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Abstract Triangle enumeration seeks out 3-cliques in

a given data graph, which is vital for graph analysis.

However, its performance often turns into a bottleneck

due to set intersections’ poor locality and imbalanced

workload. Worse, the problem becomes even more com-

plicated when the data graph changes. Luckily, recent

research has made progress in boosting triangle enu-

meration with modern hardware for parallel computing,

such as GPU and FPGA.

Therefore, we present TEAF, a triangle enumera-

tion acceleration system optimized for CPU-FPGA het-

erogeneous platforms. First, we propose a structure-

aware adaptive strategy for a crucial operation in tri-

angle enumeration, set intersection. Instead of design-

ing a one-size-fits-all algorithm for set intersections, we

use a data-driven method to decide the intersection im-

plementation for different settings. Second, a series of

hardware-level optimization, including pipelining, cus-

tomized cache, and CPU-FPGA co-processing, can re-

duce computation and memory costs and lessen work-

load imbalance. Third, we develop a parallel update

technique for our graph storage structure to handle

triangle enumeration on dynamic graphs. Experiments

show that TEAF prevails over the previous systems

with significant speedup on average. Also, TEAF out-

performs its counterparts even more in terms of energy-

averaged performance.
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1 Introduction

Graphs are becoming increasingly popular in industry

and academia due to their ability to model complex

relationships between entities. Among various types of

graph analysis tasks, triangle enumeration is the listing

of all triangles in a graph, which is the basis for comput-

ing various graph metrics such as k-truss [49], cluster-

ing coefficients, and transitivity ratio [84]. Moreover,

many real-world graph analysis applications such as

spam detection [7], link recommendation [81], commu-

nity detection [50], and so on also rely on triangle enu-

meration. Therefore, researchers have proposed various

algorithms and optimizations [8,20,85,64,84,86,25,78,

94] covering different settings: single or distributed, se-

quential or parallel, CPU-only or heterogeneous.

However, with the rapid growth in the size and up-

date rate of graph data, the performance of triangle

enumeration is often a bottleneck for graph analysis al-

gorithms [73] in the traditional CPU-only environment.

Recently, the advent of modern hardware (such as FP-

GAs and GPUs) for parallel computing brings hope for

efficient triangle enumeration, especially on large and

skewed real-world graphs [34,33,46,39,69,94]. FPGAs

and GPUs provide massive parallelism, faster IO, and

asynchronous co-processing alongside the CPU, while

each has unique characteristics. With careful design to

harness the power of such hardware, the heterogeneous

solution can significantly speed up triangle enumera-

tion.

This paper focuses on a Field Programmable Gate

Array (FPGA), which is a potential alternative for ac-
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celerating triangle enumeration due to the following ad-

vantages: (1) An FPGA allows user-defined hardware-

level processing units (PU). The PUs can run in parallel

and perform different logic, making the FPGA power-

ful in a Multiple Instructions Multiple Data (MIMD)

manner. (2) An FPGA is equipped with tens of MBs of

on-chip memory units for customizing an efficient and

application-oriented cache or index. This on-chip mem-

ory is as fast as L2 cache on CPUs and shared mem-

ory on GPUs, while its size is similar to L2 cache and

larger than shared memory. (3) The power consumption

of an FPGA-based solution is often an order of magni-

tude lower than a GPU-based solution. (4) An FPGA

can serve as a co-processor alongside a CPU. Thus, the

CPU and FPGA can each focus on what they are good

at and run asynchronously to achieve the best perfor-

mance. In the proposed system, we will take advantage

of these features of FPGAs to accelerate triangle enu-

meration.

1.1 Challenges

However, there are some challenges in implementing a

CPU-FPGA co-processing system for triangle enumer-

ation. These challenges arise from FPGA architecture,

graph data distribution, and algorithm behavior. In ad-

dition to demonstrating these challenges, we also dis-

cuss how FPGA features are relevant to overcoming

these challenges. By default, our discussion is based on

the latest Xilinx architecture, but the principles are uni-

versal to FPGAs.

The first challenge is to design an appropriate par-

allel triangle enumeration algorithm. Our goal is to de-

velop a triangle enumeration routine with high paral-

lelism and efficient memory usage to exploit the power

of modern hardware. There are three categories of tri-

angle enumeration algorithms: the linear-algebra-based

[5,82,88], subgraph-based [98,89,23], and intersection-

based [74]. More details are discussed in section 2.3. The

linear algebra-based method represents a graph as a

matrix and decomposes the triangle enumeration into a

series of matrix operations. Matrix computation is regu-

lar and parallel-friendly, but the matrix representation

is very sparse, especially for highly skewed real-world

graphs where a small fraction of vertices dominate the

majority of edges. The sparsity is detrimental to the

memory efficiency and performance of matrix computa-

tion. A possible alternative is to use a sparse matrix rep-

resentation, but it reduces memory consumption at the

cost of introducing irregular data layout and difficulty

for updates. The subgraph-based solution takes trian-

gle enumeration as a special case of subgraph matching.

