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Abstract—Given a large graph G, a subgraph query Q finds the
set of all subgraphs of G that satisfy certain conditions specified by
Q. Examples of subgraph queries including finding a community
containing designated members to organize an event, and subgraph
matching. To overcome the weakness of existing graph-parallel
systems that underutilize CPU cores when finding subgraphs,
our prior system, G-thinker, was proposed that adopts a novel
think-like-a-task (TLAT) parallel programming model. However,
G-thinker targets offline analytics and cannot support interactive
online querying where users continually submit subgraph queries
with different query contents. The challenges here are (i) how
to maintain fairness that queries are answered in the order that
they are received: a later query is processed only if earlier queries
cannot saturate the available computation resources; (ii) how to
track the progress of active queries (each with many tasks under
computation) so that users can be timely notified as soon as a query
completes; and (iii) how to maintain memory boundedness and high
task concurrency as in G-thinker. In this article, we propose a novel
TLAT programming framework, called G-thinkerQ, for answering
online subgraph queries. G-thinkerQ inherits the memory bound-
edness and high task concurrency of G-thinker by organizing the
tasks of each query using a “task capsule” structure, and designs a
novel task-capsule list is to ensure fairness among queries. A novel
lineage-based mechanism is also designed to keep track of when the
last task of a query is completed. Parallel counterparts of the state-
of-the-art algorithms for 4 recent advanced subgraph queries are
implemented on G-thinkerQ to demonstrate its CPU-scalability.
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I. INTRODUCTION

GRAPH data are common in real applications, such
as social networks, biological networks [71], and the

Semantic Web. It is important to query these graphs to find
subgraphs of interest, such as dense social communities or
functional groups [32], [68], subgraph matching [51] and length-
constrained cycle enumeration for fraudulent activity detec-
tion [45].

Graphs in modern applications can easily contain millions of
vertices or more, and parallel infrastructure for their efficient
processing has been popularly explored in the past decade.
Pioneered by Google’s Pregel [38], a number of systems have
been proposed for simple iterative graph processing [24], [25],
[33], [36], [37], [48], [55], [56], [57], [64]. They advocate a
think-like-a-vertex (TLAV) programming model, where vertices
communicate with each other by message passing along edges
to update their states. Computation repeats in iterations until
the vertex states converge. In distributed TLAV systems [24],
[25], [36], [57], [64], the number of messages transmitted in an
iteration is usually comparable to the number of edges, making
the execution communication-bound. To avoid communication,
single-machine TLAV systems [33], [48] emerge by streaming
vertices and edges from disk to memory for batched state up-
dates, but this leads the execution to be disk IO-bound. In fact,
several works [23], [44], [59] have noticed that these TLAV
frameworks are only efficient for iterative computations where
each iteration has O(n) cost and there are O(log n) iterations,
giving a time complexity upper bound of O(n log n) where n
is the input graph size (i.e., |V |+ |E|). McSherry et al. [41]
have also noticed that existing TLAV systems have performance
comparable to and sometimes even slower than a single-threaded
program.

However, many subgraph queries are compute-heavy and
often NP-hard (e.g., dense subgraphs, subgraph matching), so
existing IO-bound TLAV systems are simply not the right in-
frastructure to address them. Moreover, TLAV programs target
problems that output one value for each vertex (e.g., Page-
Ranks, single-source shortest paths), but algorithms for sub-
graph queries operate on subgraphs rather than individual ver-
tices, so it is inconvenient to write TLAV programs to answer
subgraph queries [61].

To overcome the latter problem, some pioneering systems
began to explore a think-like-a-subgraph programming model,
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such as Arabesque [52] and RStream [54]. Despite more intuitive
programming interfaces, such interfaces are often too simple
for users to properly adapt their existing serial algorithms with
complicated but effective pruning rules for advanced subgraph
mining problems, and the underlying execution engines are
still IO-bound [61]. Unfortunately, these poor design decisions
deeply impacted many recent new graph mining systems, and
we will discuss more on this in Section III.

To fill the void of CPU-scalable programming frameworks, we
proposed the think-like-a-task (TLAT) programming model [4],
[62] which targets problems solvable by divide and conquer,
oftentimes a recursive algorithm. In the specific domain of
graph processing, such problems often operate on subgraphs
as the basic units, such as dense subgraph mining and subgraph
matching. These problems can be effectively parallelized due to
their divisible nature: we can keep decomposing big tasks into
smaller ones to create more parallelism opportunities. Exam-
ples of successful TLAT systems include G-thinker [19], [26],
[27], [32], [61], [63] for dense subgraph mining and subgraph
matching, PrefixFPM [18], [46], [65], [66] for frequent pattern
mining in transaction databases, TreeServer [60] for training de-
cision trees, T-FSM [70] for frequent subgraph pattern mining
in a big graph, and T-DFS [69] for subgraph matching on GPUs.

In particular, G-thinker [61], [63] supports offline sub-
graph finding and its TLAT programming interface is not
algorithm-invasive as is the case for Arabesque and RStream,
allowing natural adaptation of serial backtracking mining
programs with advanced search-space pruning techniques to
maximize code and technique reuse. For example, G-thinker
has been used for maximal quasi-clique mining that in-
volves 7 categories of sophisticated search-space pruning tech-
niques [26], [27], [32], which would be difficult to implement in
Arabesque.

In this paper, we study subgraph queries which are different
from offline subgraph finding. In particular, given a specific type
of subgraph queries over an input graph G, the result subgraphs
of a query Q are dependent on the content of Q such as the
designated members that a dense community should contain, or
the query graph for subgraph matching. We design a general
parallel TLAT programming framework that can solve different
types of subgraph queries. G-thinker is not suitable for online
subgraph querying since (1) it needs to start a new G-thinker
program for each individual subgraph query, which requires
loading the same input graph (and building proper indices to
speed up computation). While this problem can be solved by
revising G-thinker to pre-load the input graph and pin it in
memory, (2) queries are initiated as independent jobs that cannot
see the progress of each other, so the execution order is totally
left to the OS to schedule, and a query submitted earlier than
another query may be evaluated later, breaking the fairness. (3) A
third problem is that if many queries are initiated at the same
time, their tasks could cause memory to be used up, and there
is no coordinator that can control the number of queries that
create tasks for evaluation, by holding the evaluation of later
queries until resources become available. Optionally, (4) we can
evaluate one query at a time using G-thinker, in which case if
a query cannot saturate the CPU cores, the idle cores cannot

be utilized to process subsequent queries first until the current
query is fully evaluated.

To address the above problems, we develop a TLAT query
engine called G-thinkerQ, which allows the input graph to
be loaded (and indexed) once and reused for subsequent user
queries, and which manages the submitted queries to ensure
(1) high task concurrency, (2) memory boundedness, (3) fair-
ness, and (4) timeliness of returning results. Our main contribu-
tions are:
� G-thinkerQ designs an intuitive TLAT programming in-

terface for users to write parallel algorithms for various
subgraph queries, by directly adapting from their serial
algorithm counterparts with advanced pruning techniques.

� G-thinkerQ organizes tasks of a query with “task capsule”
to guarantee memory boundedness and high task concur-
rency, and uses a novel task-capsule list to ensure fairness of
query evaluation order while supporting memory-bounded
concurrent evaluation of multiple queries: tasks of a later
query is processed only if tasks of earlier queries cannot
saturate the available CPU cores.

� A lightweight lineage-based mechanism is designed to
keep track of when the last task of a query is completed, so
as to return query results in time and to release resources.

� Recent serial algorithms for 4 advanced subgraph queries
are parallelized on G-thinkerQ with excellent speedup. G-
thinkerQ is on average 65.3× and 8.2× faster than Fractal
and Peregrine for subgraph matching queries, 2.1×–8.1×
faster than its predecessor offline G-thinker, and 3 to 5
orders of magnitude faster than vertex-centric querying
engine Quegel for maximal-clique counting queries.

Paper Organization: Section II reviews the preliminaries of
subgraph queries and TLAT paradigm, and Section III reviews
the related work. Then, Section IV introduces the programming
interface of G-thinkerQ and Section V describes the system
design. Section VI briefly presents how to develop four graph
querying applications on top of G-thinkerQ, and Section VII
reports the experimental results. Finally, Section VIII concludes
this paper.

II. PRELIMINARIES

We now illustrate how the TLAT model can parallelize a
recursive algorithm using a specific example: finding dense
subgraphs.

