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ABSTRACT
SimRank-based similarity joins, which mainly include threshold-

based and top-𝑘 similarity joins, are important types of all-pair

SimRank queries. Although a line of related algorithms have been

proposed recently, they still fall short of providing approximation

guarantee and suffer from scalability issues on medium and large

graphs. Meanwhile, we also lack an extensive analysis of existing

techniques in terms of accuracy and efficiency. Motivated by these

challenges, we first conduct detailed analysis of state-of-the-art

algorithms and provide additional theoretical results. Second, to

address the limitations of existing techniques, we propose simple

yet effective algorithm frameworks for both queries to theoret-

ically guarantee the approximation bound, and present a more

efficient all-pair algorithm inspired by randomized local push of

Personalized PageRank. Next, we analyze the algorithmic complex-

ity of threshold-based and top-𝑘 similarity joins by leveraging a

reasonable assumption of SimRank distribution. Through extensive

experiments, we find that our proposed methods far exceed existing

ones with respect to query efficiency, approximation guarantee and

practical accuracy, while our theoretical analysis nicely matches

the empirical study.
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1 INTRODUCTION
SimRank [12] is one of the most important measures for pairwise

node similarity, which finds its applications in recommender sys-

tems [19], link prediction [27], and graph embeddings [34]. The

SimRank similarity of node 𝑢 and 𝑣 is defined by the following

recursive equation, with the intuition that “two nodes in a graph

are similar if their in-neighbors are similar, and a node is most

similar to itself”:

𝑠 (𝑢, 𝑣) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if 𝑢 = 𝑣

𝑐

|𝐼 (𝑢) | |𝐼 (𝑣) |
∑︂

𝑥∈𝐼 (𝑢 )

∑︂
𝑦∈𝐼 (𝑣)

𝑠 (𝑥,𝑦), otherwise. (1)

Here, 𝐼 (𝑢) denote the in-neighbors of node 𝑢, and 𝑐 ∈ (0, 1) is the
decay factor, which is typically set to 0.6 [33, 36, 39] or 0.8 [12]. Due

to its computational complexity, efficient computation of SimRank

has been extensively studied in the past two decades [8, 16, 18, 22,

24, 26, 28, 32], and remains to be a hot topic in the very recent

years [23, 31, 36, 39, 45, 48].

According to the query inputs and outputs, SimRank queries can

be broadly categorized as single-pair queries, single-source queries,
and all-pair queries with the following definition.

Definition 1 (All-Pair SimRankComputation). Given a graph
𝐺 = (𝑉 , 𝐸) of 𝑛 nodes and an error parameter 𝜀, return the SimRank
estimation 𝑠 (𝑢, 𝑣) for every node pair (𝑢, 𝑣) with absolute error guar-
antee, so that |𝑠 (𝑢, 𝑣) − 𝑠 (𝑢, 𝑣) | ≤ 𝜀 (with high probability).

Among existing work [20, 26, 28, 29, 32, 39, 45–48] that tack-

les all-pair queries, state-of-the-art algorithms [39, 48] can hardly

guarantee an additive error of 𝜀 = 0.01 on million-node graphs.

Besides, a recent work [36] indicates that it is “essentially hopeless”

to compute all-pair queries on large graphs, as non-zero items can

be as large as 𝑂 (𝑛2). Fortunately, two modified versions of all-pair

queries have been studied, namely, threshold-based [29, 46, 47] and

top-𝑘 [20, 32, 48] similarity joins, of which the outputs are small
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subsets of all-pair SimRank computation. Both queries are more

practically useful because we are only interested in the node pairs

with non-negligible similarities [48].

Definition 2 (Threshold-based Similarity Join). Given a
graph 𝐺 = (𝑉 , 𝐸) and a threshold 𝜃 > 0, return the set of node pairs
R(𝜃 ) with 𝑢 ≠ 𝑣 and SimRank value 𝑠 (𝑢, 𝑣) ≥ 𝜃 .

Definition 3 (Top-𝑘 Similarity Join). Given a graph𝐺 = (𝑉 , 𝐸)
and a parameter 𝑘 > 0, return a 𝑘-sized set R(𝑘) containing the
node pairs with the top-𝑘 largest SimRank values among all pairs
{(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉 ,𝑢 ≠ 𝑣}.

Analogous to all-pair SimRank computation that an error pa-

rameter 𝜀 is allowed, we introduce the approximation bound 𝜌 for

similarity joins. As we shall see in Section 4, without 𝜌 (i.e., setting

𝜌 = 1), in worst cases no algorithm can be more efficient than

computing the exact SimRank values
1
.

Definition 4 (Approximation bound). Given an approximation
parameter 𝜌 ∈ (0, 1), we say an algorithm A has approximation
bound for threshold-based (resp. top-𝑘) similarity join of SimRank, if
for any input graph𝐺 , the returned set of node pairs contains at least
𝜌 fraction of the ground truth answer.

1.1 Motivations
We note that existing algorithms for threshold-based and top-𝑘

similarity joins significantly fall short of both query efficiency and

approximation guarantee. We identify the following issues.

Motivation 1. Lack of experimental analysis of efficiency and accuracy,
especially on medium and large graphs. Even for state-of-the-art

algorithms [39, 48] of general all-pair queries, the result accuracy

is not evaluated except for small graphs due to lack of ground

truth. Other representative algorithms [20, 46] even do not evaluate

accuracy on small graphs.

Motivation 2. Lack of approximation guarantee for threshold-based
and top-𝑘 similarity joins. Surprisingly, there does not exist an algo-

rithm that guarantees the approximation bound for threshold-based

or top-𝑘 similarity join. Algorithms with absolute error guarantee

cannot be directly extended to achieve this goal.

Motivation 3. Lack of understanding of the computational complexity.
As far as we know, it is unclear how the input parameters and graph

properties impact the algorithmic complexity of both queries.

1.2 Contributions
For both types of all-pair SimRank queries, we analyze state-of-

the-art algorithms in detail, provide improved algorithms with

approximation guarantee and lower theoretical complexity, and

discuss the problem complexity. Our contributions are summarized

as follows.

Detailed analysis of state-of-the-art algorithms. We choose

four representative algorithms, UISim [48], FLP & Opt-LP [39], H-
go SRJ [46], and KSimJoin [20] for comparison. UISim and FLP &

Opt-LP are state-of-the-art algorithms for general all-pair queries,

which are directly extended to answer SimRank-based similarity

joins [48].H-go SRJ andKSimJoin are the state-of-the-art algorithms

1
We distinguish between the exact and the ground truth SimRank values, where the for-

mer is the exact solution to Equation 1 and the latter is a very accurate approximation.

for threshold-based and top-𝑘 similarity joins, respectively. Apart

from their performance, we choose UISim [48] and KSimJoin [20]

because they adopt the random walk interpretation, whereas Opt-
LP [39] and H-go SRJ [46] are the best methods based on the Sim-

Rank matrix formation. For each algorithm, we discuss its basic

idea, theoretical guarantee, complexity analysis and empirical study.

We propose additional theoretical results (w.r.t. complexity or error

guarantee) that are incorrect or missed in the original papers.

Improved algorithms for SimRank-based similarity joins. We

first propose two simple yet effective algorithm frameworks for

both queries respectively with approximation bound. The basic idea

is to invoke an efficient algorithm for all-pair queries that estimates

SimRank values within 𝜀 error, and to gradually shrink 𝜀 until the

approximation bound is theoretically guaranteed. Next, we utilize

the equivalence of all-pair SimRank on the input graph𝐺 and single-

target Personalized PageRank (PPR) on the SimRank graph 𝐺𝑠
[39],

and devise Randomized Reverse Local Push (R2LP) inspired by ran-

domized backward push for PPR [35]. It improves the all-pair query

complexity from𝑂 (
∑︁

𝑢,𝑣∈𝑉 𝑑𝑖𝑛 (𝑢 )𝑑𝑖𝑛 (𝑣)𝑠 (𝑢,𝑣)
𝜀 ) (the best known algo-

rithm [39]) to 𝑂̃ (
∑︁

𝑢,𝑣∈𝑉
√
𝑑𝑖𝑛 (𝑢 )𝑑𝑖𝑛 (𝑣)𝑠 (𝑢,𝑣)

𝜀 ). We further propose a

pruning strategy to dramatically enhance practical efficiency while

retaining error guarantee.

Complexity analysis by utilizing SimRank distribution. We

find that it is almost impossible to give a non-trivial complexity

bound for both similarity join queries without any assumption

of SimRank distribution. Our empirical analysis validates that for

most real-world graphs, the ground truth SimRank values follow

some generalized version of power-law distribution [2, 6], which is

consistent with previous studies [23, 36]. We leverage this property

to propose verifiable assumptions of SimRank distribution and

present complexity analysis for our algorithms, which serves as

the upper bound of the algorithmic complexity of SimRank-based

similarity joins. Our theoretical results nicely match the empirical

study in Section 6.

Extensive experiments on medium and large graphs. We con-

duct extensive experiments on small, medium, and large sized

graphs and compare our algorithms with state-of-the-art methods.

As far as we know, we first employ medium and large datasets to

systematically evaluate threshold-based and top-𝑘 similarity joins

in terms of running time, absolute error and query accuracy, and

to demonstrate the necessities of holding approximation bound

as well as devising more efficient algorithms. Experimental study

demonstrates that our algorithms outperform existing ones in most

cases, achieving better accuracy while being faster by up to an order

of magnitude. More importantly, our empirical findings validate

that it is the skewness of SimRank distribution that mainly deter-

mines the problem hardness. This results verifies the effectiveness

of our theoretical analysis.