Since a triangle is a simple pattern, some filtering and

pruning techniques for subgraph matching may need to

be revised. Worse, additional space may be required for

intermediate results and auxiliary indices.

Existing work [34,33,46,39,69] has concluded that

an intersection-based solution has the best performance

on heterogeneous platforms. Its basic idea is to iterate

on each edge or vertex and find the common neigh-

bors between conjoint vertices (i.e., intersecting neigh-

bor lists). The intersections are independent of each

other and can be performed in parallel. The bottleneck

is in repeatedly reading the neighbor lists and comput-

ing the intersections. With an FPGA, we can launch

targeted PUs for fast intersections and use sufficient on-

chip memory to store the neighbor lists. Therefore, in

this paper, we can focus on optimizing the intersection-

based method for FPGAs.

The second challenge is to develop an efficient list

intersection strategy for FPGAs, which accounts for

most of the computational cost in triangle enumera-

tion [74,36]. Most existing systems tend to design a

one-size-fits-all intersection method with massive par-

allelism [39,69]. However, the efficiency of list intersec-

tion algorithms depends on the length of the lists in-

volved, so finding a uniform intersection policy is not

trivial, especially for graphs with highly skewed degree

distributions. Instead, inspired by a recent work LO-

TUS [25], we can adopt a divide-and-conquer design,

taking appropriate intersection methods for different

workloads. Unlike previous work, which was designed

for a CPU-only platform, our system considers the be-

havior of workloads on different hardware. In addition,

we proposed a cost model to optimize workload parti-

tioning instead of using empirical thresholds in LOTUS

[25].

The final challenge is triangle enumeration on dy-

namic graphs. Many real-world graph data, such as so-

cial networks, change rapidly, but existing solutions as-

sume that the graph is static [69,39,46,25]. Therefore,

a triangle enumeration system that is suitable for both

static and dynamic graphs is more desirable. To the

best of our knowledge, we are the first to design such a

system on FPGA.

1.2 Our contribution

Based on the aforementioned observations and chal-

lenges, we develop TEAF, a novel Triangle Enumeration

Acceleration system optimized for the CPU-FPGA het-

erogeneous platform. TEAF consists of a set of processing

units on an FPGA and a host system on a CPU. Our

contributions are as follows:
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– We propose a structure-aware triangle enumeration

algorithm optimized for a CPU-FPGA heterogeneous

platform. We follow the divide-and-conquer princi-

ple, adopting appropriate intersection strategies for

certain types of workloads. Unlike existing studies

that use an empirical threshold to classify work-

loads, we propose a cost model that considers both

algorithmic behavior and hardware architecture, as

well as a heuristic algorithm to find the optimal

workload classification.

– To increase the performance of the system, we have

come up with FPGA-oriented optimizations such

as pipelining, custom caching, and CPU-FPGA co-

processing.

– We also discuss how TEAF supports triangle enumer-

ation for dynamic graphs. We introduce dynamic

graph storage, which allows fast insertion and dele-

tion. We also propose an improved technique for

graph updates.

– We conduct evaluations on the effectiveness of TEAF.

It outperforms previous systems based on FPGA

and CPU on average, and beats GPU-based systems

in terms of throughput per watt.

The rest of the paper is organized as follows: Sec-

tion 2 introduces the preliminaries, and section 3 gives

an overview of the system. The triangle enumeration

algorithm is presented in section 4. Section 5 intro-

duces the hardware implementation and its optimiza-

tion, followed by the description of our system’s dy-

namic graph support in Section 6. Experimental results

are presented in section 7 and section 8 concludes the

paper.

2 Background and related work

2.1 Problem definition

Definition 1 (Graph) A graph is denoted as G =

{V,E}, where V is a set of vertices and E ⊆ V × V

is a collection of edges. For convenience, we assume

that every edge connects two distinct vertices. N(v) =

{u|(v, u) ∈ E(G), v, u ∈ V (G)} denotes the neighbor

list of a given vertex v. The degree a vertex refers to

deg(v) = |N(v)|.

Definition 2 (Triangle enumeration) A triangle T

(u, v, w) (in graph G) is formed by three vertices u, v

and w, where (u, v), (v, w), (u,w) are three edges in G.

Triangle enumeration is to list all triangles in a given

data graph G.

Fig 1 gives the result of triangle enumeration in an

example graph.

Fig. 1 An example of triangle enumeration. For triangle
counting, the triangle number in the example data graph is
7. The system should output the complete list of triangles for
triangle listing, as shown in the figure.

A triangle is a fundamental pattern in many graph

analysis applications due to its informativeness and prac-

ticality in various scenarios. For instance, in a social

network, a triangle represents a small community. In

online trading data, a triangle is the smallest suspi-

cious fraud cycle. It is worth noting that the graph

data in these applications is rapidly changing. For ex-

ample, Facebook’s graph database receives tens of mil-

lions of user behavior records every day. Therefore, it

is important to use a data structure and corresponding

algorithms that support fast triangle enumeration and

graph updates, especially for real-world applications. If

the data graph is static, counting only needs to be done

once.