Dense Subgraph Mining by Set-Enumeration Search: Given a
graph G = (V,E), the goal is to find all the dense subgraphs of
G that satisfy certain graph density conditions. For a vertex set
S ⊆ V , let us denote by G(S) the subgraph of G induced by S.
Finding valid dense subgraphs G(S) is a problem with a giant
search space, since the domain of S is V ’s power set, which can
be organized as a set-enumeration search tree [35]. Many serial
recursive mining algorithms conduct depth-first backtracking
search on the set-enumeration tree, including the famous Bron-
Kerbosch algorithm for mining maximal cliques [16] and k-
plexes [74], and the QUICK algorithm for mining maximal γ-
quasi-cliques [35].

Fig. 1 shows the set-enumeration tree T for a graph G with
four vertices{a, b, c, d}where we assume a vertex ordera < b <
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Fig. 1. Set-enumeration tree & timeout-based task decomposition.

c < d. Each tree node represents a vertex set S, and only those
vertices larger than the largest vertex in S are used to extend S.
For example, in Fig. 1, node {a, c} can be extended with d but
not b as b < c; in fact, {a, b, c} is obtained by extending {a, b}
with c. Let us denote TS as the subtree of T rooted at a node
with set S. Then, TS represents a search space for all possible
dense subgraphs that contain all vertices in S. In other words,
for any dense subgraph G(S ′) found in TS , we have S ′ ⊇ S.
We represent the task of mining TS as a pair 〈S, ext(S)〉, where
S is the set of vertices assumed to be already included, and
ext(S) ⊆ (V − S)keeps those vertices that can extendS further
into a valid dense subgraph.

As we shall see in Section VI, many vertices cannot form a
valid dense subgraph together with S and can thus be safely
pruned from ext(S), making ext(S) much smaller than (V −
S). Note that the task mining of TS , i.e., 〈S, ext(S)〉, can be
recursively decomposed into tasks 〈S ′, ext(S ′)〉 that mine the
subtrees rooted at the children nodes S ′ of node S in TS .

While a root task with S = ∅ mines dense subgraphs in an
entire graph G offline, it is often interesting to find dense com-
munities containing a set of query vertices V ′ ⊆ V online [20],
[21], [34], [68], i.e., by using 〈V ′, ext(V ′)〉 as the root task. This
now becomes a subgraph query Q = V ′.

Straggler Elimination by Task Decomposition: While differ-
ent subgraph queries are independent and can be concurrently
processed, we would also like each individual subgraph query
to be concurrently evaluated by multiple threads when possi-
ble, both to fully utilize idle CPU cores and to reduce query
latency.

Taking set-enumeration search for illustration, Algorithm 1
shows a typical recursive mining algorithm, where let us tem-
porarily ignore time variables t0, tcur, and Line 6, and assume
that Line 5 is simply recursive_mine(S ′, ext(S ′), t0). Then this
recursive algorithm simply mines the set-enumeration tree in
depth-first order. A problem of this approach is that the set-
enumeration tree TS can be huge and processing it recursively
by one thread is time-consuming. A natural solution is to de-
compose it into smaller tasks for concurrent processing, such
as Level-1 tasks in Fig. 1 with S = {a}, {b}, {c}, {d}, respec-
tively. However, this straightforward decomposition may suffer
from the straggler problem, as subtree T{a} is apparently much
larger than T{c} in Fig. 1. Even worse, as [26] demonstrates,
when mining maximal γ-quasi-cliques, the processing cost of
a task cannot be readily predicted from simple features such
as vertex and edge numbers and density in G(S ∪ ext(S)),

Algorithm 1: Recursive_Mine (S, ext(S), t0).

1: Conduct problem-specific pruning over S and ext(S)
2: if the entire task 〈S, ext(S)〉 is pruned do return
3: for each vertex v ∈ ext(S) do
4: create S ′ = S ∪ {v} and ext(S ′)
5: if tcur − t0 ≤ τtime do

recursive_mine(S ′, ext(S ′), t0)
6: else create task 〈S ′, ext(S ′)〉 and add it to system

since such exponential-time-complexity algorithms heavily rely
on problem-specific pruning rules (c.f. Algorithm 1 Line 1)
to be tractable in practice, and the timing when those rules
are applicable changes dynamically during recursive mining
depending on the vertex connections and cannot be effectively
predicted other than conducting the actual divisible mining.

In the TLAT model, we can use a task timeout strategy to
eliminate straggler tasks. Specifically, a task first records the task
starting time t0, and then runs recursive_mine(S, ext(S), t0) as
in Algorithm 1, which recursively processes the set-enumeration
tree TS in depth-first order until the task running time ex-
ceeds a predefined task-timeout threshold τtime (our default
τtime = 0.3s which is tuned and found to work well generally
for set-enumeration search), after which the search backtracks
by creating new tasks for the remaining workloads rather than
mining them recursively by the current thread (c.f. Algorithm 1
Line 6), so that they can be processed in parallel by idle
threads. Fig. 1 illustrates how Algorithm 1 works with this
timeout strategy: it recursively expands the set-enumeration tree
in depth-first order, processing 3 nodes until entering {a, b, c, d}
for which we find the entry time t4 times out; we then wrap
S ′ = {a, b, c, d} as a new task 〈S ′, ext(S ′)〉 to be added to the
TLAT system, and backtrack the upper-level nodes to also add
them as new tasks (due to timeout). Note that the new tasks are
created at different granularities that are necessary and not over-
decomposed (e.g., 〈{b}, ext({b})〉). Clearly, this timeout strat-
egy is applicable to a generic recursive algorithm. It guarantees
that each task spends at least a duration of τtime on the recursive
computation before dividing the remaining workloads into new
tasks (which incurs additional overhead for task creation and
scheduling).

III. RELATED WORK

Vertex-Centric Systems: As Section I has explained, TLAV
frameworks are ill-suited for compute-heavy subgraph querying
that we study here. A detailed review of TLAV systems is beyond
our scope and please refer to [14], [28], [37], [40], [55], [67],
[72].

While no work has ever considered the TLAT model for
online querying, our Quegel system [58], [73] extended the
TLAV model of Pregel [38] to answer iterative graph queries,
but Quegel is not suitable for compute-heavy subgraph queries.

Graph-Centric Systems: Realizing this limitation, many
graph-parallel systems were designed to directly operate on
subgraphs. Different from TLAV systems, these systems adopt
a think-like-a-graph (TLAG) programming model, but they still
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suffer from IO-bound execution. Specifically, NScale [47] con-
structs candidate subgraphs using multiple rounds of MapRe-
duce, leading to large amounts of data shuffling. Arabesque [52]
and RStream [54] advocate a simple programming model that
expands the set of subgraphs with i edges/vertices by one
more adjacent edge/vertex, to construct subgraphs with (i+ 1)
edges/vertices for processing. New subgraphs that pass a filter-
condition are further processed and then passed to the next
iteration. For example, to find cliques, the filter-condition checks
whether a subgraph g is a clique; if so, g is passed to the
next iteration to grow larger cliques. Obviously, such breadth-
first subgraph exploration strategy materializes a huge amount
of intermediate subgraphs; such cost does not exist in serial
depth-first backtracking algorithms such as the Bron-Kerbosch
algorithm [16] for mining maximal cliques. Arabesque [52] is a
distributed system, and RStream [54] eliminates communication
by utilizing relational joins for evaluation in a single machine to
achieve better performance, but it is not multi-core friendly.

Fractal [22] aims to overcome the above breadth-first sub-
graph exploration issue by treating each subgraph expansion
(by a vertex/edge) as a basic unit for task scheduling, so that
depth-first subgraph expansion can happen to avoid unnecessary
subgraph materialization to keep memory usage bounded. How-
ever, it forces users to reformulate subgraph mining algorithms
using its three primitives: extension, aggregation and filtering,
which is not always easy for advanced subgraph mining prob-
lems requiring sophisticated indexing and pruning techniques
such as those we study in Section VI. Peregrine [31] adopts
a pattern-based programming model that treats graph patterns
as first class constructs, which enables Peregrine to extract the
semantics of patterns to guide its exploration. While the interface
is suitable for pattern-based problems, it is difficult to write
pattern-based algorithms for problems like mining quasi-cliques
and hop-constrained s-t path enumeration which we study in
Section VI.

In summary, existing TLAG systems attempt to hide parallel
execution details from end users, by specifying various types of
graph-centric programming models. They force users to write
their graph mining problems using the specific interfaces, which
may not be flexible enough to cover all kinds of graph queries;
and even this is if possible, the cost of learning a new program-
ming model and reformulating a serial algorithm counterpart
with advanced pruning techniques accordingly is very high.
Finally, the execution efficiency may still be unsatisfactory and
IO-bound due to the need of subgraph materialization.

