tim
e

(s
)

Query Materialization

(a)

Budgets 𝑄𝑎/𝑄𝑣 𝑄𝑎/(𝑄𝑣 +𝑀)

10
6

1.11× 1.07×
10

8
3.26× 2.90×

10
9

9.73× 6.25×

(b)

Fig. 9. View-based and ad-hoc querying comparison.

Table 4. Impact of the workload size.

Workload size 𝑄𝑎/𝑄𝑣 𝑄𝑎/(𝑄𝑣 +𝑀)

100 3.85 2.86

10 7.71 2.56

large estimated cardinalities, thus reducing the invocations of Alg. 5. However, note that the view

selection time is almost negligible in the overall workflow: Fig. 8b shows it in microseconds.

8.4.4 Comparison with Ad-Hoc Processing. Though we conduct the view selection and materializa-

tion offline, their running time still needs to be within a reasonable range. To inspect the proportion

between the materialization time and the query time, we plot them in Fig. 9 with varying memory

budgets and contrast them with ad-hoc processing, which does not use any materialized views.

Fig. 9a shows that materialization is always much faster than querying, and that view-based

processing is faster than ad-hoc processing regardless of the memory budget. Fig. 9b provides

the detailed statistics of the comparison between the ad-hoc and view-based methods. 𝑄𝑎 and 𝑄𝑣

are the ad-hoc and view-based query time, respectively, and 𝑀 is the materialization time. The

second and third columns thus show the speedup without and with the materialization time. A

larger budgets causes the speedup to decrease more with the materialization time. However, even

with the materialization time, the speedup still grows significantly with the budget and reaches an

impressive 6.25× with 𝑏 = 10
9
.

We show the speedup of RPQs of different patterns in Tab. 5, classifying patterns by the operator

sequence as in [5]. Due to limited space, we only show the top-8 patterns, accounting for >60% of

distinct RPQs in the workload. RPQs with Kleene closures have greater speedup than the others,

since Kleene closures are usually more expensive to execute, thus benefiting more frommaterialized

views. The speedup of the concatenation and Kleene closure operators compounds, as observed

with ()*/()*. RPQs with alternation only are hardly sped up because their subqueries are rarely

materialized, given how close their execution costs are to their result sizes.

8.5 Impact of the Workload Size
To show our method’s effectiveness on workloads of different sizes, we sample 5 workloads with

100 and 10 RPQs respectively from the full workload, choosing each RPQ independently at random.

Tab. 4 shows our method’s speedup compared with ad-hoc processing when 𝑏 = 10
8
, which remains

significant despite decreasing with the workload size due to fewer overlapping queries.

8.6 Comparison with State-of-the-Art
In this section, we compare our method with the state-of-the-art MQO methods for RPQs, RTC [15]

and Swarmguide [1], since there are no MVS methods to compare with. For fairness, we consider

their optimization time as the offline time, only comparing the workload’s total query time and the

memory usage. We also compare with the state-of-the-art ad-hoc RPQ methods, Ring [5] and Unit

[18], to show the necessity and effectiveness of MVS for RPQ.

8.6.1 Implementation of Competitors. Ring’s code is provided by its authors. We reimplement the

other competitors as follows:

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:23

Table 5. Speedup of RPQ patterns
w.r.t. ad-hoc processing.

Pattern % Speedup

/ 12.44 2.91

/()* 11.54 6.33

| 7.69 1.03

()* 7.69 10.63

- 5.88 1.34

()+ 3.85 6.65

()*/()* 2.26 236.15

|| 2.04 0.99

Table 6. Comparison with state-of-the-art.

Method Q. time (s) Speedup Mem. Ratio Speedup-

Mem. Ratio

Ours 3102.02 9.73 2.15 4.53

RTC [15] 27090.30 1.11 1.72 0.65

Swarmguide [1] 31857.30 0.95 1.63 0.58

Ring [5] 904823.70 0.03 - -

Unit [18] 80671.07 0.37 - -

• RTC: RTC materializes the shared Kleene closures of workload RPQs. Hence, we implement it

by only considering candidate views that are Kleene closures in Alg. 4, setting 𝑏 = 10
9
. Since

our work addresses MVS and view-based query planning for RPQs, we compare our method

with RTC only in this regard, while its efficient physical implementation of the Kleene closure

operator will be an add-on to our framework in the future (Sec. 4).