Definition 3 (Dynamic graph) A dynamic graph is

defined by an initial graph Gi = (V,E) and a set of

update operations O = {o0, o1, ...ot...} consisting of two
kinds of operations: edge insertion and deletion, where

t denotes the timestamp.

Our proposed framework uses a data structure that

supports both fast triangle enumeration and graph up-

dates. When a data graph changes over time, we call it

a dynamic graph, as defined in Definition 3. To better

leverage the power of parallel computing hardware, ex-

isting solutions typically adopt a batch update setting,

where the system receives a batch of update operations,

performs them in parallel, and outputs the number or

list of affected triangles. To ease the burden of concur-

rent control, we assume in this paper that graph update

and triangle enumeration do not overlap.1 Enumerating

the influenced triangles can be done by finding trian-

gles containing a certain set of edges before and after

1 There is related work focusing on real-time/streaming up-
date processing, but such a strict requirement leads to a high
cost of concurrent control, which is beyond the scope of this
paper and will be discussed in our future work.
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the graph updates [93]. This allows us to focus more on

designing efficient graph storage and update techniques.

Table 1 Notations in this paper

Notation Description
G(V,E) A graph with vertex set V and edge set E
Mh Classification threshold for heavy vertices
deg(v) The degree of a vertex v
degi(v) The in degree of a vertex v
dego(v) The out-degree of a vertex v
N(v) The neighbor list of vertex v
h(N(v)) The hash table storing N(v)
Bc The size of a hash bucket
tlf The expected load factor of h(N(v))

2.2 FPGA Features

2.2.1 Hardware Architecture

A field-programmable gate array (FPGA) is an inte-

grated circuit that contains arrays of programmable

logic devices implemented with look-up tables (LUTs).

FPGAs also have on-chip memory (BRAM), which can

be controlled by the user and provides fast I/O trans-

port. User-defined functions are translated into a spe-

cific distribution of logic blocks and memory elements

on the chip, using configurable wires to connect them.

FPGAs have a flexible architecture that enables them

to implement any function as a digital circuit. This

eliminates the need for fetching and decoding instruc-

tions, which is essential for CPUs or GPUs. Typically,

FPGAs act as co-processors alongside the CPU, provid-

ing high parallelism and flexible high-speed memory.

Fig 2 displays a typical architecture for CPU-FPGA

heterogeneous platforms. The FPGA has its off-chip

memory (DRAM) and communicates with the CPU

through PCIE. 2 (1) minimize expensive data move-

ment between the CPU and FPGA, and (2) allow the

CPU to dominate the FPGA and start processing units

on it. While FPGA-based processing units are running,

the CPU host waits, but they can work asynchronously

for better performance. Our system utilizes these prin-

ciples to design our CPU-FPGA co-processing tech-

nique.

2 It is important to note that this is not the only archi-
tecture available for CPU-FPGA heterogeneous platforms.
Other architectures exist where the FPGA and CPU are pack-
aged together and share main memory. However, the specific
hardware we use, the Xilinx Alevo U200, relies on PCIE.

Fig. 2 Organization of a typical CPU-FPGA heterogeneous
platform: an FPGA is equipped with off-chip device memory
units, usually DDR or HBM. An FPGA can not directly ac-
cess the main memory. The data movement between the main
memory and the FPGA relies on the CPU, which often has
limited bandwidth.

2.2.2 High-level programming

FPGA designs are typically written in hardware de-

scription languages (HDLs) such as Verilog and VHDL.

However, programming with HDLs requires hardware

design knowledge and can impede productive devel-

opment. High-Level Synthesis (HLS) offers a potential

solution. The HLS compiler allows designers to write

functions in common high-level languages like C++ and

Python, which are then translated to HDL. During this

transformation, HLS provides several features to accel-

erate the proposed implementation:

– Loop pipelining and unrolling can be automatically

organized as a hardware-level pipeline or unrolled

into several parallel modules with certain compiler

options.

– Burst read and write. HLS enables optimized se-

quential reads and writes, resulting in a 16x speedup

over random memory access. This burst IO feature

relies on the AXI protocol for off-chip memory ac-

cess of the FPGA computing units.

– The HLS application can be complex and contain

multiple modules. Some modules may have data de-

pendencies on others. HLS offers primitives that en-

able users to instruct the compiler to connect mod-

ules with streaming I/O interfaces, reducing the cost

of data transfer.

In our design, we make full use of these features to

achieve decent performance. We will discuss the details

in the following sections.

2.3 Triangle enumeration Methods

This section introduces the three common triangle enu-

meration algorithms: intersection-based, matrix-based,

and subgraph matching based methods.
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2.3.1 Intersection-based methods

Intersection-based methods [74,54,76,25,80,38,55] enu-

merate the vertices or edges of the data graph and cal-

culate the intersection of the neighbor lists of every two

connected vertices. Three intersection options are avail-

able: merging, binary search, and hashing.