Task-Centric Systems: The TLAT model was originally pro-
posed in [4], [62] as an abstract computation model for par-
allelizing compute-intensive problems. Then, G-thinker [61]
was developed as the first truly CPU-scalable framework for
subgraph finding designed based on the TLAT model, and it
beats existing TLAG systems by up to two orders of magnitude
in speed, and scales to graphs two orders of magnitude larger.
Among the other TLAT systems, G-Miner [17] was based on
an earlier prototype of G-thinker but has a poor task scheduling
scheme. PrefixFPM [18], [65], [66] is a task-centric system to
mine frequent patterns (sequences, subgraphs, subtrees and ma-
trices) in transactional settings. TreeServer [60] is a task-centric

system to train models based on many decision trees. T-FSM [70]
is a task-centric system for frequent subgraph mining in a
big graph. T-DFS [69] is a task-centric system for subgraph
matching on GPUs.

However, none of the above TLAT systems target the query-
ing workloads. While G-thinker is a distributed system, our
G-thinkerQ framework is currently implemented as a prototype
for a single-machine shared-memory environment, but it can be
easily extended for distributed processing following a similar
design as in G-thinker, by maintaining vertices of an input
graph in a distributed key-value store for tasks to request the
necessary data. Back to G-thinker, Guo et al. [26], [27] and Yan
et al. [63] further integrated the timeout strategy to improve load
balancing in G-thinker for the problems of maximal quasi-clique
mining and maximum clique finding, respectively. Recently,
Khalil et al. [32] redesigned G-thinker into a single-machine
environment and called the resulting framework as T-thinker,
which is more accessible to an average user without a distributed
cluster. G-thinkerQ reuses the well-tuned task queueing struc-
ture of the offline T-thinker framework [32] but devises new
fair multi-query task scheduling and query progress tracking
techniques to address the challenges introduced in Section I.

IV. PROGRAMMING INTERFACE

Overview: We first introduce some concepts necessary to un-
derstand G-thinkerQ, including task, comper and worker. Fig. 3
illustrates these concepts in G-thinkerQ’s system architecture.

Specifically, G-thinkerQ follows a client-server architecture:
users submit their queries to the client programs, which then
send them to the server for evaluation. G-thinkerQ supports an
arbitrary number of clients: a user may directly type each query
in a client console, or submit a file containing a batch of queries.
A user can submit a special query string “server_exit” to notify
the server to terminate. The server will ignore all queries received
after “server_exit,” and terminate as soon as all queries received
before “server_exit” finish their evaluation.

The server program consists of a master thread called worker
and a number of computing threads called compers. Initially, the
worker loads the input graph, conducts initial graph pruning and
indexing (if applicable), and then receives the incoming graph
queries for processing by the compers. Each comper is a thread
that keeps fetching the next task for processing if available, or
sets its state to idle otherwise. The worker periodically checks
if there are still tasks to be processed and if so, it wakes up
idle compers to process them. The server terminates if after a
“server_exit” message has been received, the worker finds that
all compers become idle.

Each query is treated initially as a root task that gets fetched by
an available comper to process, and a task may create new tasks
of smaller workloads for concurrent processing (c.f. the timeout
strategy illustrated by Fig. 1). Hence, each query may correspond
to many tasks that are processed by different compers. As we
shall see in Section V, G-thinkerQ provides a lineage-based
mechanism to track when all the tasks of a queryQ have finished
so that users can be notified to check the results of Q (either
printed on the console or written by compers on disk). As we
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Fig. 2. Programming interface of G-thinkerQ.

shall see in Section VI, some types of queries may need multiple
phases of evaluation, so when one phase ends, our API allows
a query to create a new root task to start the next phase rather
than returning results to users.

Programming Interface: G-thinkerQ is written in C++. It
defines a set of base classes, each associated with some template
arguments. To write an application program, a user only needs
to properly specify the data types and implement user-defined
functions (UDFs) according to application logic.

Fig. 2 summarizes these base classes, including their external
fields and functions for users to use when writing their appli-
cations, and some important internal fields that are transparent
to users. We list internal fields to help readers understand our
system design in Section V, and application programmers can
safely ignore them. As an overview, a user only needs to specify
the logic of two UDFs: (1) task_spawn(q), which specifies how
to create a root task from a user-provided query content q, and
(2) compute(context, q), which specifies how a task belonging
to query q computes by reading from and writing to its context,
the type of which is also flexible for users to specify. UDF
compute(.) is exactly where users write their recursive algorithm
(e.g., Algorithm 1 for set-enumeration search) usually directly
adaptable from the serial counterpart with advanced pruning
techniques, and if the task times out, one may call add_task(t)
to add a child task t to the system. Clearly, our API (1) is general
and intuitive for parallelizing any recursive algorithms with
advanced pruning rules, and (2) does not require users to learn a
new parallel programming model as in existing subgraph-centric
systems such as Arabesque [52], RStream [54], Fractal [22] and
Peregrine [31].

We next describe the API of Fig. 2 in detail. Specifically,
Task<ContextT> defines the data type of a task. Each “Task”
object keeps a user-specified field context to hold the content that
a task needs during its computation, which is of a user-specified
type <ContextT>. A task object t also keeps another progress
object prog of type “task_prog” (transparent to programmers),
which not only tracks t’s information such as its own task ID and
the corresponding query ID, but also other information necessary
for lineage-based query progress tracking which we shall explain
in detail in Section V.

Comper<TaskT, QueryT> in Fig. 2 is the class that imple-
ments a comper (i.e., computing thread). This is G-thinkerQ’s

most important base class since it provides 5 UDFs for users
to specify the application logic. Notably, “Comper” is the only
class for which users need to define a subclass to implement
UDFs. The other base classes have no UDF so users only need
to specify the template arguments and to rename the new type
using “typedef” for ease of use. Users need to specify two types
for the “Comper” class: (1)<TaskT>which is the user-specified
“Task” class, and (2) <QueryT> which is a user-specified type
for a query object. The first UDF to_query(line, q) specifies how
to parse a query string submitted by a user into a query object
q of type <QueryT>. For example, if we want to find a dense
subgraph containing vertices in vertex set S = {a, c}, then line
can be a string “a c” and <QueryT> can be a vertex set to keep
S. Besides the query content, <QueryT> may also keep other
information global to a query to be shared by all its tasks, such
as the set of best results currently found for pruning purposes
when we search for the best result or top-k results. The UDF
returns true if line is a valid query string, and false otherwise in
which case the worker at the server rejects this query.

Once we get a query object q, inside UDF task_spawn(q)
we then specify how to create a root task troot out of q, and
we call Comper’s add_task(troot) function to add it to the
system to be scheduled for computation. We return true in UDF
task_spawn(q) if a root task is successfully added, but in certain
conditions q can be directly pruned or its results can be directly
found without further evaluation, in which case we return false
to signal the system to release the resources allocated for q and
to notify users about the query outcome.

In G-thinkerQ, a comper calls task_spawn(q) to process a new
query q if it cannot get any task from the existing task pool (see
Section V). Note from Fig. 2 that each comper also maintains
a file stream fout for users to write query results in UDFs when
needed. Before a comper calls task_spawn(q) to create root task
for a new query q, it first creates a directory Fq of files, one
for use by each comper i, denoted by f i

q . When a comper i
processes a task that belongs to query q, it will first assign the
output stream of f i

q to fout before calling a UDF so that users
can use fout to write results to f i

q in the UDF. When a query q
finishes evaluation, its results can be obtained by concatenating
all files under Fq . Note that users can write results using fout in
UDF task_spawn(q) even if it does not generate a root task and
returns false.

After a comper gets a task t, it calls the third UDF
compute(context, q) by passing in t’s content and t’s corre-
sponding query object. This UDF is where a user implements
the divide-and-conquer algorithm for subgraph querying (e.g.,
Algorithm 1). In this UDF, results can be written using fout
and new tasks can be added by calling add_task(.). When a
comper calls add_task(t), the function uses the fourth UDF
is_bigTask(context) to determine if the task t is a big one or
a regular one using t’s content context. As we shall see in
Section V, big tasks have their dedicated task queues so that
they are prioritized in scheduling (e.g., for early decomposition
by the timeout strategy) to improve load balancing among com-
pers. Unlike the 3 earlier UDFs that are pure virtual functions,
is_bigTask(.) is a virtual function that returns true by default,
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Fig. 3. System architecture diagram.

which basically treats all tasks as big ones if users do not override
it with their own implementation.