2 PRELIMINARIES
The definition in Equation 1 can be interpreted via the node-pairs
graph 𝐺2

[12]. Each node in 𝐺2
represents a pair of nodes (𝑢, 𝑣) in

𝐺 . If there exist edges (𝑢, 𝑣) and (𝑥,𝑦) in 𝐺 , edge ((𝑢, 𝑥), (𝑣,𝑦)) is
included in 𝐺2

. Specifically, every node (𝑣, 𝑣) is called the singleton
node. To this end, SimRank can be thought of as propagating the

similarity among nodes in𝐺2
, starting from all the singleton nodes.
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Table 1: Table of notations.

Notation Description
𝐺 = (𝑉 , 𝐸 ) A graph with node set𝑉 and edge set 𝐸, where 𝑛 = |𝑉 |

and𝑚 = |𝐸 |
𝐺2,𝐺𝑠

The node-pairs graph [12] and the SimRank graph [39]

𝑢, 𝑣 Nodes in𝐺

𝐼 (𝑢 ),𝑂 (𝑢 ) The incoming and outgoing neighbors of 𝑢, and we have

𝑑𝑖𝑛 (𝑢 ) = |𝐼 (𝑢 ) |, 𝑑𝑜𝑢𝑡 (𝑢 ) = |𝑂 (𝑢 ) |
𝑠 (𝑢, 𝑣) The SimRank value, i.e., the solution of Equation 1

𝑠∗ (𝑢, 𝑣) The ground truth SimRank value, with |𝑠∗ (𝑢, 𝑣) −
𝑠 (𝑢, 𝑣) | ≤ 𝜀𝑚𝑖𝑛 (with high probability)

𝑠 (𝑢, 𝑣) The estimated SimRank value

𝜀, 𝛿 The additive error and the failure probability

𝜃 The input parameter of threshold-based similarity join

𝑘 The input parameter of top-𝑘 similarity join

𝜌 The approximation bound

Matrix formation of SimRank. The recursive definition can be

represented in matrix formation [44], i.e., 𝑆 = 𝑐𝑃⊺𝑆𝑃 ∨ 𝐼 , where

𝑆 is an 𝑛 × 𝑛-dimensional similarity matrix with 𝑆 [𝑢, 𝑣] = 𝑠 (𝑢, 𝑣),
𝑃 is the column-normalized adjacency matrix of 𝐺 , 𝐼 is the iden-

tity matrix, and operator ∨ denotes element-wise maximum. The

all-pair ground truth of SimRank can be computed by the Power
Method [12], which is essentially a fixed-point iteration process on

𝐺2
. Recent literature [18, 26, 39] further derives various close-form

solutions based on this formation.

The random walk interpretation. Jeh and Widom explain the

SimRank definition from random walk perspective in their original

paper [12]. We adopt

√
𝑐-walk, its revised version following [13, 22,

33]. Let𝑊√𝑐 (𝑢) denote a random walk starting from node 𝑢 and

following incoming edges at each step with walking probability√
𝑐 . At each step, with probability

√
𝑐 , it randomly chooses an in-

neighbor and continues the walk, otherwise the walk stops at the

current node. [33] proves that the SimRank of 𝑢 and 𝑣 equals the

probability that two

√
𝑐-walks𝑊√𝑐 (𝑢) and𝑊√𝑐 (𝑣) meet.

Table 1 lists the frequently used notations throughout the paper.

3 ANALYSIS OF STATE OF THE ART
We present detailed comparison and analysis of state-of-the-art

algorithms for threshold-based and top-𝑘 similarity joins (see Fig-

ure 1 and Table 2). We choose four methods including UISim [48],

FLP & Opt-LP [39], H-go SRJ [46] and KSimJoin [20] for their state-

of-the-art performance. We also correct the erroneous claims and

make up the missing theoretical analysis in the original papers.

3.1 UISim
The algorithm depends on the random walk interpretation [12]

which says that SimRank value 𝑠 (𝑢, 𝑣) equals to the summation of

first-meeting probabilities of all random walk pairs starting from 𝑢

and 𝑣 , respectively. To compute 𝑠 (𝑢, 𝑣), UISim adopts the following

idea: “Approximately prioritize all random walk pairs and first handle
those with high meeting probabilities.” In practice, this is done by

selecting a set of hub nodes 𝐻 with high in-degrees. Note that a
random walk passing many hubs will have small walking probabil-

ity. Therefore, UISim prioritizes a random walk pair by the number

of encountered hubs, which is an approximation of ordering walk

pairs by their meeting probabilities.

For all-pair SimRank computation, UISim first computes the

prime out-subgraphs of all nodes with at least two out-neighbors

(denoted as 𝑉𝑜
≥2
), and then assembles all generated random walk

pairs (level-1 expansion in Figure 1(a)). The prime out-subgraph of

node 𝑣 contains all reachable nodes starting from 𝑣 and following

out-edges until a hub node is met. Next, we expand all encoun-

tered hubs with their prime out-subgraphs (level-2 expansion). The

algorithm terminates with level-𝜂 expansion.

Theoretical Guarantee. UISim actually relaxes the first-meeting

constraints of SimRank definition
2
, and analyzes the expected error

bound based on this assumption. Generally, it does not have an

absolute error guarantee for the SimRank estimation 𝑠 (𝑢, 𝑣).
Complexity Analysis. According to [48], the time complexity

of UISim for all-pair queries is bounded by 𝑂 ( |𝑉𝑜
≥2
| |𝐻 |𝜂𝑇 ) in ex-

pectation, where 𝑇 = 𝑂

(︂
𝑑¯
𝐿 (1 −∑︁𝑣∈𝐻 𝑑𝑖𝑛 (𝑣)/𝑚)𝐿

)︂
stands for the

expected number of random walks up to length 𝐿.

Empirical Analysis. UISim is evaluated for all-pair queries (by

additive error) and for top-𝑘 similarity joins (by Precision@𝑘) but

only on small graphs with tens of thousands nodes.

3.2 FLP & Opt-LP
Wang et al. [39] propose SimRank graph, a modified version of the

node-pairs graph (see Figure 1(b)).

Definition 5 (SimRank Graph). Given a graph𝐺 , its SimRank
graph𝐺𝑠 is obtained from the node-pairs graph 𝐺2 by removing all
the in-edges of the singleton nodes. Besides, we slightly modify 𝐺𝑠 by
adding a virtual node (𝑣𝑟 , 𝑣𝑟 ), and for each singleton node (𝑣, 𝑣), we
add one in-edge from it to the virtual node.

Based on that, the idea is as follows: “SimRank is reformalized
as the solution of a new linear system, the computation of which can
be approximated by Backward Push [25].” In particular, the linear

system is formulated as

[𝐼 − 𝑐 (𝐼 − 𝐷𝑖𝑎𝑔(−−→𝑣𝑒𝑐 (𝐼 ))) (𝑃⊺ ⊗ 𝑃⊺)]−−→𝑣𝑒𝑐 (𝑆) = −−→𝑣𝑒𝑐 (𝐼 ), (2)

where ⊗ denotes the Kronecker product, and
−−→𝑣𝑒𝑐 (·) (resp. 𝐷𝑖𝑎𝑔(·))

transforms a matrix (resp. vector) to the corresponding vector (resp.

diagonal matrix). The baseline algorithm, referred to as Forward-
LocalPush (FLP), is essentially Backward Push [25] for single-target

PPR on 𝐺𝑠
by setting the virtual node as target and following out-

edges instead of in-edges (i.e., reverse PPR). An optimized algorithm

named OptimizeLocalPush (Opt-LP) is proposed to avoid redundant

computation and to efficiently handle self-loops. For implementa-

tion, the algorithm does not have to materialize 𝐺𝑠
. We formalize

the above claim as the following lemma
3
.

Lemma 1. The SimRank similarity of 𝑢 and 𝑣 is exactly 1

𝑐 (1−𝑐 )
times the reverse PPR value of node (𝑢, 𝑣) w.r.t. the target node (𝑣𝑟 , 𝑣𝑟 )
on SimRank graph 𝐺𝑠 and with stopping probability 1 − 𝑐 :

𝑠 (𝑢, 𝑣) = 1

𝑐 (1 − 𝑐) 𝜋𝐺
𝑠 ((𝑢, 𝑣), (𝑣𝑟 , 𝑣𝑟 )) . (3)

2
Note that [48] provides a correction method to exclude multi-hop double-meeting
probabilities, i.e., the probability of two random walks meeting exactly twice. It is

non-trivial to extend the method to multi-meeting probabilities.
3
For space constraint, we refer most of the proofs to the full version of the paper [1].
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(a) UISim (b) FLP & Opt-LP

(c) H-go SRJ (d) KSimJoin

Figure 1: Overview of state-of-the-art algorithms for SimRank-based similarity joins.

Table 2: Comparison of state of the art. N/A means that the specific query is not studied in the original paper.

Algorithm

Theoretical Guarantee

Time Complexity

Empirical Study

Absolute Threshold Top-𝑘 Absolute Threshold Top-𝑘

UISim [48] ✗ N/A ✗ 𝑂 ( |𝑉𝑜
≥2
| |𝐻 |𝜂𝑇 ) ✓ N/A ✓

FLP & Opt-LP [39] ✓ N/A N/A 𝑂 (
∑︁
𝑢,𝑣∈𝑉 𝑑𝑖𝑛 (𝑢)𝑑𝑖𝑛 (𝑣)𝑠 (𝑢,𝑣)

𝜀
) ✓ N/A N/A

H-go SRJ [46] ✓ ✗ N/A 𝑂̃ (𝑛𝑑¯ℎ + 𝑛 |𝐻 (𝐺 ) |
𝜀2

) (offline),

𝑂 (𝑛𝑑¯ℎ+3 ) (online)
N/A Only query time Only query time

KSimJoin [20] ✓ N/A ✗ 𝑂 (𝑛𝑑¯ log
1

𝜀 ) N/A N/A Only query time

Theoretical Guarantee. FLP & Opt-LP guarantee absolute error

following [25], i.e., |𝑠 (𝑢, 𝑣) − 𝑠 (𝑢, 𝑣) | ≤ 𝜀 for each (𝑢, 𝑣).
Complexity Analysis. We observe that the proposed average

time complexity 𝑂 ( 𝑑¯
2

𝜀 ) (Proposition 1 of [39]) is incorrect where 𝑑¯
denotes the average degree of𝐺 . This average complexity from [25]

is achieved by considering all possible target nodes in the graph.