Merging-based intersection requires the lists to be

sorted. It maintains two pointers for the intersecting

lists to go through them. During iteration, the program

compares the referenced values and moves the pointers

of the smaller value backward until one reaches the end

of the list to identify common elements. A triangle is

formed when the two pointers point to the same value,

which represents the same vertex ID. Previous studies

[76,29,41] have shown that the merging-based intersec-

tion is CPU-friendly due to its ability to be completed

in linear time and its better spatial locality, resulting

in a higher chance of hitting the cache. However, main-

taining the order of neighbor lists during updates can

be challenging because they must be sorted.

Binary search-based intersection builds a binary tree

with one of the lists and considers the elements in the

other list as search targets. For each search target, the

classic binary search procedure is performed to see if

there is a matching element in the search tree, i.e., a

triangle. Unlike the merge-based intersection, the bi-

nary search is of higher parallelism because the search

of different targets is independent. Some of the exist-

ing parallel solutions [44,45,1] choose binary search to

implement list intersection. However, binary search is

not as cache-friendly as merge, especially if the binary

search tree is huge because it must randomly access
memory and the data may not be in the cache.

Hash-based intersection constructs a hash table with

one list and uses the elements in the other list as search

keys to find the common elements. Similar to binary

search, hashing search has high parallelism but worse

locality. Also, its performance becomes unstable due

to hashing collision (i.e., two elements are hashed at

the same position). Several techniques have been pro-

posed to handle hash collisions, such as linear prob-

ing, double hashing, and separate chaining, all of which

introduce unavoidable overhead. Shun [76] implements

hashing-based intersection for their multicore solution.

They maintain many hash buckets in the hash table to

avoid the cost of linear probing, which results in mas-

sive memory consumption. Bitmap is another common

tool for list intersection, which can be thought of as a

hash table with |V | buckets. It sacrifices memory effi-

ciency to eliminate collision costs. There are solutions

on GPU and CPU that use bitmap [42,43,34,96,62] to

achieve satisfactory performance, but they suffer from

high memory consumption and therefore cannot handle

larger graphs. Han et al. [36] and Qu et al. [71] propose

a compressed format for the bitmap (they are similar in

data structure, but use different intersection methods).

To reduce memory consumption, it divides the bitmap

into blocks of fixed length. Then only the blocks with

non-zero bits are stored, along with their index. For in-

tersection, it uses a merge-based strategy, comparing

first the index and then the blocks. So the blocks are

sorted by their indices. However, such a design is disad-

vantageous for updates. To insert or delete an element,

it first uses a binary search to find the position of the

element. If the element does not belong to any existing

blocks, a new block should be inserted, causing data

movement to relocate the blocks.

Fig.3 shows how the three intersection options men-

tioned above work on two neighbor lists from Fig.1,

N(0) and N(1). In Fig.3(b), at the first iteration, the

first element in N(0) is 1 and smaller than that in N(1).

So the pointer to N(0) increases. In the figure, this

means that the red arrow points in the horizontal di-

rection. In the second iteration, both pointers increase

because they point to 2, a common element in N(0)

and N(1), and a triangle is enumerated. This way we

can find all triangles. In Fig. 3 (c), we search for ev-

ery element of N(1) in the binary search tree of N(0).

For example, to decide whether 4 is present, the search

must go down the binary search tree to the rightmost

leaf node. In Fig.3 (d), we construct a hash table with

the longer list N(0). When searching for 3, 3 is hashed

to an occupied position, so we should use linear probing

to check the next position to find 3.

2.3.2 Matrix-based approach

The matrix-based approach [5,88,17,13,14,91,65] stores

a data graph in the form of a |V | × |V | adjacency ma-

trix. Fig. 4 shows the adjacency matrix representation

A for the data graph in Fig. 1. We first decompose the

adjacency matrix into a lower and an upper triangular

matrix, denoted L and U in Fig. 4. Then we compute

the standard matrix multiplication to get B = L · U .

The elements in B count the number of wedges (i.e.,

2-hop simple paths). Then we do an element-wise mul-

tiplication of A and B to check if the wedges can form

triangles. To get the final result, we sum the element in

the resulting matrix and divide it by 2. Matrix compu-

tation has a regular computation pattern and is there-

fore suitable for high parallelism. There are many effi-

cient and easy-to-use libraries for matrix computation.

However, as the size of the graph grows, memory ef-

ficiency becomes a problem. If the matrix is stored as

a |V | × |V | 2D array, the memory consumption of the
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Fig. 3 Three intersection options for intersection-based triangle enumeration. Common elements are demonstrated in yellow.
(a) shows the neighbor list of v0 and v1 in Fig.1. The red arrows (b) show the merge path when intersecting N(0) and N(1).
(c) and (d) build the binary search tree and hash table with the longer list, which is a common choice in previous work.

adjacency matrix grows by the square. Worse, when a

new vertex is inserted, the adjacency matrix may need

to be reorganized, which is time-consuming.