• Swarmguide: We define the similarity between two DFAs used in affinity propagation as
|Σ1∩Σ2 |
|Σ1∪Σ2 | ,

where Σ1 and Σ2 are the DFAs’ label sets, respectively, according to [1]. Since [1] does not give

the damping factor for affinity propagation, we try 0.2, 0.4, 0.6 and 0.8, where 0.8 yields the

highest speedup-memory ratio (Tab. 6). After obtaining the selected views, we plug them into

the AODC and invoke Alg. 5 for incremental planning, instead of using Waveguide as in [1]. Sec.

8.6.2 will discuss its implications.

• Unit: We enumerate all the ways of splitting an RPQ fixing the maximum number of threads as

four, since most workload RPQs have fewer than four concatenation operators. Since [18] cannot

estimate the cost of unbounded Kleene closures, we force an upper bound of six steps on all the

Kleene closures during Unit’s cost estimation. To ensure the accuracy of the query results, we

keep the Kleene closures unbounded during Unit’s execution. The number of threads spanned

for execution is equal to the number of subqueries in the chosen batch.

8.6.2 Result Analysis. Tab. 6 gives the workload’s total query time, the speedup compared with

ad-hoc processing, the view-graph memory ratio, and the speedup-memory ratio of our method

and the competitors. The speedup-memory ratio is the result of dividing the speedup by the

memory ratio. The higher a method’s speedup-memory ratio, the more efficient its selected views

utilize memory. Ad-hoc methods do not have the memory-related metrics, since they do not use

materialized views.

Overall, our method achieves the highest speedup and speedup-memory ratio, though it uses

more memory than its competitors.

RTC has lower speedup, memory, and speedup-memory ratio than our method. The reason is

that though Kleene closures are difficult to process, which means materializing them will save much

query time, their results are usually large. Therefore, not many Kleene closures can be materialized

within a memory budget. Meanwhile, other subqueries that are not Kleene closures but are more

cost-efficient to materialize are ignored.

Swarmguide shows the same trend as RTC. Its total query time is roughly the same as the ad-hoc

processing time, meaning the materialized view that it selects are hardly useful on this workload.

The reason is twofold. Firstly, though the workload queries in single-element clusters are directly

materialized, they are not guaranteed to be efficient. Secondly, the clusters with multiple elements

commonly have a small or even empty maximum common automaton, because the label-based

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

152:24 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

affinity propagation clustering does not consider the topological structure of DFAs. For example,

it may cluster the queries 𝑎/𝑏, 𝑏/𝑐 , and 𝑐/𝑎 together, since the propagation procedure detects the

relation among the labels 𝑎, 𝑏, and 𝑐 , but their maximum common sub-automaton is empty.

Ring and Unit are slower than our ad-hoc method using AODC plans. This does not contradict

the results reported in their papers, since [5] does not include queries whose execution time exceeds

60 seconds when collating the average query time and [18] forces all the Kleene closures to be

bounded during execution. Ring is slow because it is not specifically optimized for RPQs without

constant source or target nodes; Unit is slow because it does not use sideways information passing,

which is difficult to implement in parallel.

Lastly, we discuss the implications of plugging the materialized views selected by Swarmguide

into the AODC instead of Waveplans. It is possible for Swarmguide to select a materialized view that

the AODC cannot use due to not supporting no LC and partial LC plans. For example, Swarmguide

may materialize 𝑎/𝑏/𝑐 when given the cluster {𝑎/𝑏/𝑐, 𝑎/(𝑏/𝑐)+}, but the AODC cannot use it during

𝑎/(𝑏/𝑐)+’s execution, since using it requires partial LC. However, out of the 21 materialized views

selected by Swarmguide in this experiment, only 1 belongs to this case. Therefore, using Waveguide

or supporting no LC and partial LC on the AODC is unlikely to significantly improve Swarmguide’s

performance on this workload.