However, for all-pair SimRank computation, the target node is fixed
as the virtual node. We fix the issue using the following lemma.

Lemma 2. To achieve an absolute error of 𝜀 for all-pair queries,
following [25, 35], the time complexity of FLP and Opt-LP are bounded

by 𝑂 (
∑︁

𝑢,𝑣∈𝑉 𝑑𝑖𝑛 (𝑢 )𝑑𝑖𝑛 (𝑣)𝑠 (𝑢,𝑣)
𝜀 ).

Empirical Analysis. [39] conducts experiments for all-pair queries

on both small and large graphs with respect to query time, but only

evaluates estimation error on small graphs with thousands of nodes.

3.3 H-go SRJ
Inspired by the distance-based upper bound of SimRank which

states that two nodes with a large shortest path distance cannot

be very similar, the index-based algorithm H-go SRJ [46] answers
threshold-based similarity joins with the following idea (Figure 1(c)):

“First choose a proper set of node pairs (i.e, the h-go cover
+) and

precompute their SimRank estimations. For any other node pair, its
SimRank estimation can be efficiently computed following recursive
SimRank definition and with the help of the h-go cover+.”

In the offline phase, the algorithm first computes the h-go cover
+

index with similar idea as the vertex cover, so that any ℎ-hop path

on the node-pairs graph intersects with the index. For each indexed

node pair, its SimRank value can be estimated by a single-pair

query. In the online phase, for every non-indexed node pair, H-go
SRJ conducts graph traversal from it and builds a system of linear

equations, which can be solved using Gaussian elimination.

Theoretical Guarantee. [46] does not discuss the error guarantee
ofH-go SRJ. We remedy this issue with the following analysis. Given

an error parameter 𝜀, for each indexed node pair we invoke the

Monte Carlo algorithm [8] to sample 𝑂̃ ( 1

𝜀2
) pairs of random walks

(the 𝑂̃ notation ignores log factors). The following lemma bounds

the estimation error of the online phase.

Lemma 3. If all indexed SimRank similarities have at most 𝜀 addi-
tive error, then the 𝜀 error guarantee also holds for the similarity of
any node pair computed in the online phase.

ComplexityAnalysis. According to [46], the h-go cover+ selection
takes 𝑂 (𝑛𝑑¯ℎ) time where 𝑑¯ is the average degree of𝐺 . We notice

that computing SimRank estimation for the indexed node pairs

takes an extra 𝑂̃ ( 𝑛 |𝐻 (𝐺 ) |
𝜀2
) time, where 𝐻 (𝐺) denotes the h-go

cover
+
of 𝐺 . Therefore, the offline phase needs 𝑂̃ (𝑛𝑑¯ℎ + 𝑛 |𝐻 (𝐺 ) |

𝜀2
)

time. For the online phase, given a node pair, building the linear

system by graph traversal needs𝑂 (𝑑¯2ℎ) time, while solving it incurs
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𝑂 (𝑑¯2ℎ+1) time with all optimizations [46]. Since the linear system

contains 𝑂 (𝑑¯2(ℎ−1) ) unknown values on average, the amortized

cost for computing each non-indexed node pair is 𝑂 (𝑑¯3). Assume

there exist 𝑂 (𝑛𝑑¯ℎ) non-indexed node pairs after distance-based

pruning, the online phase needs 𝑂 (𝑛𝑑¯ℎ · 𝑑¯3) = 𝑂 (𝑛𝑑¯ℎ+3) time.

Empirical Analysis. [46] evaluates query efficiency on graphs

with up to millions of nodes but ignores the evaluation of accuracy.

3.4 KSimJoin
Based on the random walk interpretation, KSimJoin [20] answers

top-𝑘 similarity joins via decomposing the SimRank value by meet-

ing steps, i.e., 𝑠 (𝑢, 𝑣) = ∑︁∞
𝑙=0

𝑠 (𝑙 ) (𝑢, 𝑣), where 𝑠 (𝑙 ) (𝑢, 𝑣) is the first
meeting probability of two

√
𝑐-walks from 𝑢 and 𝑣 at exact 𝑙-th step.

It employs the following key idea: “Compute the meeting probabili-
ties in ascending order of meeting steps. Multi-meeting cases at each
step are eliminated by carefully utilizing previous computation with
fewer steps.”

Specifically, the following equation is adopted to compute 𝑠 (𝑙 ) (𝑢, 𝑣):

𝑠 (𝑙 ) (𝑢, 𝑣) =
∑︂
𝑥∈𝑉

Pr((𝑢, 𝑣) 𝑙−→ (𝑥, 𝑥))

−
∑︂

𝑖∈[1,𝑙−1],𝑦∈𝑉
Pr((𝑢, 𝑣) 𝑖−→ (𝑦,𝑦))𝜓 (𝑦, 𝑙 − 𝑖), (4)

where𝜓 (𝑦, 𝑙 − 𝑖) is the probability of two

√
𝑐-walks starting from

𝑦 first meeting at exact (𝑙 − 𝑖)-th step, which is referred to as the

second meeting probability. The algorithm performs a breadth-first

search (BFS) from every node 𝑣 following in-edges (Figure 1(d)). All

visited node at step 𝑙 is referred to as 𝑁𝑃 (𝑣, 𝑙). Then, for each node

𝑥 ∈ 𝑁𝑃 (𝑣, 𝑙), a BFS following out-edges finds all node 𝑢 that is 𝑙-

step from 𝑥 , denoted as 𝑅𝑁𝑃 (𝑥, 𝑙). The multi-meeting probabilities

are computed from 𝑁𝑃 (𝑣, 𝑙) and 𝑅𝑁𝑃 (𝑥, 𝑙) for all 𝑥 ∈ 𝑁𝑃 (𝑣, 𝑙). By
leveraging Equation 4, it excludes all multi-meeting cases, where

the second meeting probabilities𝜓 (𝑥, 𝑖) can be computed following

a similar BFS-based incremental approach. For top-𝑘 queries, after

each iteration of 𝑙 , KSimJoin uses a carefully designed upper bound

to prune nodes that cannot be in the top-𝑘 answers, where the

upper bound is computed by relaxing Equation 4.

Theoretical Guarantee. [20] does not analyze the error guarantee
of KSimJoin. Our lemma states that KSimJoin (without upper bound
pruning) is essentially equivalent to the Power Method [12].

Lemma 4. By considering the terms from 𝑙 = 0 to 𝐿 with 𝐿 =

𝑂 (log
1

𝜀 ), KSimJoin achieves 𝑂 (𝜀) absolute error guarantee.

Complexity Analysis. Computing the multi-meeting probabilities

and the upper bound incurs𝑂 ( |𝑅 |𝑑¯2𝐿) time [20]. The cost for second

meeting probabilities is asymptotically identical. Since 𝐿 = 𝑂 (log
1

𝜀 )
and |𝑅 | = 𝑂 (𝑛), the overall time complexity is 𝑂 (𝑛𝑑¯log

1

𝜀 ).
Empirical Analysis. Empirical study of [20] only focuses on the

efficiency of top-𝑘 queries on small and medium graphs.

3.5 Comparison of State-of-the-art Algorithms
Apart from the specific interpretation of SimRank in the original

papers, KSimJoin, UISim and FLP & Opt-LP can be viewed as dif-

ferent ways of prioritizing meeting probabilities. KSimJoin orders

Figure 2: Illustration of the algorithm framework.

random walk pairs by walk length, FLP & Opt-LP prioritize them

by the walking probabilities, and UISim can be considered as an

approximation of the strategy in FLP & Opt-LP. However, existing
experimental study is quite limited, including lack of evaluation

on large graphs [20, 39, 48] and for estimation error [20, 46]. More

importantly, none of the algorithms provides any approximation

guarantee for both types of similarity joins.

4 OUR IMPROVED ALGORITHMS
4.1 Algorithm Framework
We adopt a simple yet effective idea [23, 37] to answer threshold-

based and top-𝑘 queries with approximation bound (Figure 2). It

takes an all-pair algorithm AP as subprocedure and progressively

decreases the input error parameter ofAP until the bound is satis-

fied. We present specific stopping conditions for our problems.

4.1.1 APThres for Threshold Queries. Recall that threshold-based
similarity join finds (at least 𝜌 fraction of) all node pairs with Sim-

Rank similarity above 𝜃 . Given an all-pair algorithm that guarantees

an additive error of 𝜀 (with high probability), i.e., |𝑠 (𝑢, 𝑣) −𝑠 (𝑢, 𝑣) | ≤
𝜀 for each node pair (𝑢, 𝑣), if the estimated SimRank value 𝑠 (𝑢, 𝑣)
satisfies that 𝑠 (𝑢, 𝑣) ≥ 𝜃+𝜀, then we have 𝑠 (𝑢, 𝑣) ≥ 𝜃 , that is, (𝑢, 𝑣) is
included in the result set. Similarly, for (𝑢′, 𝑣 ′) with 𝑠 (𝑢′, 𝑣 ′) < 𝜃 −𝜀,
we should exclude it from the result set. Intuitively, 𝜀 should be

small enough to meet the approximation bound 𝜌 . We iteratively

decrease 𝜀 by half until the condition is satisfied.