A possible alternative for enumerating triangles in

a matrix-based approach is to use sparse matrix rep-

resentations such as CSR, COO, and CSC. [92,59,24]

These data structures are space-efficient, but their per-

formance is not as good as intersection-based methods,

as recent research has shown [69,25]. Sparse matrix

multiplication (SpMM) is more challenging to paral-

lelize due to its unstructured data storage compared

to dense matrix representation. Currently, there is no

existing research on triangle enumeration using sparse

matrix representation on FPGA. However, there is grow-

ing research interest in accelerating SpMMwith FPGAs

[66,4,60,70]. However, most of the research in this area

focuses on improving SpMM for deep learning and has

not been tested on large graphs with millions of ver-

tices and billions of edges. It is important to note that

updating a sparse matrix in a compact storage can be

expensive.

Fig. 4 An example for matrix-based triangle enumera-
tion.The notation · denotes standard matrix multiplication
and ◦ is element-wise matrix multiplication.

2.3.3 Subgraph matching based methods

Subgraph matching-based methods take a query graph

as input and search for every subgraph that satisfies

the query graph pattern. There are two types of main-

stream subgraph matching algorithms. One method is

based on exploration [37,72,12,82,23,52]. In this ap-

proach, the query graph (in this case, a triangle) is first

decomposed into a spanning tree and non-tree edges.

Subsequently, we identify all subgraphs that match the

spanning tree pattern as partial matching results. Fi-

nally, we filter the results from the last step by check-

ing the existence of non-tree edges. Other solutions are

based on joining [63,11,35,79]. These solutions iterate

through the vertices of the query graph in a matching

order generated online. At each iteration, they attempt

to match the current query vertex to extend the results

from the previous iteration.

Triangle enumeration is a specific case of subgraph

enumeration. Therefore, subgraph-matching solutions

can be easily adapted to triangle enumeration by con-

sidering a triangle as the pattern to be matched. How-

ever, optimization techniques such as filtering and prun-

ing may not be as effective in this case, as they are

intended for a more universal problem.

2.4 Heterogeneous triangle enumeration

GPU is a popular hardware choice for parallel triangle

enumeration. Green et al. [34,33] provide an algorithm

for workload estimation and allocation to achieve bet-

ter balancing. TriCore [46] and TC-steam [47] present

a binary-search-based list intersection method for ef-

ficient and scalable triangle counting. Hu et al. [39]

propose a fine-grained workload distribution strategy.

Trust [69] proposed a hash-based intersection strategy

on GPU for triangle counting.

However, many previous works on GPU have over-

looked the dynamic graph scenario, despite it being a



Accelerating Triangle Enumeration on FPGA-CPU Heterogeneous Platforms 7

recently popular topic [30]. To support dynamic graph

analysis, Gunrock [23] introduces a GPU-friendly hash

table technique. Instead, researchers have focused on

dynamic graph storage on the GPU [53,32,16,87], en-

abling users to develop triangle enumeration algorithms.

Many researchers are studying graph computing sys-

tems on FPGAs or CPU-FPGA hybrid platforms. Some

focus on building a universal graph processing frame-

work [22,21,99,18,98,89]. For example, in ForeGraph

[22], graph partitioning and communication in the multi-

FPGA system are discussed. [21] presents a stream-

lined vertex-centric framework based on an interval-

shard structure. Other works aim at solving specific

graph problems such as BFS [95], shortest path [56],

and maximum matching [100]. However, few of these

works can be directly adapted to triangle enumeration,

and most suffer from performance loss when graphs be-

come large.

Researchers are studying graph computing systems

on FPGAs or CPU-FPGA hybrid platforms. Some are

focused on building a universal graph processing frame-

work [22,21,99,18,98,89]. For instance, ForeGraph [22]

discusses graph partitioning and communication in the

multi-FPGA system. FPGP [21] presents a streamlined

vertex-centric framework based on an interval-shard struc-

ture. Other works aim to solve specific graph problems,

such as breadth-first search [95], single-source short-

est path [56], and maximum matching [100]. However,

few works can be directly adapted to triangle enumera-

tion, and most experience performance loss when deal-

ing with large graphs.

To our knowledge, only one existing work has uti-

lized FPGA to solve the triangle enumeration problem

[48]. The forward algorithm [74] was implemented on

FPGA in this work. In this system, FPGA accelerators

retrieve a pair of neighbor lists from DRAM to BRAM

and perform a merge-based intersection. Parallelism is

achieved by launching multiple processing units (PEs).

Although this work is an early exploration of triangle

enumeration on FPGA, it lacks consideration of graph

metrics, particularly for large graphs. Furthermore, the

authors did not discuss how their system supports dy-

namic graphs.

2.5 Triangle enumeration in dynamic graphs

Most research on triangle enumeration in dynamic graphs

or graph streams [6,15,51,58,77,83] focuses on obtain-

ing an approximate triangle count. The main focus is

on designing edge or vertex sampling for more accurate

and faster triangle number estimation. Recent topics

in this field include edge duplication [77], sliding win-

dow [83], and estimation with bounded memory [31].