The last UDF postprocess(q) is called once G-thinkerQ de-
tects that all tasks associated with q have finished evaluation, in
which case we say that one phase of q finishes; in this UDF, we
then determine whether q requires another phase. If so, we call
add_task(.) to add a new root task created based on q’s latest
content saved in the QueryT object, and return true; otherwise,
the query finishes and we return false to signal the system to
release resources for q and to notify results to users.

Once the subclass of “Comper” is properly defined, we then
pass this type to the “Worker” base class, and call its run()
function (see Fig. 2) to start the query server engine.

V. SYSTEM DESIGN

Architecture Overview: Fig. 3 overviews G-thinkerQ’s system
architecture. Specifically, queries are submitted by client pro-
grams into an interprocess message queue Qipc (implemented
with Linux IPC), and the worker of the server program period-
ically probes Qipc and appends its queries to a query-waiting
queue Qwait where the compers may then fetch queries for
processing when they become available.

Each query string gets assigned a query ID when the worker
moves it from Qipc to Qwait, which we simply use the next
unassigned integer. Therefore, for two queries qi and qj with
IDs i < j, we know that qi is received before qj . G-thinkerQ
schedules qi’s tasks for computing before qj’s tasks, which
respects the first-come, first-served principle. However, different
queries have different workloads so they may finish out of order:
for example, when all qi’s tasks are being processed by compers,
the tasks of qj could be fetched by other compers to process
so that qj finishes early before some tasks of qi time out and
generate new subtasks.

Fig. 3 shows a list of active queries q1, q2, . . . , qk currently
under evaluation by the compers. We denote this active query
list by Qactive. Recall that Qwait holds those pending queries
waiting to be fetched for processing, so they are not yet active.
To respect the time order of receiving queries, a comper always
attempts to obtain the first available task starting from Qactive’s
head for processing; when the comper fails to get any task from
Qactive, it may dequeue a query q from Qwait to attempt to
spawn a root task for processing, which will move q to Qactive’s
tail (i.e., after those active queries received earlier than q).

For each active query qi in list Qactive, its corresponding
element keeps (1) qi’s query ID (indicating its temporal priority),
(2) qi’s query object which is set by UDF to_query(.), and (3) a
memory-bounded container structure to keep the tasks of qi,
which we call a task capsule. Fig. 3 shows the capsule structure
on its right (details to introduce later). In a nutshell, a task capsule
spills superfluous tasks resulted from decomposing big tasks to
the disk for later processing to keep memory usage bounded,
and it prioritizes big tasks for scheduling before regular tasks.

To keep the memory cost bounded, we allow a maximum
capacity of Cactive active queries (Cactive = 10 by default) to
be inQactive. So after a comper fails to get any task fromQactive,
it will go idle either directly if |Qactive| is already Cactive, or
otherwise, it will fetch a new task from Qwait, and go idle only
if Qwait is empty (the comper will be awakened later by the
worker to process tasks when more tasks are detected).

In the sequel, we introduce some key designs of G-thinkerQ’s
task execution engine, including (1) task ID assignment, (2) task
capsule’s design, (3) how a comper obtains a task for processing,
(4) lineage-based query progress tracking.

Task ID Assignment: G-thinkerQ assigns each task a unique
ID so that a query can track its task pool without ambiguity
(recall that Qactive has multiple active queries).

In G-thinkerQ, tasks are created by compers in three places.
(1) In UDF task_spawn(q) when a comper failed to get any
active task from Qactive, in which case it uses UDF to_query(.)
to obtain a query object q from the dequeued query string in
Qwait and attempts to create a root task for q. (2) In UDF
compute(.) where the current task is decomposed into smaller
tasks. (3) In UDF postprocess(q) when query q’s last task finishes
its compute(.) call, where we may create a root task for the next
phase of q. In the UDFs, we call add_task(t) to add each new
task t, inside which t is assigned a new task ID.

Since tasks can be assigned IDs from different compers, one
challenge is to ensure that these task IDs do not conflict with
each other. For this purpose, each comper maintains a sequence
no. nseq . Whenever it adds a new task t, it associates t with a
64-bit task ID id(t) which concatenates a 16-bit comper ID with
the 48-bit nseq , and nseq is then incremented for use by the next
task to be added by the same comper.

Task Capsule: In [32], a single-machine parallel counterpart
of G-thinker was designed to perform TLAT computation for
offline graph mining, called T-thinker, which uses a memory-
bounded task container design. Our G-thinkerQ is different from
T-thinker in that we now have multiple active queries, each re-
quiring a memory-bounded task container. As Fig. 3 shows, each
active query is associated with a task capsule, which essentially
wraps the task containers of T-thinker [32]. We reuse this exact
same design to hold the tasks for each individual query, since
T-thinker’s task containers have been tuned to ensure both high
concurrency and memory efficiency. Below, we briefly introduce
these containers in a capsule; please refer to Section 5.3 of [32]
for more details.

Recall that UDF Comper::is_bigTask(.) determines if a task to
add is big or not. It is desirable to schedule big tasks early, so that
they can be computed and decomposed earlier to improve load
balancing. Therefore, each capsule of a query qi maintains two
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queuesQbig andQreg , one for big tasks and the other for regular
tasks (see Fig. 3). To be memory bounded, Qbig (resp. Qreg) has
a maximum task capacity. However, it is possible for a big task
to generate many decomposed tasks to be inserted into Qbig and
Qreg , causing either queue to overflow. To keep the number of
in-memory tasks bounded, if Qbig (resp. Qreg) is full but a new
task is to be inserted, we spill a batch of tasks at the end of
Qbig (resp. Qreg) as a file to local disk to make room. Note that
tasks spilled from Qbig (resp. Qreg) are written to the disk (and
loaded back later) in batches to achieve serial disk IO. We use
a file list Lbig (resp. Lreg) to track those files spilled from Qbig

(resp. Qreg) to be loaded back to Qbig (resp. Qreg) later when
it needs a task refill. Task spilling is automatically handled by
add_task(t). Also, whenever a comper that checks Qbig (resp.
Qreg) for task fetching finds that there are less than τmin

big (resp.
τmin
reg ) tasks in Qbig (resp. Qreg), it will refill tasks from a task

file. Here, τmin
big and τmin

reg are tunable system parameters.
The Algorithm of a Comper: A comper always keeps fetching

and processing the next task that it can obtain from Qactive,
or if not available, a root task generated from Qwait, until the
moment when such a task cannot be found, in which case it sets
its state to idle. An idle comper will be periodically awakened
by the worker, which either signals it to process newly available
tasks, or signals it to terminate the task probing loop if the
server program is terminated by the “server_exit” message from
a client. When a comper attempts to fetch a task, it first examines
the list Qactive starting from its head so that the tasks of those
queries that arrive early are prioritized in fetching. For each task
capsule qi inQactive, we first try to obtain a big task. If qi.Qbig is
empty, or it is being accessed by another comper (i.e., a try-lock
failure), we then try to obtain a regular task by checking qi.Qreg .
If qi.Qreg is still empty, or try-lock fails over qi.Qreg (as it is
accessed by another comper), we then move on to the next task
capsule qj in Qactive and repeat the same process until a task
is successfully fetched. As an exception, instead of try-locking
qk.Qreg of the last task capsule qk in Qactive, a comper blocks
on qk.Qreg until it gets the lock, after which it dequeues a task
from qk.Qreg for processing. However, if qk.Qreg is found to be
empty (and there is no spilled task file for refill) but the capacity
of Qactive permits another query, the comper will then try to
spawn a root task from a query q dequeued from Qwait, and to
allocate resources for q such as (i) a task capsule to be added
to Qactive’s tail and (ii) file output streams for writing results.
Otherwise, the comper goes idle to be awakened by the worker
in its next state probe.

Query Progress Tracking: One challenge remains: how to
determine the timing when a query has finished its evaluation?
The problem does not exist in an offline TLAT system like
T-thinker [32], where a task object (including its associated
content data such as its subgraph) is freed from memory as soon
as it finishes computation, and the task will hence lose track of
the children tasks that it creates. This is a good design since data
of those processed tasks are no longer needed and hence timely
garbage collected, while the main thread can easily determine
that an offline job finishes if it finds that all computing threads be-
come idle during a periodic probe. In contrast, G-thinkerQ needs

Fig. 4. Query progress bookkeeping by task lineage tracking.

to standby all the time (unless notified to terminate by message
“server_exit”), and to answer queries coming on demand. As a
result, G-thinkerQ needs a mechanism to know when a query
finishes its evaluation so that it can notify users with the query
results in time, and release the resources occupied by q.