Algorithm Description. The framework, denoted as APThres, is
illustrated in Algorithm 1. The algorithm initializes the result set

R(𝜃 ) and the candidate set C as empty set, and set 𝜀1 = 𝑂 (𝜃 ) (e.g.
𝜃
2
) for the first iteration (Line 1). Then, at 𝑖-th iteration, APThres

iteratively invokes AP with error parameter 𝜀𝑖 (Lines 2-3). Partic-

ularly, we use 𝑆𝑖 = {𝑠𝑖 (𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉 ,𝑢 ≠ 𝑣} to denote the all-pair

SimRank estimations, where the subscript 𝑖 specifies the iteration

number. In practice, we do not store node pairs with zero estimated

values. We use 𝑆𝑖 to update R(𝜃 ) (Line 4) and C (Line 5). The algo-

rithm terminates if
| R (𝜃 ) |
| R (𝜃 ) |+| C | ≥ 𝜌 holds, which implies that R(𝜃 )

contains at least 𝜌 fraction of the result (Lines 6-7). Otherwise, we

halve the error parameter for the next iteration (Line 8). If our

stopping condition is never satisfied, the algorithm will stop when

the SimRank estimation of every node pair has no more than 𝜀𝑚𝑖𝑛

error. In both cases, R(𝜃 ) is returned (Line 9).

Remark. The existence of approximation bound 𝜌 ∈ (0, 1) is a
necessary condition for APThres to stop. Without 𝜌 , which means

setting 𝜌 = 1, APThres stops only if C = ∅, which does not always

hold. In worst cases, we claim that no such an algorithm exists with

better efficiency than computing the exact SimRank values. Suppose

that a graph has |R | node pairs with SimRank values being exactly

𝜃 , while other (non-singleton) node pairs have zero similarity. Even
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for a ground truth algorithm that guarantees 𝜀𝑚𝑖𝑛 additive error,

it still might return an answer that is arbitrary bad in terms of

approximation bound, e.g., when all estimations are below 𝜃 .

Algorithm 1: The APThres framework

Input: Directed graph 𝐺 = (𝑉 , 𝐸), threshold 𝜃 ,
approximation bound 𝜌 , all-pair algorithm AP

Output: R(𝜃 ), which contains at least 𝜌 fraction of all node

pairs with similarities above 𝜃

1 R(𝜃 ) ← ∅, C ← ∅, 𝜀1 ← 𝑂 (𝜃 );
2 for 𝑖 = 1 to log

2

1

𝜀𝑚𝑖𝑛
do

3 𝑆𝑖 ←AP(𝐺, 𝜀𝑖 );
4 R(𝜃 ) ← R(𝜃 ) ∪ {((𝑢, 𝑣), 𝑠𝑖 (𝑢, 𝑣)) ∈ 𝑆𝑖 |𝑠𝑖 (𝑢, 𝑣) ≥ 𝜃 + 𝜀};
5 C ← (C ∪ {((𝑢, 𝑣), 𝑠𝑖 (𝑢, 𝑣)) ∈ 𝑆𝑖 |𝑠𝑖 (𝑢, 𝑣) ∈

[𝜃 − 𝜀, 𝜃 + 𝜀)})\R(𝜃 );
6 if | R (𝜃 ) |

| R (𝜃 ) |+| C | ≥ 𝜌 then
7 break;

8 𝜀𝑖+1 ← 𝜀𝑖/2;
9 return R(𝜃 );

Correctness. The following theorem proves that APThres has ap-
proximation bound for threshold-based queries.

Theorem 1. APThres with an all-pair algorithm AP of absolute
error guarantee holds approximation bound 𝜌 for threshold-based
similarity joins.

Proof (Sketch). All node pairs included in R(𝜃 ) belong to the

actual result because 𝑠𝑖 (𝑢, 𝑣) ≥ 𝜃 + 𝜀 and |𝑠𝑖 (𝑢, 𝑣) − 𝑠 (𝑢, 𝑣) | ≤ 𝜀.

Similarly, if some node pair in the real answer is not included, it

must be in the candidate set C. Therefore, | R (𝜃 ) |
| R (𝜃 ) |+| C | is a lower

bound of the approximation guarantee. The above claims also hold

for an algorithm AP with a small failure probability. If the failure

probability of APThres is 𝛿 (e.g. 𝑜 ( 1

𝑛 )), it is sufficient to set the

failure probability ofAP as 𝛿/log
2

1

𝜀𝑚𝑖𝑛
, so the theorem holds. □

4.1.2 APTop-𝑘 for Top-𝑘 Queries. We provide a framework APTop-
𝑘 for top-𝑘 similarity joins with approximation bound 𝜌 , which is

analogous to APThres but with different stopping condition.

Algorithm Description. We demonstrate the pseudocode in Algo-

rithm 2. The algorithm sets the initial value of the error parameter

as𝑂 (𝑐) (Line 1), and iteratively invokes the all-pair algorithm (Lines

2-3). At 𝑖-th iteration, the estimation values 𝑆𝑖 are sorted in descend-

ing order, denoted as {𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝑘 , . . . , 𝑠𝑖,𝑛 (𝑛−1) } (Line 4). We

set the stopping conditions as 𝑠𝑖,⌈𝜌𝑘 ⌉ − 𝜀𝑖 ≥ 𝑠𝑖,𝑘+1 + 𝜀𝑖 (Lines 5-6),
which says that the lower bound of the ⌈𝜌𝑘⌉-th largest estimation

is no smaller than the upper bound of the (𝑘 + 1)-th one. The algo-

rithm decreases the error parameter by half if it does not terminate

this round (Line 7). Finally, APTop-𝑘 returns the set of node pairs

with the top-𝑘 largest estimations (Lines 8-9).

Correctness. We have the following theorem for APTop-𝑘 .

Theorem 2. APTop-𝑘 with an all-pair algorithm AP of absolute
error guarantee holds approximation bound 𝜌 for top-𝑘 queries.

Algorithm 2: The APTop-𝑘 framework

Input: Directed graph 𝐺 = (𝑉 , 𝐸), parameter 𝑘 ,

approximation bound 𝜌 , all-pair algorithm AP
Output: R(𝑘), which contains at least 𝜌 fraction of node

pairs with top-𝑘 largest SimRank values

1 𝜀1 ← 𝑂 (𝑐);
2 for 𝑖 = 1 to log

2

1

𝜀𝑚𝑖𝑛
do

3 𝑆𝑖 ←AP(𝐺, 𝜀𝑖 );
4 {𝑠𝑖,1, 𝑠𝑖,2, . . . , 𝑠𝑖,𝑘 , . . . , 𝑠𝑖,𝑛 (𝑛−1) } ← sort(𝑆𝑖 ) (in

descending order);

5 if 𝑠𝑖,⌈𝜌𝑘 ⌉ − 𝜀𝑖 ≥ 𝑠𝑖,𝑘+1 + 𝜀𝑖 then
6 break;

7 𝜀𝑖+1 ← 𝜀𝑖/2;
8 Let R(𝑘) be the node pairs with top-𝑘 largest estimations;

9 return R(𝑘);

Proof (Sketch). We claim when the stopping condition is satis-

fied, for each 𝑗 ≤ ⌈𝜌𝑘⌉ and each 𝑗 ′ ≥ 𝑘 + 1, the SimRank similarity

of the 𝑗-th node pair is no smaller than that of the 𝑗 ′-th, as the
lower bound of the former is no smaller than the upper bound of

the latter. Consequently, it means that the top-⌈𝜌𝑘⌉ node pairs are
always included in the exact result. Similar to Theorem 1, this claim

holds for algorithm AP with a small failure probability. □

4.2 Randomized Reverse Local Push (R2LP)
We present an all-pair algorithm following the random walk inter-

pretation and leveraging the local push techniques [25, 35]. It is in-

spired by the advantage of Randomized Backward Search (RBS) [35]
over Backward Push for PPR. As computing SimRank on the node-

pairs graph with 𝑂 (𝑛2) nodes incurs much more computational

and memory costs than computing PPR on the original graph, to

guarantee the practical efficiency, we devise a pruning strategy

with absolute error guarantee to dramatically enhance query time.

Algorithm Description. We refer to the algorithm as Randomized
Reverse Local Push (R2LP) (see Algorithm 3). The SimRank value

𝑠 (𝑢, 𝑣) is split into 𝑠 (𝑙 ) (𝑢, 𝑣) for 𝑙 ∈ [0,∞), where 𝑠 (𝑙 ) (𝑢, 𝑣) is the
probability of two

√
𝑐-walks𝑊√𝑐 (𝑢) and𝑊√𝑐 (𝑣) first meeting after

exact 𝑙 steps. It is obvious that 𝑠 (𝑢, 𝑣) = ∑︁∞
𝑙=0

𝑠 (𝑙 ) (𝑢, 𝑣). R2LP esti-

mates 𝑠 (𝑙 ) (𝑢, 𝑣) for all node pairs in ascending order of 𝑙 . Following

previous work [24, 46], by only considering terms up to 𝑠 (𝐿) (𝑢, 𝑣),
the incurred error is bounded by 𝑐𝐿+1. Therefore, it is sufficient to

set 𝐿 = 𝑂 (log
1

𝜀 ) to bound an 𝑂 (𝜀) error (Line 1). We initialize the

algorithm in Lines 2-3, where 𝑠 (𝑙 ) (𝑢, 𝑣) corresponds to the reserves
of PPR [25, 35], and we omit the residues because it holds that

𝑟 (𝑙 ) (𝑢, 𝑣) = 𝑠 (𝑙 ) (𝑢, 𝑣)/(1 − 𝑐). Then, for 𝑙 = 0 to 𝐿 − 1, we compute

the estimates 𝑠 (𝑙+1) (𝑢, 𝑣) based on 𝑠 (𝑙 ) (𝑢, 𝑣) (Lines 4-10). For each
𝑠 (𝑙 ) (𝑢, 𝑣) at level 𝑙 , we check if its value is large enough (Line 5).