However, it is important to note that estimating the

number of triangles may not be sufficient for all appli-

cations [73]. Our proposed system can provide the exact

number or list of triangles, filling the research gap.

2.6 Data structure for dynamic graphs

Efficient data structures for dynamic graphs on various

hardware have been extensively studied. Typically, re-

searchers aim to adapt common static graph structures

to accommodate frequent graph updates without sacri-

ficing their advantages in accessing and scanning graph

data. Some works follow the idea of an adjacency list,

considering graph data as a collection of neighbor lists

so updates on different lists are independent. Thus, re-

searchers propose or adopt data structures that are effi-

cient in updating neighbor lists, such as hash tables [23,

3], sparse arrays [87,16,27], skip lists [28], and key-value

storage [19].

Fig. 5 CSR representation of the data graph in Fig.1.

There are also studies based the Compressed Sparse

Row (CSR) structure, which is commonly used for stor-

ing large graphs [46,23]. Fig. 5 shows an example of the

CSR structure, which consists of offset and edge lists.

The neighbor lists are concatenated into a large edge

list in the order of their vertex ID. An offset list in-

dicates the beginning position of neighbor lists in the

edge list by recording the prefix sum of the degree of

vertices in ID order. To find the neighbor list of ver-

tex v0 in CSR, we should read offset[0] and offset[1]

to determine the starting position and length of N(v0).

Adding a new CSR element requires moving elements

backward in its edge list, resulting in significant over-

head. Previous studies have suggested reserving empty

slots for future insertions and using block arrays [32,61,

101] or tree-like structures [57,75,102,68] to maintain

balance.

Utilizing Packed Memory Array(PMA [9]) for dy-

namic graph storage is a successful practice in recent

works[75,102,68]. PMA is designed for storing elements

serially while reserving empty slots for future insertion
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to facilitate fast updates. For an array of N entries,

PMA divides the whole array into fixed-length leaf seg-

ments. Then, PMA uses a self-balancing tree to make

sure that reserved slots are evenly distributed in leaf

segments. Non-leaf segments are defined as the integra-

tion of their descendant segments. After an insertion

or deletion, if the density of a leaf segment violates a

given range, PMA attempts to reallocate its elements to

its sibling(i.e., leaf segment with the same parent) seg-

ment. If its sibling segment does not have enough space,

PMA traces back to higher layers to include more seg-

ments.

3 System Overview

Fig. 6 presents an overview of our proposed TEAF (Triangle

Enumeration Acceleration system optimized for CPU-

FPGA heterogeneous platform). TEAF is designed to

count or list triangles in a data graph and comprises a

host system and a set of processing units (PUs) on an

FPGA. The host system, located on the CPU, is respon-

sible for offline data preprocessing and constructing the

graph data structure. It also launches the processing

units and allocates the workload. The computation or-

dered by the host is conducted by FPGA-based pro-

cessing units (PUs), which then write the results back

to the CPU via a PCIe interface. To enumerate the tri-

angles in a given data graph, TEAF follows a four-step

process: preprocess, data structure construction, work-

load allocation, and computation on the FPGA side.

3.1 Preprocess

The first step is to load the graph into main memory

for preprocessing. This involves vertex reordering, ver-

tex classification, and edge filtering. Each vertex is typi-

cally assigned a unique integer ID, and the distribution

of these IDs can impact the performance of triangle

enumeration [39]. Therefore, optimization may be nec-

essary, such as vertex reordering. In this case, we sort

the vertices by their degrees and use their ranks as IDs.

For vertices with the same degree, they are ranked by

their original IDs. This allows for the comparison of

two vertices’ degrees by their IDs and iteration of the

vertices in descending order of their degrees, which fa-

cilitates later computation. Following the reordering, all

vertices are partitioned into two groups based on their

degrees: heavy vertices and light vertices. Targeted data

structures and intersection methods are employed for

different types of vertices. As the vertices have already

been sorted by their degrees, a parameter Mh can be

Fig. 6 The TEAF Architecture

used to distinguish between the heavy and light ver-

tices. Mh is equal to the largest ID of the heavy ver-

tices. The selection of Mh affects the total workload,

so a greedy algorithm has been developed to search for

a good enough Mh in linear time. The details are dis-

cussed in Section 4. Following this, the neighbor lists are

filtered by the host, deleting neighbors with a smaller

ID. For the convenience of discussion, for an edge (u, v),

if deg(u) > deg(v), we say u is the source vertex of (u, v)

and v the destination vertex (i.e., (u, v) is an out-edge

of u and an in-edge of v. To avoid duplicate results in

triangle enumeration, it is effective to use this trick [74]

because a triangle can only be induced once by one of

its edges that connects the two vertices with a higher

degree.

3.2 Data structure construction

To adhere to the principle of divide-and-conquer, we uti-

lize distinct data layouts for heavy and light vertices.

These layouts are based on Compressed Sparse Row

[2](CSR). This structure allows for fetching a neighbor

list with only two random memory accesses and two

series of sequential ones. Such an access pattern is ben-

eficial for triangle enumeration, which requires repeated

reading of neighbor lists.