We propose a task lineage tracking approach which associates
each task object t with a task progress object t.prog of type
task_prog, as shown in Fig. 2. Note that t.prog is an internal
field used by the G-thinkerQ system code but transparent to
application developers. It is automatically created when a user
calls add_task(t), and it tracks whether t and all its descendant
tasks have finished, after which it is automatically deleted. Note
that (1) the progress object of q’s root task tracks whether q has
finished one phase of evaluation; and (2) t.prog can exist after
t is deleted, since it needs to wait till all descendant tasks have
finished (before it is deleted).

For this reason, a task object t only maintains a pointer to the
actual progress object (see Fig. 2), and the set of all progress
objects are actually maintained in a concurrent hash table Tprog
shown on the top of Fig. 4, where we can retrieve the progress
object (of type “task_prog*”) of a task object t using its task ID
(even after t is deleted). Unlike a task object t that keeps a large
amount of data t.context for task processing, a task progress
object only keeps lightweight status fields such as a child-task
counter, task ID, parent task’s ID, the associated query ID, and
a flag indicating whether task t itself has finished (see Figs. 2
and 4), so the memory cost of keeping Tprog for task lineage
tracking is low.

The life cycle of a task progress object is shown on the bottom
of Fig. 4. Specifically, when a task t (and its progress object) is
created, the child-task counter is initialized as 0. Whenever a
child task is created by t, the counter is incremented. When t
finishes its call of compute(.), we set the complete-flag of its
progress object. Also, when a child-task finishes, the counter
is decremented. When the counter is decremented to 0 and
complete-flag is also set, we delete t’s progress object and
remove its entry from Tprog , and update the progress object of its
parent task in Tprog by decrementing its child-task counter; if the
parent task’s counter becomes 0, the same process propagates
to the parent of this parent task, and this propagation may
continue all the way up to the root progress object in which
case q is considered as have finished its current phase. Note
that this end-condition propagation may also be triggered by
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Algorithm 2: Backtrack(Task_Prog* prog, QueryT & q).
1: prog->completed← true
2: if prog->children_counter > 0 return
3: Repeat
4: erase table entry Tprog[prog->task_id]; delete prog
5: if prog->parent_task_id = −1 break //root task
6: prog← Tprog[prog->parent_task_id]
7: decrement prog->children_counter by 1
8: if !prog->completed or prog->children_counter > 0
9: return

10: if postprocess(q) = false
11: get q’s capsule from Qactive and remove it from

Qactive

12: delete its task containers and close its output streams
13: notify client about the query results

the completion of task t itself, if all child-tasks finish before t
completes (or if no child-task is created).

Algorithm 2 describes the above backtracking process, and
a comper calls this member function backtrack(t.prog, q) right
after it finishes compute(t.context, q). Note that a comper first
needs to obtain t for computation from its corresponding query’s
capsule in Qactive, so query object q is directly taken from this
capsule and passed to compute(.) and backtrack(.).

Specifically, since t has finished compute(.), Line 1 first sets
the complete-flag for t. If there are still unfinished child-tasks,
the function returns in Line 2. Otherwise, t and all its descendant
tasks have finished so Line 4 deletes t’s progress object. If t is
not a root task (checked by Line 5), Line 6 updates prog to be
the progress object of t’s parent task, and Line 7 decrements
the child-counter of prog to reflect t’s completion. If this parent
task and its descendants are also complete (checked in Line 8),
backtracking continues upwards until we reach q’s root task
(whose parent task ID is assigned as a special value -1). If the
root task is reached (c.f., “break” in Line 5), then q has finished
one phase so Line 10 calls UDF postprocess(q) to determine if
another phase is needed (which also produces a new root task
for q if so). If postprocess(q) returns false, q is complete so
Lines 11–13 release the resources allocated for q.

Other Technical Details: While Line 7 of Algorithm 2 handles
the decrement of child-task counter, the counter increment is
automatically handled by add_task(t′) which is called inside
UDF compute(t.context, q). Here, t′ is a child task of t, and we
simply increment t.prog->children_counter by 1.

Also, t.prog can be simultaneously updated and checked in
Lines 1–2 by a comper that computes t, and in Lines 7–9 by
a comper that computes a descendant task of t and backtracks
upwards. Therefore, we add a lock for each t.prog to protect
Lines 1–2 and Lines 7–9 as two critical sections. Otherwise, if
t’s comper executes Line 1 to mark t as complete, and another
comper running the last child task of t executes Line 7 to
decrement t’s child-task counter to 0, then both compers will
backtrack from t upwards (as the conditions in both Line 2
and Line 8 are false), causing ‘double deletion.’ Also note that
in UDF compute(t.context, q), whenever we call add_task(t′),
the function should create t′.prog with its parent task ID set

Fig. 5. Illustration of dense subgraph queries.

as t’s task ID, and increment the child-task counter of t.prog
by 1. In contrast, in UDFs task_spawn(q) and postprocess(q),
add_task(tr) adds the root task tr so the parent task ID of tr.prog
should be set as -1 (as required by Line 5 of Algorithm 2).
Therefore, before calling a UDF, a comper sets a flag indicating
the UDF context so that when add_task(.) is called therein, it
knows which of the above 2 branches to take automatically based
on this UDF-context flag.

Finally, since all compers repeatedly access Qactive to obtain
a task starting from its head, to ensure high concurrency of
accessing Qactive, we protect it with a read-write lock rather
than a mutex. This is because compers check Qactive frequently
which is read-only, and the updates to Qactive only happen
infrequently either (i) when a comper cannot find any task from
Qactive so it dequeues a new query from Qwait for processing,
or (ii) when a comper backtracks and finds that a query finishes
(c.f. Line 11 of Algorithm 2); in either of the two cases, we
write-lock Qactive.

VI. APPLICATIONS

This section illustrates the use of G-thinkerQ by implement-
ing 4 applications on top, which are the very recently studied
subgraph queries proposed in top venues [32], [45], [51], [68].

Maximal Quasi-Cliques [32]: Given a minimum degree
threshold γ ∈ [0, 1], a γ-quasi-clique is a subgraph g = (Vg, Eg)
where each vertex v connects to at least γ fraction of the other
vertices in g, i.e., deg(v) ≥ γ · (|Vg| − 1)�. Following [32],
we request a result subgraph to be maximal and to contain at
least τsize vertices. We additionally require a result subgraph
to contain all vertices in a query set Q, which essentially starts
withS = Q in Algorithm 1. Fig. 5(a) gives a query with 2 results
shown in red and green.

Here, <QueryT> is a triplet (γ, τsize, Q), and we assume
γ ≥ γmin, τsize ≥ τmin

size for all queries, where γmin and τmin
size

are user-defined density and size lower bound for queries. It
is easy to see that a result subgraph cannot contain a vertex v
with deg(v) < γmin · (τmin

size − 1)� � kmin, so after the input
graphG is loaded, we will first shrink it into its kmin-core before
calling Worker::run(), which takes linear time [39].

As shown in [42], a result quasi-clique has a diameter upper
bound UB(γ), and UB(γ) = 2 when γ ≥ 0.5 as we assume
here. Therefore, in task_spawn(q), we return false without cre-
ating a root task if any two vertices in Q are > 2 hops away, or
any vertex in Q has degree < γ · (τsize − 1)� � k. Otherwise,
we create the root task by setting S = Q and including into
ext(S) only those vertices of G that are within 2 hops to every
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Fig. 6. Illustration of subgraph matching (from [50]).

vertex inQ. The root task also materializes the induced subgraph
G(Q ∪ ext(Q)) (actually its k-core) to mine upon to avoid
scanning the long adjacency lists of G.

In UDF compute(.), a task runs the algorithm of [32] which
follows Algorithm 1’s framework but with 7 categories of
pruning rules to aggressively reduce the search space. UDF
is_bigTask(.) determines if a task 〈S, ext(S)〉 is big by checking
if |ext(S)| ≥ τsplit, since |ext(S)| upper-bounds the number
of levels to continue search in the set-enumeration tree. Here,
τsplit is a user-defined parameter tuned to be 200 by default for
set-enumeration search. Finally, this query has only one phase
so we use the default postprocess(q), which returns false to
terminate the query.