For now, we set 𝑓 (𝜀) = 0 to be the same as RBS. Similarly, our al-

gorithm checks each out-neighbor (𝑢′, 𝑣 ′) of (𝑢, 𝑣) in the SimRank

graph𝐺𝑠
(Lines 6&9). For node pair (𝑢′, 𝑣 ′) with limited amount of

in-neighbors in 𝐺𝑠
, we conduct deterministic push as in Backward

Push (Line 7). Otherwise, the randomized push is applied (Lines

8&10), which gives an unbiased estimation [35] but ignores many
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node pairs in practice. The returned value 𝑠 (𝑢, 𝑣) summarizes the

estimations of every step 𝑙 (Lines 11-12).

Algorithm 3: Randomized Reverse Local Push (R2LP)
Input: Directed graph 𝐺 = (𝑉 , 𝐸) with sorted adjacency

lists, additive error parameter 𝜀

Output: 𝑠 (𝑢, 𝑣) for all 𝑢, 𝑣 ∈ 𝑉
1 𝐿 ← log𝑐 (1 − 𝑐)𝜀;
2 𝑠 (𝑙 ) (𝑢, 𝑣) ← 0 for 𝑙 ∈ [0, 𝐿] and 𝑢, 𝑣 ∈ 𝑉 ;

3 𝑠 (0) (𝑣, 𝑣) ← 1 for all 𝑣 ∈ 𝑉 ;

4 for 𝑙 = 0 to 𝐿 − 1 do
5 for each (𝑢, 𝑣) with 𝑠 (𝑙 ) (𝑢, 𝑣) > 𝑓 (𝜀) do
6 for each 𝑢′ ∈ 𝑂 (𝑢), 𝑣 ′ ∈ 𝑂 (𝑣), 𝑢′ ≠ 𝑣 ′ and√︁

𝑑𝑖𝑛 (𝑢′)𝑑𝑖𝑛 (𝑣 ′) ≤ 𝑐𝑠 (𝑙 ) (𝑢,𝑣)
(1−𝑐 )𝜀 do

7 𝑠 (𝑙+1) (𝑢′, 𝑣 ′) ← 𝑠 (𝑙+1) (𝑢′, 𝑣 ′) + 𝑐𝑠 (𝑙 ) (𝑢,𝑣)
𝑑𝑖𝑛 (𝑢′ )𝑑𝑖𝑛 (𝑣′ ) ;

8 𝑟 ← 𝑟𝑎𝑛𝑑 (0, 1);
9 for each 𝑢′ ∈ 𝑂 (𝑢), 𝑣 ′ ∈ 𝑂 (𝑣), 𝑢′ ≠ 𝑣 ′ and

𝑐𝑠 (𝑙 ) (𝑢,𝑣)
(1−𝑐 )𝜀 <

√︁
𝑑𝑖𝑛 (𝑢′)𝑑𝑖𝑛 (𝑣 ′) ≤ 𝑐𝑠 (𝑙 ) (𝑢,𝑣)

(1−𝑐 )𝜀𝑟 do

10 𝑠 (𝑙+1) (𝑢′, 𝑣 ′) ← 𝑠 (𝑙+1) (𝑢′, 𝑣 ′) + (1−𝑐 )𝜀√
𝑑𝑖𝑛 (𝑢′ )𝑑𝑖𝑛 (𝑣′ )

;

11 𝑠 (𝑢, 𝑣) ← ∑︁𝐿
𝑙=0

𝑠 (𝑙 ) (𝑢, 𝑣);
12 return non-zero 𝑠 (𝑢, 𝑣) for 𝑢, 𝑣 ∈ 𝑉 ,𝑢 ≠ 𝑣 ;

We discuss two implementation details. First, we do not need to

materialize𝐺𝑠
. To get all out-neighbors of (𝑢, 𝑣) in𝐺𝑠

, it is sufficient

to traverse the out-neighbors of𝑢 and 𝑣 in𝐺 simultaneously. Second,

to guarantee the efficiency, the randomized push strategy [35] needs

the out-neighbors of (𝑢, 𝑣) to be sorted in ascending order of in-
degree. This can be achieved by first preprocessing the adjacency

lists of 𝐺 before invoking the algorithm.

Pruning Strategy. Recall that the above algorithm (as well as

RBS) combines deterministic and randomized push for algorithmic

efficiency. Intuitively, it encourages most node pairs to be handled

by the randomized process. When applied to SimRank computation,

due to the excessive number of node pairs in 𝐺𝑠
, the randomized

part of the algorithm still needs to be improved to effectively prune

the node pairs with negligible similarities. We additionally propose

a deterministic pruning strategy to directly rule out estimations

with small values at each step 𝑙 . To be precise, we set 𝑓 (𝜀) = 𝑂̃ (𝜀)
(i.e., we omit the logarithmic factor of 𝜀) in Line 5 of Algorithm 3.

For the deterministic process, it is almost unaffected as the algo-

rithm requires 𝑠 (𝑙 ) (𝑢, 𝑣) > (1−𝑐 )𝜀
𝑐 ·

√︁
𝑑𝑖𝑛 (𝑢′)𝑑𝑖𝑛 (𝑣 ′) and the RHS

usually exceeds 𝜀. Hence, the deterministic part guarantees the

large fraction of the similarity value is computed exactly. For the

randomized process, the pruning strategy becomes effective when

𝑟 is unfortunately very small, namely, 𝑟 ≤ 𝑐

(1−𝑐 )
√
𝑑𝑖𝑛 (𝑢′ )𝑑𝑖𝑛 (𝑣′ )

. As

we shall see in the experiments, the pruning power is significant.

Correctness. The following lemma shows that our R2LP algorithm

guarantees additive error 𝜀 with high probability. Particularly, the

above pruning strategy does not affect the error guarantee.

Lemma 5. By conducting the randomized push procedure of R2LP
for 𝑂 (log

𝑛
𝛿
) times and apply the Median-of-Mean trick [7], we have

|𝑠 (𝑢, 𝑣) − 𝑠 (𝑢, 𝑣) | ≤ 𝜀 with at least 1 − 𝛿 probability.

Proof (Sketch). Note that without the pruning strategy, by

Lemma 1, to guarantee 𝜀 absolute error it is sufficient to set the

input error parameter to 𝑐 (1 − 𝑐)𝜀. Since without pruning the algo-

rithm is equivalent to invoking RBS on 𝐺𝑠
, the lemma follows by

Theorem 4.2 of [35]. Next we show when conducting RBS on 𝐺𝑠
,

the caused error by pruning is also bounded.

First, we prove that E[𝜋̂ ′
𝑙+1 (𝑢, 𝑡)] ≥ 𝜋𝑙+1 (𝑢, 𝑡) − 1−𝛼

𝛼 𝜀 for ∀𝑢 ∈ 𝑉
and 𝑙 ∈ [0, 𝐿). Here, 𝜋̂ ′ and 𝜋̂ denote the PPR estimation (on 𝐺𝑠

)

with and without pruning, respectively. We prove it by induction.

For 𝑙 = 0, 𝜋̂ ′
0
(𝑡, 𝑡) = 𝛼 and 𝜋̂ ′

0
(𝑣, 𝑡) = 0 for any 𝑣 ≠ 𝑡 where 𝑡

denotes the target node (𝑣𝑟 , 𝑣𝑟 ) of 𝐺𝑠
(we assume 𝛼 > 𝜀), and the

claim holds. Suppose E[𝜋̂ ′
𝑙
(𝑣, 𝑡)] ≥ 𝜋𝑙 (𝑣, 𝑡) −

∑︁𝑙−1

𝑖=1
(1 − 𝛼)𝑖𝜀 holds,

then we have 𝜋̂ ′
𝑙+1 (𝑢, 𝑡) =

∑︁
𝑣∈𝑁𝑜𝑢𝑡 (𝑢 ) 𝑋

′
𝑙+1 (𝑢, 𝑣) and

E[𝜋̂ ′
𝑙+1 (𝑢, 𝑡) |{𝜋̂

′
𝑙
}] =

∑︂
𝑣∈𝑁𝑜𝑢𝑡 (𝑢 )

E[𝑋 ′
𝑙+1 (𝑢, 𝑣) |{𝜋̂

′
𝑙
}]

≥
∑︂

𝑣∈𝑁𝑜𝑢𝑡 (𝑢 )

(1 − 𝛼)𝜋̂ ′
𝑙
(𝑣, 𝑡)

𝑑𝑜𝑢𝑡 (𝑢)
− (1 − 𝛼)𝜀. (5)

Hence, we can derive that

E[𝜋̂ ′
𝑙+1 (𝑢, 𝑡)] ≥

∑︂
𝑣∈𝑁𝑜𝑢𝑡 (𝑢 )

(1 − 𝛼)E[𝜋̂ ′
𝑙
(𝑣, 𝑡)]

𝑑𝑜𝑢𝑡 (𝑢)
− (1 − 𝛼)𝜀

≥
∑︂

𝑣∈𝑁𝑜𝑢𝑡 (𝑢 )

(1 − 𝛼) (𝜋𝑙 (𝑣, 𝑡) −
∑︁𝑙−1

𝑖=1
(1 − 𝛼)𝑖𝜀)

𝑑𝑜𝑢𝑡 (𝑢)
− (1 − 𝛼)𝜀

= 𝜋𝑙+1 (𝑢, 𝑡) −
𝑙∑︂

𝑖=1

(1 − 𝛼)𝑖𝜀 ≥ 𝜋𝑙+1 (𝑢, 𝑡) −
1 − 𝛼
𝛼

𝜀. (6)

Second, we show that with our pruning strategy, the variance

of every 𝜋̂ ′
𝑙
(𝑣, 𝑡) is still bounded by Lemma 4.4 of [35]. The key

observation is that the variance comes from the randomized push

and pruning reduces its estimation value. Specifically, we have

Var[𝜋̂ ′
𝑙+1 (𝑢, 𝑡) |{𝜋̂

′
𝑙
}] ≤ Var[𝜋̂𝑙+1 (𝑢, 𝑡) |{𝜋̂𝑙 }].