For light vertices, we directly use CSR for static

graphs and apply an update-friendly array called Packed
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Memory Array [9] for dynamic graphs. For heavy ver-

tices, as shown in Fig. 7(a), we build a cuckoo hash ta-

ble [67] for every heavy neighbor list and then organize

the neighbor hash tables as CSR. The idea is straight-

forward since we can simply replace the neighbor lists

with hash tables and recompute the offsets. A cuckoo

hash table is efficient for point lookup(i.e., searching for

a single element). It uses k hash functions to generate

k candidate slots(or buckets) for a to-be-inserted ele-

ment v. Then, it randomly selects one available slot to

insert v. If all candidate slots are full, a swap opera-

tion is triggered. This means that one of the elements

in these candidate buckets is moved to its other vacant

candidate slots to make space for v. If there are still

no available slots, the swap operation continues. This

guarantees that any element will remain in one of its

candidate buckets, ensuring constant search time (i.e.,

checking k candidate buckets) and enabling fast hash-

based intersection.

Fig. 7(b) gives an example of building a cuckoo hash

table from N(v0) = {1, 2, 3, 4}, where each element is

mapped to two candidate slots. Inserting the first three

elements needs no swap operation. However, to insert 4

whose candidate slots are all occupied, a randomly cho-

sen element 1 has to be evicted and moved to another

candidate slot.

In summary, cuckoo hash tables prioritize faster point

lookup over space consumption and update speed. On

one hand, to manage the memory consumption of hash

tables, we introduce an empirical parameter called the

target load factor (tlf). When constructing the hash

table h(N(vh)) for a heavy vertex (vh), we allocate

⌈ |N(vh)|
tlf×Bc

⌉ hash buckets for h(N(vh)), where tlf < 1.

On the other hand, one major issue with a cuckoo hash

table is that updates can be slow and may even fail,

particularly when the load factor increases, due to an

excess of swap operations. In Section 6, we will discuss

an improved solution for parallel updates for cuckoo

hash tables.

3.3 Workload allocation

With vertices classified into heavy and light, edges are

divided into three groups: edges connecting two light

vertices, two heavy vertices, and one light vertex with a

heavy vertex. The host scans all edges and prunes those

with conjoint vertices without valid neighbors. The re-

maining edges are taken as tasks and are stored as a

set of fixed-length task blocks. We have a customized

cache, including a typical LRU cache and a static buffer.

Therefore, when filling the task blocks, we collect the

edges with common conjoint vertices, particularly high-

(a) The data structure for the heavy neighbor lists in
Fig.1.

(b) Building h(N(v0))

Fig. 7 Data structure in TEAF. The light blue dash lines in-
dicate the candidate slots of an element.

degree ones, and group them into the same block to

increase the cache hit rate.

In our design, it is easy to identify edges that have

common conjoint vertices. For a graph G = (V,E), the

edges that connect a vertex v and its neighbors can be

expressed as {(v, ui)|ui ∈ V, (v, ui) ∈ E}. Referring to

the data graph in Fig. 1, we can see that there are four

edges {(v0, v1), (v0, v2), (v0, v3), (v0, v4)} connecting to

v0, which have a common conjoint vertex v0. It is im-

portant to note that the neighbor lists of the vertices

are stored, and for a vertex v, its neighbors are con-

nected to it by an edge. To clarify, the edges with v as

a common vertex can be easily identified by enumerat-

ing N(v).

3.4 FPGA processing

Once the graph data structure and task blocks are pre-

pared and sent to the FPGA off-chip memory, the host

can initiate the FPGA processing units to conduct par-

allel triangle enumeration. It is important to note that

the host does not need to be blocked and wait for the

FPGA processing to finish. Instead, the host can share a

small workload for better performance. The implemen-

tation of the processing units is introduced in Section
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5. The final results are written to off-chip memory and

then to the main memory.

The framework above addresses two critical issues

related to performance tuning. The task assignment

among the processing units on FPGAs is determined by

the partition strategy of the heavy and light vertices.

Therefore, we propose an analytic model to select the

best partition to minimize workload imbalance in Sec-

tion 4.2. Secondly, the PU design should achieve both

massive parallelism and an efficient memory access pat-

tern. Thus, we propose a pipeline strategy, a caching

mechanism, and a CPU-FPGA co-processing design to

enhance our performance as described in Section 5.3.

4 Structure-aware triangle enumeration

This section discusses the algorithm and parameter tun-

ing of our proposed system. Our triangle enumeration

method is structure-aware because we choose the most

appropriate intersection strategies based on the data

graph’s structure. Additionally, since the proposed sys-

tem is intended for a CPU-FPGA heterogeneous plat-

form, we consider the features of different hardware and

an algorithm’s behavior on CPUs and FPGAs to opti-

mize our design. TEAF enumerates triangles by iterat-

ing on edges and calculating the intersections between

the neighbor lists of an edge’s two conjoint vertices.