Size-Bounded Community [68]: This query finds a subgraph
with the largest min-degree among all connected subgraphs g
that contain the query vertex vq and have � ≤ |Vg| ≤ h. For
example, Fig. 5(b) shows a toy graph upon which we issue
query (vq = v1, � = 4, h = 8) and finds the best community
{v0, v1, v2, v3, v4} which has minimum degree 3. This query
is also answered by set-enumeration search [68] but we only
find one best subgraph which we denote by H hereafter.

We define <QueryT > to include not only q = (vq, �, h),
but also the current best result subgraph H and its associated
min-degree dmin for pruning unpromising search space. Since a
query could be processed by multiple tasks,<QueryT> keeps a
read-write lock to protect H and dmin since every task needs to
access them to check pruning conditions, but only when a better
subgraph is found will they be updated which happens not very
frequently.

In [68], H is initialized by a fast algorithm that greedily
selects vertices around vq to maximize subgraph min-degree
for effective pruning. Let cn(v) be the core number of a vertex
v, then a subgraph better than H must have every vertex with
degree > dmin, so we shrink G into its (dmin + 1)-core.

In UDF task_spawn(q), we first conduct the above preprocess-
ing. Note that the best subgraph has a min-degree upper-bounded
by UB = min{cn(vq), h− 1} since vq cannot be contained in
a subgraph with min-degree > cn(q). If the min-degree lower
bound dmin also equals UB, then the initial H is already the
best and we simply output H and return false without creating a
root task. Otherwise, we create and add a root task 〈S, ext(S)〉
with S = {vq} and return true.

Algorithm 3: Subgraph_Match(Gq = (Vq, Eq), G =
(V,E)).

1: generate matching order π = [u1, u2, . . . , u|Vq |]
(ui ∈ Vq)

2: enumerate(∅, 1, π,Gq, G)
Procedure enumerate(S, i, π,Gq, G)

3: CS(ui)← viable vertex candidates in G to match ui

4: for each v ∈ CS(ui)
5: Append S with (ui, v)
6: if |S| = k then output S
7: else enumerate(S, i+ 1, π,Gq, G)
8: Pop (ui, v) from S

UDF compute(.) runs the algorithm of [68] which follows
Algorithm 1’s framework but with advanced pruning, where
Line 3 now adopts the smarter domination-based branching
technique proposed in [68] to reduce the recursion tree fanout.

Finally, UDF is_bigTask(.) is implemented exactly as in our
maximal quasi-cliques application, and UDF postprocess(q)
outputs H and then returns false to end the query evaluation.

Subgraph Matching [51]: Algorithm 3 sketches Ullmann’s
recursive algorithm [53] for subgraph matching, which, given a
query graph Gq , retrieves all subgraphs of a data graph G that
are isomorphic to Gq . There, we match data vertices to query
verticesu1,u2, . . .,uk one at a time, withS recording the current
partial match. The search process can be depicted by a state
space search tree [50] in Fig. 6, where the rightmost path gives a
recursion pathS = [(u1, v5), (u2, v7), (u3, v4)]. This path failed
since there is no edge (v7, v4) to match query edge (u2, u3).

A number of improvements have been proposed on top of
Ullmann’s algorithm. They are summarized by [51] with the
best combination recommended and followed by us.

GivenGq , first consider UDF task_spawn(Gq). We first create
an auxiliary data structureAq as proposed by DP-iso [29], which
maintains a list C(ui) of data vertex candidates for each query
vertex ui, and which maintains those edges of E between candi-
dates in C(uj) and those in C(uk) if (uj , uk) ∈ Eq . The index
Aq is fast to build and effectively filters out unpromising vertices
v from each C(ui) simply based on the local neighborhood of v
inG. Subgraph enumeration in Algorithm 3 is directly conducted
on the smaller Aq rather than G, and the recursion fanout in
Line 4 is significantly reduced. We also generate query-vertex
matching order π following GraphQL [30], which picks ui to
be a neighbor of at least one vertex in {u1, u2, . . . , ui−1} in GQ

that has the smallest |C(ui)| to reduce fanout in the upper levels
of recursion. Both Gq and the computed Aq and π are kept in
<QueryT> for use by Gq’s enumeration tasks, and we create
and add a root task with 〈S, i〉 = 〈∅, 1〉 as in Line 2.

Note that if we find C(ui) = ∅ after constructing Aq,
task_spawn(Gq) returns false immediately without computing
π and creating root task, as there is no subgraph matching Gq .

Then, UDF compute(.) runs Algorithm 3 to compute each
task 〈S, i〉, but creates new tasks 〈S ⊕ (ui, v), i+ 1〉 rather than
recursively calling enumerate(.) in Line 7 if timeout occurs,
where ⊕ denotes element appending.
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Algorithm 4: Path_Enumerate(s, t, k,G).

1: stack P = ∅, bool visited[]← {false}
2: DFS(s, t, k, P, visited,G)

Procedure DFS(s, t, k, P, visited,G)
3: visited[s]← true, P.push(s)
4: if s = t then report P
5: else if |P | ≤ k then
6: for each v ∈ N(s) with visited[v] = false
7: DFS(v, t, k, P, visited,G)
8: P.pop(), visited[s]← false

Let us denote Bπ(ui) = {uj | j < i ∧ (uj , ui) ∈ Eq} as the
backward neighbors of ui in Gq given order π, and denote N(v)
as the neighbors ofv inG. For each query edge (uj , ui) ∈ Eq and
each v ∈ C(ui), let us denote v’s neighbors that can match uj

byAuj
ui (v) = N(v) ∩ C(uj), which is saved in indexAq as the

matched data edges. Then, Line 3 basically computes CS(ui) =
∩uj∈Bπ(ui)A

uj
ui (S[uj ]) to ensure that all backward edges are

matched, where S[uj ] denotes the data vertex matched to uj in
S. Since set intersections are heavily used (over 80% of the total
time), we adopt the hybrid set intersection method of [51], which
leverages the SIMD parallelism supported by modern processors
(AVX expands integer commands to 256 bits).

While Algorithm 3 is conceptually simple as a recursive
function, it is inefficient since each time a recursion layer is
added to the program stack (which takes time). To be efficient,
we translate Algorithm 3 into an iterative-style implementation
which is equivalent in logic but does not have any recursive
function call.

Hop-Constrained s-t Path Enumeration [45]: Given two
distinct vertices s and t in G, and a hop constraint k, this
query outputs all paths from s to t with length at most k. This
query can be used to detect money laundering and e-commerce
merchant fraud [49]. Algorithm 4 shows the recursive depth-first
path enumeration algorithm which tracks the current path by P ,
where Line 5 prevents P from growing beyond length k, and
Line 4 outputs a path P whenever t is reached and stops further
growing from P . We can also increment a path counter in Line 4
to count the number of s-t paths.

To parallelize it in G-thinkerQ,<QueryT>keeps q = (s, t, k)
as well as the path counter. We actually maintain an array of
counters, one for each comper to increment to avoid counter
locking overhead, and the total path count can be reported by
summing these counters in UDF postprocess(q).

Each task runs DFS(v, t, k, P, visited,G) so <ContextT>
keeps (v, P, visited) needed for path enumeration. UDF com-
pute(.) runs Algorithm 4 but creates new tasks rather than
recursively calling DFS(.) in Line 7 if timeout occurs.

UDF is_bigTask(.) checks for a task (v, P, visited) if the
outdegree of v > τdeg , where τdeg is a user-defined threshold.

Besides this basic version, we also implemented the hot
point indexing (HPI) method [45], which indexes all vertices
with degree > a threshold τhot (called hot points) and their
connectivity in a graph Ghot, where each edge (vi, vj) with
weight � corresponds to a length-� path from hot point (a.k.a.

Fig. 7. Illustration of path cases when s and t are not hot.

HP) vi to HP vj without any other HP in the middle. When we
run DFS on G, we stop expansion at HPs to avoid large search
fanout, and use Ghot to complete the paths with HPs.

Given a query (s, t, k), assuming that neither s nor t is an HP,
then there are 3 cases for an s-t path P as illustrated in Fig. 7.
(1) P has no HP, in which case k-hop DFS from s is sufficient.
(2)P has one HP, so we conductk-hop DFS from s to obtain a left
table of paths ending at HPs, denoted by L, and conduct k-hop
reverse DFS from t over the reverse graph of G (i.e., along the
in-neighbors) to obtain a right path-table R similarly. We then
join those paths of L andR that share the same ending points to
obtain Case 2 s-t paths with length≤ k. (3)P has more than one
HP. Let a left (resp. right) path be s� vi (resp. vj � t), then
we basically obtain P by joining 3 path tables s� vi, vi � vj
and vj � t, where vi � vj is obtained by DFS from vi onGhot.