By the above discussion, we have E[𝜋̂ ′ (𝑢, 𝑡)] ≥ 𝜋 (𝑢, 𝑡) − 𝐿 1−𝛼
𝛼 𝜀,

and the variance of 𝜋̂ ′ (𝑢, 𝑡) is also bounded by 𝐿𝛼𝜀2
[35]. By set-

ting 𝐿 = 𝑂 (log
1

𝜀 ) to bound the truncation error by 𝑂 (𝜀), the total
estimation error can be bounded by 𝜀, and the lemma follows. □

Complexity Analysis. We use the following theorem to guarantee

the efficiency of R2LP.

Theorem 3. The expected time complexity of R2LP is bounded by

𝑂̃ (
∑︁

𝑢∈𝑉
∑︁

𝑣∈𝑉
√
𝑑𝑖𝑛 (𝑢 )𝑑𝑖𝑛 (𝑣)𝑠 (𝑢,𝑣)
𝜀 ).

Proof (Sketch). It follows directly from Lemma 5 and Theo-

rem 4.2 of [35]. □
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(a) Small graphs (b) Medium graphs

Figure 3: Distribution of all-pair SimRank values.

5 COMPUTATIONAL COMPLEXITY ANALYSIS
5.1 Modeling SimRank Distribution
We demonstrate in Figure 3 the all-pair SimRank distributions of

three small graphs and fourmedium graphs used in our experiments

(Section 6). We omit the base cases with 𝑠 (𝑣, 𝑣) = 1. Generally the

distributions show different degrees of skewness with a fraction of

the top ranking node pairs having a similarity of 𝑐 . Inspired by [2, 6],

we propose the following assumption of SimRank distribution.

Definition 6 (Power Law Bounded Distribution of Sim-

Rank). Assume we have 𝑛𝑛𝑧 node pairs with non-zero SimRank
values for a given graph 𝐺 . Let 𝑠 𝑗 denote the 𝑗-th largest SimRank
value, for 𝑗 ∈ [1, 𝑛𝑛𝑧]. We say the SimRank distribution is power law
bounded (PLB) if for any 𝑥 = 0, . . . , ⌊log

2
𝑛𝑛𝑧⌋, there exist parameters

𝛽 > 0 and 𝑏2 > 𝑏1 > 0 such that

2
𝑥+1−1∑︂
𝑗=2

𝑥

𝑏1 · 𝑟 ( 𝑗)−𝛽 ≤
2
𝑥+1−1∑︂
𝑗=2

𝑥

𝑠 𝑗 ≤
2
𝑥+1−1∑︂
𝑗=2

𝑥

𝑏2 · 𝑟 ( 𝑗)−𝛽 , (7)

where 𝑟 ( 𝑗) = max(1, 𝑗 − 𝑡), and we set the shift 𝑡 = |{(𝑢, 𝑣) |𝑠 (𝑢, 𝑣) =
𝑐,𝑢, 𝑣 ∈ 𝐺}|. Specifically, 𝛽 is referred to as the PLB exponent of
SimRank distribution, while 𝑏1 and 𝑏2 are small numbers that can be
taken as constants.

Please refer to the full version of our paper [1] for empirical

validation of the assumption.

5.2 Complexity of Threshold-based Queries
With the above assumption, we derive the upper bound of the com-

plexity of threshold-based queries. We do this by bounding the

complexity of our algorithm framework which integrates an all-

pair algorithm with absolute error guarantee (e.g., Opt-LP or R2LP).

Lemma 6. Given a graph 𝐺 and an all-pair algorithm AP that
guarantees absolute error, assume that APThres terminates when
the error parameter reaches 𝜀𝑡 , and we have cost(AP(G, 𝜀𝑖+1)) ≥
𝑝 · cost(AP(G, 𝜀𝑖 )) for 𝑖 ∈ [1, 𝑡) with 𝑝 > 1. The time complexity of
the algorithm is then bounded by 𝑂 (cost(AP(G, 𝜀𝑡 ))).

Next, we bound the error parameter 𝜀𝑡 for threshold-based queries

with the help of Definition 6.

Lemma 7. We are given the problem input as in Lemma 6. More-
over, the graph 𝐺 has PLB SimRank distribution. For threshold-based
queries with approximation bound 𝜌 , we have

𝜀𝑡 = 𝑂 (max( (𝑏1 − 𝜌𝛽𝑏2)𝜃
𝑏1 + 𝜌𝛽𝑏2

, 𝜀𝑚𝑖𝑛)). (8)

Figure 4: Illustration of the complexity of threshold-based
and top-𝑘 similarity joins.

The following theorem bounds the computational complexity of

threshold-based queries.

Theorem 4. Given a graph 𝐺 with PLB SimRank distribution, an
approximation bound 𝜌 with 𝑏1 − 𝜌𝛽𝑏2 > 0, and an all-pair algo-
rithm AP that guarantees absolute error, let cost(AP(G, 𝜀)) denote
the complexity of AP given error parameter 𝜀. The APThres frame-
work with AP answers 𝜌-approximation threshold-based queries in

𝑂 (cost(AP(G, (𝑏1−𝜌𝛽𝑏2 )𝜃
𝑏1+𝜌𝛽𝑏2

))) time.

5.3 Complexity of Top-𝑘 Queries
For top-𝑘 queries, the following theorem is provided, with the

intuition that the complexity is mainly determined by the gap

between the ⌈𝜌𝑘⌉-th and the (𝑘 + 1)-th largest values.

Theorem 5. We are given the problem input as in Lemma 7.
For top-𝑘 queries with approximation bound 𝜌 , with the PLB as-
sumption of SimRank distribution, let 𝑥1 = 2

⌈log
2
⌈𝜌𝑘 ⌉ ⌉ − 1 and

𝑥2 = 2
⌊log

2
(𝑘+1) ⌋ . We have

𝜀′𝑡 = 𝑂 (max(𝑏1 (𝑥1 − 𝑡)−𝛽 − 𝑏2 (𝑥2 − 𝑡)−𝛽 , 𝜀𝑚𝑖𝑛)) . (9)

Furthermore, with the power law assumption of all-pair SimRank
distribution, i.e., 𝑠 𝑗 = Θ(( 𝑗 − 𝑡)−𝛽 ), we have

𝜀′𝑡 = 𝑂 (max((𝑏1 (⌈𝜌𝑘⌉ − 𝑡)−𝛽 − 𝑏2 (𝑘 + 1 − 𝑡)−𝛽 ), 𝜀𝑚𝑖𝑛)) . (10)

The APTop-𝑘 framework with AP answers 𝜌-approximation top-𝑘
queries in 𝑂 (cost(AP(G, 𝜀′𝑡 ))) time.

Lastly, we present a qualitative analysis of the complexities w.r.t.

the graph property 𝛽 , which has different impacts on threshold-

based and top-𝑘 queries. An illustrative demonstration is referred to

Figure 4. For threshold-based queries, a smaller 𝛽 (e.g. 𝛽2) leads to a

smaller 𝜀𝑡 in Lemma 7, and the complexity upper bound increases.

Intuitively, more node pairs are included in the answer, while given

an error parameter 𝜀, the size of node pairs to be carefully handled

(e.g., with similarity values between 𝜃 − 𝜀 and 𝜃 + 𝜀) also increases.

In contrast, as Theorem 5 shows, a larger 𝛽 (e.g. 𝛽1) makes a smaller

gap between the ⌈𝜌𝑘⌉-th and the (𝑘 + 1)-th SimRank values, so the

algorithm needs more effort to separate them. This is in consistent

with Figure 4, where the 𝑘-th SimRank value becomes smaller (also

note that the figure is in log-log scale).

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
Datasets. We use three small graphs (CG, WV, and EN), four

medium graphs (SD, DB, WF, and ND), and three large graphs (CP,

LJ, andWZ) for evaluation. All graphs are obtained from [4, 5, 15, 17]
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with basic statistics listed in Table 3, where 𝑑¯ is the average degree

and 𝛽 is the fitted PLB exponent of all-pair SimRank distribution[1].

Table 3: Datasets and their statistics.

Dataset Type 𝑛 𝑚 𝑑¯ 𝛽

ca-GrQc (CG) U 5.2K 14.5K 2.77 1.063

Wiki-Vote (WV) D 7.1K 103.7K 14.57 0.495

email-Enron (EN) U 36.7K 183.8K 5.01 1.303

Slashdot0922 (SD) D 82.2K 948.5K 11.54 1.098

DBLP (DB) U 317.1K 1.05M 3.31 0.866

Wikilinks-fy (WF) D 65.6K 1.07M 16.35 1.098

Notre Dame (ND) D 325.7K 1.5M 4.6 0.964

cit-Patents (CP) D 3.77M 16.52M 4.38 -

LiveJournal (LJ) D 4.85M 68.99M 14.23 -

Wikilinks-zh (WZ) D 1.79M 72.61M 40.65 -

Ground truths. For small and medium graphs, we compute the all-

pair ground truth using Power Method [12] with an absolute error

about 10
−7

. For large graphs, since PowerMethod is computationally

intractable, we randomly choose 100 nodes in each graph and use

ExactSim [36] to compute their single-source ground truths with

𝜀𝑚𝑖𝑛 = 10
−7
. The partial-pair ground truth is used for evaluation.

Baselines.We use FLP &Opt-LP [39],UISim [48], andKSimJoin [20]
as our baselines. The implementation of [39, 48] is obtained from

the authors. We implement other baselines and our improved al-

gorithms in C++. Specifically, we do not consider H-go SRJ [46]

for efficiency issues, which shows significant inferior performance

compared to other baselines.