9 CONCLUSION
In this paper, we propose a framework for materialized view selection (MVS) and view-based

query planning for RPQs. We derive the AND-OR DAG with closure (AODC) to represent an RPQ

workload’s query plan and design cost and cardinality estimation schemes for query planning. We

show the equivalence between the plan spaces of the AODC and Waveplans [27] except that the

AODC does not support no LC and partial LC strategies for Kleene closures, which rarely improve

the query efficiency.

Since MVS for RPQs is hard, we design a heuristic MVS algorithm and use the AODC to detect

and remove redundant views. We also propose an incremental view-based planning algorithm

that efficiently updates the AODC as views are newly selected, so that the view-based plan is

immediately available after MVS. Experiments show that view-based RPQ processing outperforms

state-of-the-art ad-hoc methods [5, 18] on a workload and has a higher cost-performance ratio

than MQO methods [1, 15].

In the future, we plan to incorporate efficient physical implementations of the Kleene closure,

such as RTC’s [15]. We also plan to improve the cardinality estimation of RPQs by tightening the

relaxation in Eqn. 26 and removing the uniformity assumption. In addition, we will study how to

efficiently apply MVS for RPQ techniques in the context of graph DBMS, especially optimizing the

execution order of multiple RPQs and other query constructs.

ACKNOWLEDGMENTS
This work was supported by The National Key Research and Development Program of China under

grant 2023YFB4502303, the Research Grants Council of Hong Kong, China, No.14205520, and NSFC

grants under U20A20174, 61932001. Lei Zou is the corresponding author of this paper.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

Materialized View Selection & View-BasedQuery Planning for Regular PathQueries 152:25

REFERENCES
[1] Zahid Abul-Basher. 2017. Multiple-Query Optimization of Regular Path Queries. In 2017 IEEE 33rd International

Conference on Data Engineering (ICDE). IEEE, San Diego, CA, USA, 1426–1430. https://doi.org/10.1109/ICDE.2017.205

[2] Zahid Abul-Basher, Parke Godfrey, Nikolay Yakovets, and Mark Chignell. 2016. SWARMGUIDE: Towards Multiple-

Query Optimization in Graph Databases. (2016).

[3] Sergey Afonin. 2008. The View Selection Problem for Regular Path Queries. In LATIN 2008: Theoretical Informatics,
Eduardo Sany Laber, Claudson Bornstein, Loana Tito Nogueira, and Luerbio Faria (Eds.). Vol. 4957. Springer Berlin

Heidelberg, Berlin, Heidelberg, 121–132. https://doi.org/10.1007/978-3-540-78773-0_11

[4] Julien Aimonier-Davat, Hala Skaf-Molli, Pascal Molli, Minh-Hoang Dang, and Brice Nédelec. 2023. Join Ordering

of SPARQL Property Path Queries. In The Semantic Web, Catia Pesquita, Ernesto Jimenez-Ruiz, Jamie McCusker, Daniel

Faria, Mauro Dragoni, Anastasia Dimou, Raphael Troncy, and Sven Hertling (Eds.). Springer Nature Switzerland, Cham,

38–54.

[5] Diego Arroyuelo, Aidan Hogan, Gonzalo Navarro, and Javiel Rojas-Ledesma. 2022. Time- and Space-Efficient Regular

Path Queries. In 2022 IEEE 38th International Conference on Data Engineering (ICDE). IEEE, Kuala Lumpur, Malaysia,

3091–3105. https://doi.org/10.1109/ICDE53745.2022.00277

[6] Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michał Podstawski, Claude Barthels, Gustavo Alonso,

and Torsten Hoefler. 2024. Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System

Designs, and Graph Queries. Comput. Surveys 56, 2 (Feb. 2024), 1–40. https://doi.org/10.1145/3604932

[7] Angela Bonifati, George Fletcher, Hannes Voigt, and Nikolay Yakovets. 2018. Querying Graphs. Synthesis Lec-

tures on Data Management, Vol. 10. Morgan & Claypool Publishers. 1–184 pages. https://doi.org/10.2200/

S00873ED1V01Y201808DTM051

[8] Angela Bonifati, Wim Martens, and Thomas Timm. 2020. An Analytical Study of Large SPARQL Query Logs. The
VLDB Journal 29, 2-3 (May 2020), 655–679. https://doi.org/10.1007/s00778-019-00558-9