Correspondingly, our G-thinkerQ program has 4 phases: (1)k-
hop DFS from s to output Case-1 paths and computeL; (2)k-hop
reverse DFS from t to compute R; (3) binary joining L and R
to get Case-2 paths; (4) three-way joining L, {vi � vj}, R to
get Case-3 paths. Note that for cases when s or t is an HP, we
basically skip Phase (1) or (2), respectively, while if both s and
t are HPs, we only conduct Phase (4).

We keep the HP case type in <QueryT > which is properly
initialized in to_query(.). We also keep the phase number of
each query q in < QueryT>, which is properly advanced in
postprocess(q). Both HP case type and phase number are used
in UDFs to properly create and compute tasks by condition
branching. We also keep L andR in <QueryT>, implemented
as concurrent hash tables with an HP (e.g., vi) as the key and the
corresponding paths (i.e., paths ending at vi) as value. Note that
since DFS could time out and be completed by multiple comper
threads, L andR have to be thread-safe for path insertion.

The root task for Phase (3) basically conducts hash join
over L[vi] and R[vi] for each shared HP vi. A coarse-grained
implementation lets the root task create join-tasks 〈L[vi],R[vi]〉
for concurrent processing, but tasks may have imbalanced work-
loads. A fine-grained implementation lets the root task scan
(L[vi],R[vi]) pairs to wrap them into join-tasks where each
join-task {(Lj , Rj)} has cost =

∑
j(|Lj | × |Rj |) ≤ B, with

the batch size threshold tuned to be 500,000 by default. Specifi-
cally, if |L[vi]| ≤ |R[vi]|, we create join mini-batches (Lj , Rj)
with Lj = L[vi] and Rj being a sub-table of paths in R[vi];
the case when |L[vi]| > |R[vi]| is symmetric. Mini-batches are
packed into batches with cost close to B in a streaming manner,
and each batch creates a new join-task.

Phase (4) performs |L| single-source multi-destination DFS’s
over Ghot, each from an HP vi ∈ L and whenever reaching an
HP vj ∈ R, we conduct join over (L[vi], P,R[vj ]). The DFS
length restriction (for P ) is properly determined; for example,
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Fig. 8. Speedup ratio w.r.t. number of compers.

if neither s nor t is an HP, it is set as (k − min_path_length(L)
−min_path_length(R)). The root task generates and adds DFS
tasks each from an HP vi, and each DFS task may time out to
generate new DFS tasks. Similar to Phase (3), our fine-grained
implementation splits the workloads of joins (L[vi], P,R[vj ])
into individual join-tasks {(Lj , P,Rj)} with cost ≤ B. In con-
trast, our coarse-grained implementation lets DFS tasks perform
joins immediately.

Finally, for the HPI implementation, is_bigTask(.) uses the
default one that treats all tasks as regular, since DFS-tasks now
have limited fanouts and join-tasks have bounded cost.

VII. EXPERIMENTS

This section studies how much G-thinkerQ speeds up our
4 subgraph queries introduced in Section VI, all of which are
defined for undirected graphs while s-t path enumeration also
supports directed graphs. Table I summarizes the 12 biological,
communication and social networks we used for evaluation:
CX_GSE1730 [6], CX_GSE10158 [5], Ca-GrQc [3], Enron [7],
Amazon [1], Hyves [10], YouTube [13], Patent [11], Epinions [8],
Twitter [12], GoogleWeb [9], and Baidu [2]. The first 8 are
undirected and remaining 4 are directed. Experiments were run
on a server with an IBM POWER8 CPU (32 cores, 3491MHz).
All reported experiments were run with the tuned default system
and algorithm parameters previously described, each repeated
for 3 times with the average reported. Our source code has been
released at https://github.com/lyuheng/TthinkerQ.

Maximal Quasi-Cliques: Recall that we load the input
graph and shrink it into its k-core using initial parameters
(γmin, τmin

size ). We use (γmin, τmin
size ) close to (γ, τsize) tuned

in [32] to ensure there exist results and the runtime is tractable.

TABLE I
GRAPHS (8 UNDIRECTED, 4 DIRECTED)

To generate queries on a graph, we first run [32]’s pro-
gram with (γ, τsize) = (γmin, τmin

size ) to mine maximal quasi-
cliques, and let their vertices be Vqcq. We then generate random
queries (γ, τsize, Q) by only sampling vertices from Vqcq into
Q to ensure there are results, and by uniformly sampling γ
from γmin + [0, 0.05) and τsize from τmin

size + {0, 1, 2}. For a
query batch, we generate 20% queries for each length |Q| =
1, 2, 3, 4, 5. Table II(a) shows the (γmin, τmin

size ), runtime and
speedup ratio when we process a batch of 100 queries with 32
compers. Fig. 8(a) further shows the speedup ratio when we vary
the # of compers. We can see that good speedup is achieved for
query batches that need time to run, such as YouTube, Patent and
Enron, while speedup is limited for those that are fast to run (in
fact a slowdown on Amazon that takes sub-second) since task
scheduling and query tracking overheads increase with the # of
compers.

Size-Bounded Community: Following [68], we select vertices
with core number >5 as vq, and try size bounds � and h with
a difference from 3 to 10. Many queries run for a long time
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TABLE II
PARAMETERS & TIME AND SPEEDUP WITH 32 COMPERS (TIME UNIT: SECOND)

and [68] sets a time limit of two hours, after which it simply
returns the current best H . We, in contrast, tried different vq till
some query can finish within a reasonable amount of time so
that we can report speedup with the # of compers.

Table II(b) shows the 32-comper runtime and speedup ratio
for the first randomly sampled query (vq, �, h) we found to be
able to finish in reasonable time on each dataset. Fig. 8(b) further
shows the speedup ratio when we vary the number of compers.
We observe good speedup for queries that need time to run, such
as Enron, Amazon and Patent. The speedup is limited for datasets
CX_GSE1730, CX_GSE10158 and Ca-GrQc that are fast to run,
since Table II(b) reports single-query parallelism where parallel
child-tasks are only generated when a parent task times out after
running for τtime = 0.3 s, so compers are not saturated by tasks
when computation begins.

The speedup ratio can be significantly improved if we have
more queries as illustrated in Fig. 8(c), where we ran 10, 10, 32
queries on CX_GSE1730, CX_GSE10158 and Ca-GrQc, respec-
tively. This is because there are more cross-query parallelism,
and the combined task workloads of these queries are able to
keep all compers busy most of the time.

Subgraph Matching: The graphs in Table I have no labels, so
we randomly assign each vertex a label from a label set Σ.

Following [29], [51], to ensure that a query graph Gq =
(Vq, Eq) can find matches in G, we generate Gq by a random
walk starting from a random vertex until getting the specified #
of vertices, and we extract the induced subgraph as Gq .

We tried different sizes |Vq|, |Σ| and different # of queries
in a batch, and we picked the combination such that the query
batch can finish within reasonable time to report in Table II(c)
regarding 32-comper runtime and speedup ratio. Fig. 8(d) further
shows the speedup ratio when we vary the number of compers.
We observe good speedup ratio on all datasets.

Recall from Section III that two graph-centric systems, Frac-
tal [22] and Peregrine [31], can also answer subgraph matching
queries efficiently. Fractal [22] treats each subgraph expansion
as a basic unit for depth-first task scheduling, while Peregrine
adopts a pattern-based model to extract the semantics of patterns
to guide its exploration. We, therefore, compare G-thinkerQ with
Fractal and Peregrine using subgraph matching.

Note that our other applications are more advanced than
what can be formulated using the simple APIs of Fractal and
Peregrine, while [61] and [22] have demonstrated that depth-
first systems such as G-thinker and Fractal beats breadth-first
systems such as Arabesque and RStream by a large margin.
Moreover, [31] shows that Peregrine can further beat Fractal.

Fig. 9. Speedup ratio w.r.t. fractal and peregrine on 5 queries.

Among the 8 undirected graphs in Table I, the last four
are significantly larger and all with a high maximum degree
reflecting that there is at least a very dense region in each graph.
We find that the speedup ratio of G-thinkerQ over Fractal and
Peregrine is the most significant on such graphs. Due to page
limit, we use these 4 large graphs to report the speedup ratio,
while only include Ca-GrQc as a representative of the other
graphs that are smaller (so the speedup ratio of G-thinker is not
as significant).