We conduct all experiments on an Ubuntu server with an Hygon

C86 7151 processor and 1TB memory, repeat each experimental

settings for ten times and report the average measures. Throughout

the paper, all reported query times are in seconds.

6.2 Evaluation of Additive Error
Experimental settings. For FLP, Opt-LP, R2LP and KSimJoin with

absolute error guarantee, we vary the error parameter 𝜀 = {0.05, 0.01,

0.005, 0.001} for small andmedium graphs, and set 𝜀 = {0.1, 0.05, 0.01}
for large graphs. In particular, we slightly modify KSimJoin to an-

swer all-pair queries by excluding the upper bound computation

and the iterative pruning framework, and set 𝐿 = 2. For UISim, we

fix the number of iterations 𝜂 = 2 and vary the number of hub nodes

|𝐻 | = {0.2𝑛, 0.5𝑛}. In its implementation, the authors adopt another

parameter named stopping reachability (𝑠𝑡𝑜𝑝𝑅𝑒𝑎), where the graph

expansion stops either when a hub node is encountered or the walk-

ing probability falls below 𝑠𝑡𝑜𝑝𝑅𝑒𝑎. We vary it in {0.005, 0.001} for
small graphs and {0.05, 0.01} for medium graphs, and set it as 0.01

for large graphs.

Evaluation metric. We use 𝐴𝑣𝑔𝐸𝑟𝑟 for evaluation, which is de-

fined as 𝐴𝑣𝑔𝐸𝑟𝑟 =

∑︁
(𝑢,𝑣) ∈𝑆 (𝜃 ) |𝑠∗ (𝑢,𝑣)−𝑠 (𝑢,𝑣) |

|𝑆 (𝜃 ) | , where 𝑠∗ (𝑢, 𝑣) and
𝑠 (𝑢, 𝑣) are the ground truth and estimated value respectively, and

𝑆 (𝜃 ) = {(𝑢, 𝑣) |𝑠∗ (𝑢, 𝑣) ≥ 𝜃,𝑢, 𝑣 ∈ 𝑉 ,𝑢 ≠ 𝑣}. We set 𝜃 = 10
−3

in the

following experiments.

The results are demonstrated in Figure 5. For UISim, the unfilled

and filled markers correspond to 𝑠𝑡𝑜𝑝𝑅𝑒𝑎’s default values (0.001 and

0.01) and enlarged values (0.005 and 0.05), respectively. Surprisingly,

although UISim does not guarantee the absolute error, it outper-

forms FLP and Opt-LP on 6 of 10 graphs. However, we note that

varying the number of hubs has limited influence, that is, the two

unfilled markers (as well as the two filled markers) are very close.

The reason is that most of graph expansions terminate because of

stopping reachability rather than encountering hub nodes.

For algorithms with absolute error guarantees, Opt-LP outper-

forms FLP on most graphs thanks to the optimizations, except

that it fails on the largest graph WZ (not terminated for over 10

hours). KSimJoin only manages to answer all-pair queries on the

two smallest graphs and has similar performance as UISim, while

the tremendous memory consumption makes it infeasible on larger

graphs. For example, on WV and with 𝐿 = 2, the 𝑁𝑃 structure for

all nodes has about 1.8M items. With the randomized push strat-

egy, R2LP achieves significantly better performance compared to

all other baselines. On most graphs, it is faster than FLP, Opt-LP,
and KSimJoin by up to an order of magnitude with similar additive

errors. The only exception is ND, where R2LP and Opt-LP show

comparable results. Since ND has numerous node pairs of very

large similarity values (see Figure 3(b)), the cost of deterministic

push dominates.

Evaluation of R2LP’s pruning strategy. Figure 6 demonstrates

the performance of R2LP with and without the pruning strategy.

For each dataset, we tune both settings to ensure comparable addi-

tive errors and compare the query time. R2LP w/ pruning clearly

achieves better effectiveness-efficiency tradeoff. On EN, WF, LJ, and

WZ, the speedup is about one order of magnitude.

To better illustrate the pruning power, we use Table 4 to show the

number of edge traversals for deterministic and randomized pushes

of R2LP under both settings. For deterministic push, the costs are

very close, while our pruning strategy manages to eliminate up to

47%-96% of the costs for randomized push. The pruning strategy also

effectively reduces memory cost, as without pruning the algorithm

causes out-of-memory (OOM) error on LJ.

6.3 Evaluation of Threshold-based Queries
Experimental settings and metrics. We adopt Precision, Re-
call and F1-score for evaluation. Given a threshold-based query

with parameter 𝜃 ∈ (0, 𝑐], let 𝑅∗ (𝜃 ) denote the set of node pairs
with ground truth SimRank values above or equal to 𝜃 , and we

assume |𝑅∗ (𝜃 ) | > 0. Let 𝑅A (𝜃 ) denote the returned set by algo-

rithm A. We have Precision = |𝑅A (𝜃 ) ∩ 𝑅∗ (𝜃 ) |/|𝑅A (𝜃 ) |, Recall =
|𝑅A (𝜃 ) ∩ 𝑅∗ (𝜃 ) |/|𝑅∗ (𝜃 ) |, and F1-score = 2/( 1

Precision +
1

Recall ).
We first compare the three best all-pair algorithms R2LP, Opt-LP,

and UISim with 𝜃 = {0.1, 0.01, 0.001}. Note that none of these algo-
rithms provides approximation bound for threshold-based queries,

but we can still compare their empirical performance. The results

are demonstrated in Figure 7
4
. First, the F1-scores vary significantly

for different graphs and with different 𝜃 . It is not recommended to

answer the threshold-based query with a general all-pair algorithm

by simply setting 𝜀 = 𝑂 (𝜃 ). For example, on CG, EN, DB, and WF,

the F1-scores with 𝜀 = 𝜃 = 0.001 are below 0.9. Second, R2LP gen-

erally achieves the best tradeoff between efficiency and accuracy

except on ND. Third, for UISim, we choose the best one among

the four configurations in Section 6.2. On a majority of graphs, it

4
For the results of Precision and Recall, please refer to the full version of our paper [1].
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(a) CG (b) WV (c) EN (d) SD (e) DB

(f) WF (g) ND (h) CP (i) LJ (j) WZ

Figure 5: Additive error of SimRank estimation.

Table 4: R2LP’s pruning power for deterministic and randomized push in terms of edge traversal (𝜀 = 0.01).
CG WV EN SD DB WF ND CP LJ WZ

Deterministic

w/ pruning 4.29𝑒5 6.82𝑒6 2.56𝑒7 5.69𝑒7 3.49𝑒7 3.98𝑒7 1.49𝑒9 4.81𝑒8 2.65𝑒9 2.03𝑒9

w/o pruning 4.32𝑒5 6.82𝑒6 2.57𝑒7 5.72𝑒7 3.51𝑒7 3.99𝑒7 1.7𝑒9 4.82𝑒8 OOM 2.03𝑒9

Randomized

w/ pruning 8.83𝑒5 3.22𝑒5 1.18𝑒7 2.29𝑒7 5.85𝑒7 7.98𝑒7 5.74𝑒8 4.68𝑒8 1.43𝑒9 4.5𝑒9

w/o pruning 3.11𝑒6 5.33𝑒6 2.13𝑒8 6.18𝑒8 3.85𝑒8 4.18𝑒8 4.36𝑒9 8.91𝑒8 OOM 1.85𝑒10

Figure 6: R2LP with and without the pruning strategy.

surpasses Opt-LP mainly due to the fast query time. However, as

we decrease 𝑠𝑡𝑜𝑝𝑅𝑒𝑎 or increase 𝜂, the algorithm fails to compute

an output in several hours, which implies the hub-based strategy is

less flexible than the probability-guided ones.

Next, we apply theAPThres framework and integrate it with R2LP
and Opt-LP, the best algorithms with absolute error guarantee. By

fixing 𝜃 = 0.01, we test their actual performance with different

approximation bounds, which is shown in Table 5. Consistent with

our theoretical guarantee, both APThres+Opt-LP and APThres+R2LP
hold the approximation bound on all graphs and all settings of 𝜌 .

APThres+R2LP achieves similar F1-score with much less query time

except on ND, of which the reasons are explained in Section 6.2.

Compared to Figure 7, both algorithms incur significantly more

time, and fail on LJ for different reasons
5
whileAPThres+Opt-LP also

fails on WZ. Recall that R2LP is able to handle LJ with acceptable

accuracy if we do not force an approximation bound. Meanwhile,

5
We say an algorithm is time out if it takes over an hour in one iteration.

Table 5: Threshold-based queries with 𝜃 = 0.01. We vary
(𝜌1, 𝜌2) = (0.9, 0.99), (0.9, 0.95), (0.7, 0.9) for small, medium and
large graphs respectively.

Opt-LP (𝜌1) Opt-LP (𝜌2) R2LP (𝜌1) R2LP (𝜌2)

Time F1 Time F1 Time F1 Time F1

CG 5.55 0.991 11.99 0.997 2.85 0.978 8.28 0.993

WV 152.4 0.998 159.7 0.998 31.2 0.998 32.0 0.999

EN 2944 0.995 10625 0.999 201.8 0.989 1040 0.996

SD 9451 0.998 12011 0.998 611.6 0.997 1457 0.998

DB 1994 0.994 3480 0.997 501.6 0.985 1119 0.992

WF 13336 0.994 8938 0.994 649.9 0.984 1370 0.99

ND 10691 0.991 13129 0.996 6607 0.936 10269 0.958

CP 5487 0.999 8504 0.999 1903 0.999 4350 0.999

LJ Time Out Out of Memory (OOM)

WZ Time Out 3743 0.985 7411 0.99

the actual F1-scores shown in Table 5 far exceed the bound 𝜌 . We

believe this phenomenon is attributed to the pessimistic estimation

of the absolute error. In practice, we have |𝑠 (𝑢, 𝑣) − 𝑠 (𝑢, 𝑣) | ≪
𝜀. Hence, it remains an open problem to answer threshold-based

queries more efficiently and with theoretical approximation bound.