[9] Alin Deutsch, Nadime Francis, Alastair Green, Keith Hare, Bei Li, Leonid Libkin, Tobias Lindaaker, Victor Marsault,

Wim Martens, Jan Michels, Filip Murlak, Stefan Plantikow, Petra Selmer, Oskar van Rest, Hannes Voigt, Domagoj

Vrgoč, Mingxi Wu, and Fred Zemke. 2022. Graph Pattern Matching in GQL and SQL/PGQ. In Proceedings of the 2022
International Conference on Management of Data. ACM, Philadelphia PA USA, 2246–2258. https://doi.org/10.1145/

3514221.3526057

[10] Saumen Dey, Víctor Cuevas-Vicenttín, Sven Köhler, Eric Gribkoff, Michael Wang, and Bertram Ludäscher. 2013. On

implementing provenance-aware regular path queries with relational query engines (EDBT ’13). Association for

Computing Machinery, New York, NY, USA, 214–223. https://doi.org/10.1145/2457317.2457353

[11] Alastair Green, Martin Junghanns, Max Kießling, Tobias Lindaaker, Stefan Plantikow, and Petra Selmer. 2018. open-

Cypher: New Directions in Property Graph Querying. In EDBT. 520–523.
[12] Ina Koch. 2001. Enumerating all connected maximal common subgraphs in two graphs. Theoretical Computer Science

250, 1 (2001), 1–30. https://doi.org/10.1016/S0304-3975(00)00286-3

[13] André Koschmieder and Ulf Leser. 2012. Regular Path Queries on Large Graphs. In Scientific and Statistical Database
Management, Anastasia Ailamaki and Shawn Bowers (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 177–194.

[14] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior, and Adrian Bielefeldt. 2018. Getting the Most

Out of Wikidata: Semantic Technology Usage in Wikipedia’s Knowledge Graph. In The Semantic Web – ISWC 2018,
Denny Vrandečić, Kalina Bontcheva, Mari Carmen Suárez-Figueroa, Valentina Presutti, Irene Celino, Marta Sabou,

Lucie-Aimée Kaffee, and Elena Simperl (Eds.). Springer International Publishing, Cham, 376–394.

[15] Inju Na, Yang-Sae Moon, Ilyeop Yi, Kyu-Young Whang, and Soon J. Hyun. 2022. Regular Path Query Evaluation

Sharing a Reduced Transitive Closure Based on Graph Reduction. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). IEEE, Kuala Lumpur, Malaysia, 1675–1686. https://doi.org/10.1109/ICDE53745.2022.00171

[16] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. 1978. An analysis of approximations for maximizing submodular set

functions–I. Math. Program. 14, 1 (dec 1978), 265–294. https://doi.org/10.1007/BF01588971

[17] M. E. J. Newman. 2000. Models of the Small World. Journal of Statistical Physics 101, 3/4 (2000), 819–841. https:

//doi.org/10.1023/A:1026485807148

[18] Van-Quyet Nguyen, Quyet-Thang Huynh, and Kyungbaek Kim. 2022. Estimating Searching Cost of Regular Path

Queries on Large Graphs by Exploiting Unit-Subqueries. Journal of Heuristics 28, 2 (April 2022), 149–169. https:

//doi.org/10.1007/s10732-018-9402-0

[19] Maurizio Nolé and Carlo Sartiani. 2016. Regular Path Queries on Massive Graphs. In Proceedings of the 28th International
Conference on Scientific and Statistical Database Management (Budapest, Hungary) (SSDBM ’16). Association for

Computing Machinery, New York, NY, USA, Article 13, 12 pages. https://doi.org/10.1145/2949689.2949711

[20] Nicholas Roussopoulos. 1982. View indexing in relational databases. 7, 2 (jun 1982), 258–290. https://doi.org/10.1145/