Fig. 9(a) shows the runtime speedup of G-thinkerQ over
Fractal for five random-walk-generated queries (represented by
the five bars) on each of the five datasets, where the runtime
of G-thinkerQ has been normalized as 20 = 1. Here, we use
|VQ| = 8 since when running Fractal on query graphs with more
vertices, Fractal either reports ArrayIndexOutOfBoundsExcep-
tion or gives 0 results, though Fractal gives correct results when
there are ≤ 8 vertices. With this small |VQ|, queries would be
very fast to evaluate using the values of |Σ| in Fig. 2(c), so
we reduce |Σ| to 3, 2, 8, 16, 8 on the 5 datasets, respectively,
to properly increase the query workloads. As Fig. 9(a) shows,
the speedup of G-thinkerQ becomes more significant as the
graph size increases. G-thinkerQ can be two orders of magnitude
faster than Fractal, since Fractal does not allow indexing so
it enumerates subgraphs on the big input graph rather than a
small auxiliary data structure Aq , and it performs additional
isomorphism checking. Moreover, Fractal has to match each
query graph one by one, but G-thinkerQ can achieve further
speedup if we run the 5 queries as a batch.

Similarly, Fig. 9(b) reports the runtime speedup of G-thinkerQ
over Peregrine for five random-walk-generated queries (repre-
sented by the five bars) on each dataset, where the runtime of
G-thinkerQ has been normalized as 20 = 1. We observe similar
speedup trend as in Fig. 9(a) but the speedup ratio is not as large
since Peregrine is in general faster than Fractal [31].
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TABLE III
TIME & SPEEDUP WITH 32 COMPERS

Hop-Constrained s-t Path Enumeration: Following [43],
[49], we generate each query (s, t, k)where source s is randomly
sampled fromV and target vertex t is a vertex reached by ak-step
random walk from s, so that we make sure there exist result paths.
We select the number of queries in a batch, k and τhot on each
dataset so that the query batch can finish in reasonable time for
both HPI (fine-grained) and DFS.

Table III reports the 32-comper runtime and speedup ratio.
Fig. 8(e) and (f) further show the speedup ratio of DFS and HPI,
respectively, when we vary the number of compers.

We see that HPI has good speedup on all datasets except for
the very sparse graph Twitter, since the path join operations in
Phases (3) and (4) usually constitute the majority of compu-
tation workloads according to our observation, which can be
effectively decomposed into join-tasks of cost ≤ B = 500, 000
for parallel processing on denser graphs. While the speedup of
DFS is lower than HPI as shown in Table III, the querying
time is actually much shorter on all graphs except for Twitter
which is very sparse. This might be surprising since HPI is
an indexing-based method, but our program profiling shows
that path joining with the help of Ghot is oftentimes much
more expensive than direct DFS unless a graph is very sparse.
In fact, HPI was originally proposed for querying the sparse
Alibaba transactional network [45], and this weakness of HPI
was also observed by later works [43], [49] which propose new
techniques and better join plans to overcome this weakness. We
use HPI as an application to illustrate multi-phase algorithm
programming in G-thinkerQ, and we plan to implement more
recent solutions [43], [49] as future work.

Recall that we also proposed a coarse-grained HPI baseline
that joins 〈L[vi],R[vi]〉 and (L[vi], P,R[vj ]) for HPs vi, vj di-
rectly rather than decomposing large ones into smaller join-tasks
of cost≤ B = 500, 000. We find that coarse-grained HPI always
suffers from the straggler problem since someL[vi] and/orR[vj ]
can be very large and the joins involving them can cause the
handling compers to become stragglers. To illustrate, Fig. 10
compares the scalability on Baidu and CX_GSE1730 where we
see that coarse-grained HPI is much more expensive (note that
runtime is in log scale) and does not reduce much after the # of
compers reaches 16.

Memory Consumption: One advantage of G-thinkerQ is that
it inherits the task capsule design of [32] that keeps the memory
usage by tasks bounded. In fact, memory is never an issue
in all our experiments, so we have omitted them due to the

Fig. 10. Coarse- v.s. fine-grained HPI methods.

TABLE IV
MEMORY USAGE FOR MAXIMAL QUASI-CLIQUES ON PATENT

Fig. 11. Time and latency speedup of g-thinkerQ v.s. G-thinker.

space limitation. As an illustration, Table IV reports the total
memory usage, and memory usage by tasks only (by deducting
the memory usage after input graph is loaded) when we process
100 quasi-clique queries on the large Patent graph, where we can
see that most memory is occupied for storing the input graph, and
tasks only use 8.36× memory when we increase # of compers
from 1 to 32.

Comparison with G-thinker: Compared with answering
queries with G-thinker [61] one by one, G-thinkerQ supports
inter-query parallelism so that tasks of a later query can be
processed if tasks of earlier queries cannot saturate the avail-
able CPU cores. We demonstrate how effective G-thinkerQ’s
inter-query parallelism is, by running a batch of 10 quasi-clique
queries with both G-thinkerQ and G-thinker on each dataset.
Parameters (γ, τsize) are set as (30, 0.85), (29, 0.77), (10, 0.8),
(23, 0.84), (12, 0.5), (23, 0.91), (18, 0.9) and (20, 0.9), respec-
tively, for the 8 undirected graphs in Table I, but the initial vertex
of each query is randomly selected. We consider two metrics:
running time (to finish the query batch) and average latency,
where the latency is the time a user waits to obtain the result of
a query.

Fig. 11 show the comparison results where the running time
and average latency of G-thinkerQ has been normalized as 1, and
graph loading time is not counted. We can see that G-thinkerQ
is 2.1×–8.1× faster than G-thinker thanks to its inter-query
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TABLE V
SPEEDUP OF G-THINKERQ V.S. QUEGEL

parallelism. In terms of average latency, it is also 1.2×–7.0×
shorter for G-thinkerQ thanks to our effective task scheduling
and query progress tracking designs.

Comparison with Quegel: Quegel [58] is a vertex-centric
system to answer iterative graph queries online. Since our four
studied graph queries operate on subgraphs involving vertices
more than one hop away, they are not suitable for implementation
as a vertex-centric program. Therefore, in order to compare G-
thinkerQ with Quegel, we use the application of maximal-clique
enumeration to find all maximal cliques that contain an initial
query vertex, for which a vertex-centric algorithm is available
(see Algorithm 3 of [15]) and we implement it for Quegel. In
G-thinkerQ, we implement the Bron-Kerbosch algorithm [16]
which is recursive and follows the set-enumeration framework
illustrated in Fig. 1.

In the vertex-centric algorithm of [15], when extending a
set S = {v1, v2, . . . , v|S|} with a candidate v′ ∈ ext(S), S
needs to be sent from v|S| to v′ to process the extended
set S ′ = {v1, . . . , v|S|, v′}. Even though we run Quegel on
the same server with 32 threads (rather than in a distributed
cluster to save communication), a lot of intermediate sets
are materialized creating excessive computing and memory
overheads.

We generate 5 queries with non-trivial workload for each
graph G. Specifically, we first use G-thinker [61] to find the
maximum clique Qmax in G, and then generate each query by
selecting a random vertex in Qmax as the initial query vertex.
Table V reports the query running time of both systems on
Amazon (|Qmax| = 7) and Patent (|Qmax| = 11), while we
omit the other graphs (whose |Qmax| is much larger) since
Quegel runs out of memory when processing queries on them.
As Table V shows, G-thinkerQ is 3 to 5 orders of magnitude
faster than Quegel.

VIII. CONCLUSION

We proposed G-thinkerQ, a general subgraph querying sys-
tem with a unified task-based programming model. G-thinkerQ
allows the input graph to be loaded (and indexed) once and
reused for subsequent user queries, and it manages the submit-
ted queries to ensure (1) high task concurrency, (2) memory
boundedness, (3) fairness, and (4) timeliness of returning results.
Specifically, G-thinkerQ provides an intuitive TLAT program-
ming interface that allows users to write parallel algorithms
for various subgraph queries by directly adapting from their
serial algorithm counterparts with advanced pruning techniques,
and it uses a novel task-capsule list to ensure fairness of query
evaluation order while supporting memory-bounded concurrent
evaluation of multiple queries. A lightweight lineage-based
mechanism is also designed to keep track of when the last task

of a query is completed, so as to return query results in time and
to release resources. Recent serial algorithms for 4 advanced
subgraph queries are parallelized on G-thinkerQ with excellent
speedup.
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