6.4 Evaluation of Top-𝑘 Queries
Experimental settings and metrics. For top-𝑘 similarity joins,

Precision@𝑘 is used for evaluation. Let 𝑅∗ (𝑘) and 𝑅A (𝑘) denote
the ground truth and the results of algorithm A, respectively. We

have Precision@𝑘 = |𝑅A (𝑘) ∩ 𝑅∗ (𝑘) |/𝑘 . Because the numbers of

node pairs with large similarities vary significantly for different

graphs, instead of setting different 𝑘 for our datasets, for medium

and large graphs we conduct all-pair queries but only evaluate the
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(a) CG (b) WV (c) EN (d) SD (e) DB

(f) WF (g) ND (h) CP (i) LJ (j) WZ

Figure 7: F1-score for threshold-based queries. No approximation bound is provided.

result accuracy on a pair of query node sets 𝐴 and 𝐵. Specifically,

we set 𝐴 = 𝐵 = 𝑉 for CG and WV, while for EN, SD, WF, and ND

we set |𝐴| = |𝐵 | = 10
3
. Since the all-pair ground truth of DB is very

sparse, we set |𝐴| = |𝐵 | = 10
4
. For three large graphs, we fix 𝐴 as

the 100 query nodes in generating ground truth, and set |𝐵 | = 10
3
.

The query nodes are sampled at random.

Table 6: Precision@5000 and query time (𝜌 = 0.9). The practi-
cal accuracy is underlined if it falls below 𝜌 .

UISim Opt-LP KSimJoin R2LP
Time P@𝑘 Time P@𝑘 Time P@𝑘 Time P@𝑘

CG 82.5 0.935 2.16 0.999 6.3 0.926 1.42 0.998

WV 308.2 0.992 110.3 0.999 405.9 0.994 24.6 0.998

EN 1189 0.993 443.7 0.997 OOM 88.0 0.996

SD 185.4 0.922 7682 0.996 OOM 2424 0.997

DB 84.0 0.777 1082 0.998 OOM 333.7 0.995

WF 56.0 0.776 10501 0.99 OOM 3488 0.995

ND 13448 0.959 4964 0.997 OOM 11749 0.993

CP 1416 0.95 2037 0.992 OOM 1190 0.994

LJ 5604 0.917 8586 0.964 OOM 8824 0.97

WZ 2375 0.904 Time Out OOM 7171 1

We first compare the state-of-the-art algorithms by fixing 𝑘 =

5000 and 𝜌 = 0.9 with the results listed in Table 6. For UISim, we

fix 𝜂 = 2 and set 𝑠𝑡𝑜𝑝𝑅𝑒𝑎 as 10
−4

for CG and WV, 10
−3

for EN,

and 10
−2

for all other datasets. Although being fast, UISim mainly

suffers from accuracy issues. On the other hand, KSimJoin has

severe scalability problem on medium and large graphs in spite of

its pruning strategy. We integrate Opt-LP and R2LP with APTop-𝑘
to answer top-𝑘 queries. For both of them, the query accuracy is

guaranteed. APTop-𝑘+R2LP is the fastest on a majority of graphs.

Next, we evaluate the query efficiency w.r.t. 𝑘 (Figure 8). In most

cases, APTop-𝑘+R2LP outperforms APTop-𝑘+Opt-LP by a significant

margin. On three large graphs CP, LJ, and WZ, both algorithms lose

the theoretical guarantee due to early termination. Fortunately, the

practical accuracy of APTop-𝑘+R2LP is always above 𝜌 , whereas

(a) CG, WV, EN (b) SD, ND

(c) DB, WF (d) CP, LJ, WZ

Figure 8: Query time vs. 𝑘 , with 𝜌 = 0.9.

APTop-𝑘+Opt-LP has accuracy below 𝜌 on LJ with 𝑘 = 10000 and

even fails on WZ.

6.5 Empirical Study of Computational
Complexity

We conduct two sets of experiments to validate our theoretical

analysis w.r.t. graph properties. We conduct threshold queries with

𝜃 = 0.01 and top-𝑘 queries with 𝑘 = 1000 following the settings

in the above subsections. To illustrate the intrinsic problem com-

plexities w.r.t. 𝛽 , the PLB exponent of SimRank distribution, we

first make sure the practical accuracy of R2LP slightly surpasses

𝜌 = 0.9 by adjusting the error parameter 𝜀. We then normalize the

query time by approximating the numerator of R2LP’s complex-

ity (see Theorem 3) and rescale the normalized values so that the

value of CG equals 1. The normalized query time (Figure 9) only

reflects the impact of 𝜀, which is mainly affected by both 𝜌 (fixed in

our experiment) and graph properties, i.e., 𝛽 , 𝑏1 and 𝑏2. Generally
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(a) Threshold queries (b) Top-𝑘 queries

Figure 9: Query time vs. 𝛽 .

(a) Small graphs (b) Medium Graphs

Figure 10: Query time vs. 𝑠⌈𝜌𝑘 ⌉ − 𝑠𝑘+1 for top-𝑘 queries.

speaking, the time is in negatively (resp. positively) correlated with

𝛽 for threshold-based (resp. top-𝑘) queries, which coincides with

the derived computational complexity (Theorem 4 & 5). For top-

𝑘 queries, the data points are more scattered because the impact

of 𝛽 is more complicated as shown by Theorem 5. Therefore, an

additional analysis is conducted.

For top-𝑘 queries, our theoretical analysis suggests that the time

complexity heavily relies on the gap between the ⌈𝜌𝑘⌉-th and the

(𝑘 + 1)-th largest SimRank values, as shown in Figure 10. Note

that for a majority of studied graphs including CG, WV, DB and

ND, the gap does not necessarily decrease as we increase 𝑘 . This

explains the phenomenon in Figure 8 that query time does not

always increase with 𝑘 .

6.6 Case Study
We adopt a very recent study [21] of graph neural networks (GNNs)

to verify the effectiveness of our methods, where SimRank is treated

as a new interpretation of GNNs. Instead of iteratively conducting

neighborhood aggregation [14] which can be simplified as comput-

ing the Personalized PageRank matrix [3, 10], SIMGA [21] precom-

putes the SimRank matrix and applies it for aggregation. Specifi-

cally, we have 𝑍 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆 · 𝑓𝜃 (𝐹,𝐴)), where 𝑍 ∈ R𝑛×𝑑 is the

embedding matrix, 𝑆 is the SimRank matrix, and 𝑓𝜃 is a mapping

function (e.g., an MLP) to transform node features 𝐹 and adjacency

matrix 𝐴 into embeddings. SIMGA uses Opt-LP to compute 𝑆 , and

generally outperforms sophisticated GNNs on both homophily and

heterophily graphs in terms of classification accuracy. We sub-

stitute Opt-LP with R2LP and demonstrate in Figure 11 the accu-

racy of SIMGA and the cost of computing 𝑆 on a small dataset

Cora (𝑛 = 2.7K, 𝑚 = 5.3K) and a large dataset Pokec (𝑛 = 1.6M,

𝑚 = 30.6M). It turns out that the accuracy is comparable to state-

of-the-art GNNs [21], e.g., 82.30 ± 0.12 on Pokec. Meanwhile, our

method achieves several times of speedup.

(a) Cora (A) (b) Cora (T) (c) Pokec (A) (d) Pokec (T)

Figure 11: A case study of our approach on GNN. “A” stands
for accuracy and “T” stands for query time.

7 OTHER RELATEDWORK
The PowerMethod [12] is used to compute the ground truth SimRank

values on small graphs (e.g., with tens of thousands of nodes), which

guarantees a very small absolute error. To accelerate it on larger

graphs, [24, 44] improves the algorithmic complexity by pruning

redundant computation. Another line of work [11, 18, 41] studies

all-pair SimRank computation on dynamic graphs. Several all-pair

algorithms [9, 40–43] rely on a modified definition of SimRank,

i.e. 𝑆 = 𝑐𝑃⊺𝑆𝑃 + (1 − 𝑐)𝐼 , which results in estimations without

absolute error guarantee. A very recent study [45] employs divide-

and-conquer to enhance state of the art [39], but is only able to

improve the practical efficiency. Their contribution is orthogonal

to ours and the implementation can be integrated naturally.

Most of the existing work for SimRank (e.g., [13, 16, 22, 23,

30, 31, 33, 36]) focuses on single-source settings, including single-
source SimRank computation [13, 30, 31, 33, 36], single-source top-𝑘
queries [16, 22, 23], and single-source thresholding queries [23]. Var-
ious algorithms have been proposed based on random walk sam-

pling [13, 30], graph traversal [16, 22, 23, 33], and local push [31].

Besides, a single-pair query for two nodes 𝑢 and 𝑣 computes an esti-

mation of 𝑠 (𝑢, 𝑣) with additive error up to 𝜀. Recent algorithms [38]

can answer single-pair queries within milliseconds for 𝜀 ≥ 10
−4
.

8 CONCLUSION
This paper presents detailed empirical studies, new algorithms with

better efficiency and approximation bounds, and novel theoret-

ical analysis for two types of all-pair SimRank queries, namely,

threshold-based and top-𝑘 similarity joins. We conduct a detailed

comparison of state-of-the-art algorithms followed by the intro-

duction of algorithm frameworks that theoretically guarantee the

result accuracy for both queries, along with a more efficient all-pair

algorithm inspired by the randomized local push. To gain a deep

understanding of algorithm performance and the computational

complexities of these problems, we propose theoretical analysis by

leveraging the SimRank distribution and conduct extensive experi-

mental studies. Our experiments show that the proposed algorithms

significantly improve both query efficiency and accuracy, while our

theoretical results nicely match the empirical analysis.
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