319702.319729

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

https://doi.org/10.1109/ICDE.2017.205
https://doi.org/10.1007/978-3-540-78773-0_11
https://doi.org/10.1109/ICDE53745.2022.00277
https://doi.org/10.1145/3604932
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.2200/S00873ED1V01Y201808DTM051
https://doi.org/10.1007/s00778-019-00558-9
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1145/3514221.3526057
https://doi.org/10.1145/2457317.2457353
https://doi.org/10.1016/S0304-3975(00)00286-3
https://doi.org/10.1109/ICDE53745.2022.00171
https://doi.org/10.1007/BF01588971
https://doi.org/10.1023/A:1026485807148
https://doi.org/10.1023/A:1026485807148
https://doi.org/10.1007/s10732-018-9402-0
https://doi.org/10.1007/s10732-018-9402-0
https://doi.org/10.1145/2949689.2949711
https://doi.org/10.1145/319702.319729
https://doi.org/10.1145/319702.319729

152:26 Yue Pang, Lei Zou, Jeffrey Xu Yu, and Linglin Yang

[21] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. 2000. Efficient and extensible algorithms for multi query

optimization. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (Dallas, Texas,
USA) (SIGMOD ’00). Association for Computing Machinery, New York, NY, USA, 249–260. https://doi.org/10.1145/

342009.335419

[22] Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. 2006. Efficient Algorithms for Detecting Signaling

Pathways in Protein Interaction Networks. Journal of Computational Biology 13, 2 (2006), 133–144. https://doi.org/10.

1089/cmb.2006.13.133

[23] Lucien D.J. Valstar, George H.L. Fletcher, and Yuichi Yoshida. 2017. Landmark Indexing for Evaluation of Label-

Constrained Reachability Queries. In Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA, 345–358. https:

//doi.org/10.1145/3035918.3035955

[24] Denny Vrandečić and Markus Krötzsch. 2014. Wikidata: A Free Collaborative Knowledgebase. Commun. ACM 57, 10

(Sept. 2014), 78–85. https://doi.org/10.1145/2629489

[25] Sarisht Wadhwa, Anagh Prasad, Sayan Ranu, Amitabha Bagchi, and Srikanta Bedathur. 2019. Efficiently Answering

Regular Simple Path Queries on Large Labeled Networks. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for Computing Machinery, New York, NY,

USA, 1463–1480. https://doi.org/10.1145/3299869.3319882

[26] Xin Wang, Junhu Wang, and Xiaowang Zhang. 2016. Efficient Distributed Regular Path Queries on RDF Graphs

Using Partial Evaluation. In Proceedings of the 25th ACM International on Conference on Information and Knowledge
Management (Indianapolis, Indiana, USA) (CIKM ’16). Association for Computing Machinery, New York, NY, USA,

1933–1936. https://doi.org/10.1145/2983323.2983877

[27] Nikolay Yakovets, Parke Godfrey, and Jarek Gryz. 2016. Query Planning for Evaluating SPARQL Property Paths. In

Proceedings of the 2016 International Conference on Management of Data. ACM, San Francisco California USA, 1875–1889.

https://doi.org/10.1145/2882903.2882944

Received October 2023; revised January 2024; accepted February 2024

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 152. Publication date: June 2024.

https://doi.org/10.1145/342009.335419
https://doi.org/10.1145/342009.335419
https://doi.org/10.1089/cmb.2006.13.133
https://doi.org/10.1089/cmb.2006.13.133
https://doi.org/10.1145/3035918.3035955
https://doi.org/10.1145/3035918.3035955
https://doi.org/10.1145/2629489
https://doi.org/10.1145/3299869.3319882
https://doi.org/10.1145/2983323.2983877
https://doi.org/10.1145/2882903.2882944

	Abstract
	1 Introduction
	2 Problem Statement
	3 Method Overview
	4 Related Work
	5 AND-OR DAG with Closure
	5.1 Motivation
	5.2 Structure & Construction
	5.3 Planning
	5.4 Execution
	5.5 Discussion: Comparison with Waveplans

	6 Materialized View Selection
	6.1 View Selection Algorithm
	6.2 Incremental View-Based Planning
	6.3 Discussion: MVS for RPQ in Graph DBMS

	7 Cost & Cardinality estimation
	7.1 Existing Approach
	7.2 Our Approach

	8 Experimental Evaluation
	8.1 Setting
	8.2 Effectiveness of Query Planning with AODC
	8.3 Proof of Concept: MVS for RPQ
	8.4 Impact of the Memory Budget
	8.5 Impact of the Workload Size
	8.6 Comparison with State-of-the-Art

	9 Conclusion
	Acknowledgments
	References