This method is space-saving and has good computa-

tional complexity. However, performing triangle enu-

meration on large and power-law-distributed graphs re-

mains challenging due to the expensive computational

cost of conducting the intersection. Our algorithmic de-

sign focuses on addressing this issue.

4.1 Algorithm

In contrast to previous heterogeneous solutions that im-

plement a one-size-fits-all intersection strategy [46,69,

36], TEAF applies different intersection methods based

on the sizes of the two intersecting neighbor lists. In our

problem, there are three kinds of intersection: one be-

tween two light neighbor lists, one between two heavy

neighbor lists, and one between light and heavy neigh-

bor lists. We use LLI (light-light intersection), HHI

(heavy-heavy intersection), and HLI (heavy-light inter-

section) for short in the later discussion.

For LLI, intersecting neighbor lists are both short

and a typical merge-based intersection turns out to be

suitable. Other methods either have higher complex-

ity (e.g. binary search) or heavier overhead of build-

ing auxiliary structure (e.g. hash-based search). Specif-

ically, we maintain two pointers to the neighbor lists

respectively and compare the elements they refer to.

If they are equal, a triangle is found and both pointers

are advanced together. Otherwise, we move forward the

pointer to the smaller elements by one step. Merging re-

quires sorted neighbor lists. However, since most of the

light neighbor lists are small (usually only hundreds or

tens of elements), sorting them is not very costly and

can be done offline. TEAF conducts multiple merging in

parallel to accomplish high parallelism. However, we do

not implement intra-intersection parallelism because it

takes logarithmic time to split the lists, which is not

worth especially for short lists. Based on the better lo-

cality in merge-based intersection [46], when the point-

ers move forward, it is likely that the next elements

are already present in the cache due to the continuous

storage of intersecting lists.

For HLI, a search-based solution appears promising

because we can search for every element in one inter-

secting list in the other without data dependency. This

reduces the burden of concurrent control. If the par-

allelism is sufficiently high, the impact of complexity

and overhead of search-based solutions can be reduced.

In addition, random memory access is a bottleneck for

search-based methods on the CPU, resulting in a lower

cache hit rate. However, FPGAs enable users to man-

age on-chip memory, which operates at a speed com-

parable to that of L2/L3 Cache on CPUs, with user-

defined logic. Therefore, the entire search indices (i.e.,

search trees or hash tables) or auxiliary structures can

be stored in on-chip memory to minimize memory ac-

cess to slow off-chip memory units.

Two types of search algorithms are available: binary
search and hash search. Hash search requires additional

time and space to build the hash table and may en-

counter hashing conflicts. Fortunately, the cuckoo hash

table is available for use.

Algorithm 1: N-way Cuckoo-hashing-based

Intersection for HLI
Input: light neighbor list NL(v) and hashed heavy

neighbor list NH(u), hash function
h1,h2...hn

Output: number of common element C
1 C ← 0;
2 foreach v′ ∈ NL(v) in parallel do
3 calculate h1(v′), h2(v′)...hn(v′);

4 foreach b ∈
⋃

i=1...n
NH(u)[hi(v′)] in parallel

do
5 if v′ ∈ b then C ← C + 1 ;
6 end

7 end
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A k-way cuckoo hash table typically maintains a

group of hash slots, or buckets, and k corresponding

hash functions. The hash functions map an element to k

slots, and the element is stored in one of them. If there

are no available slots when inserting a new element,

one of the elements already in these slots is chosen and

relocated to another one among its other n − 1 hash

slots. This ensures that a search will scan k buckets at

most and end in constant time.

TEAF builds Mh cuckoo hash tables for each heavy

neighbor list and compacts them as CSR in the prepro-

cessing phase. The PUs then perform a parallel search

in the cuckoo hash table to obtain the HLI results. Al-

gorithm 1 illustrates this process using a k-way cuckoo

hash table. Note that the search for different vertices

and the scanning of the k potential buckets are per-

formed in parallel.

Similarly, in terms of HHI, the merge-based solution

is less friendly towards fine-grained parallelism, while

the hash-based search can utilize the pre-built hash ta-

ble to achieve high parallelism. Since the time cost of

parallel search in the cuckoo hash table depends on the

bucket size rather than the list size, TEAF selects the el-

ements in the smaller hash table as search targets. The

challenge lies in iterating through a hash table instead

of a sorted list. Empty slots in a hash table can lead

to performance loss. However, a cuckoo hash table can

run at a load factor of around 0.9 [26] by allocating

an appropriate number of hash slots or buckets. There-

fore, the overhead of empty positions is acceptable in

our system.

The above algorithm employs suitable strategies for

various list intersection scenarios. However, it is impor-

tant to consider the hardware-related design and opti-

mization of our system, which will be discussed in the

following sections.

4.2 Optimizing Mh

To enhance the performance of our proposed system, it

is crucial to determine an optimal boundary Mh that

distinguishes heavy and light vertices. This boundary

directly affects the allocation of the three workloads:

LLI, HLI, and HHI. Workload allocation is significant

since TEAF concurrently deals with three workloads, and

the slowest workload dominates its final running time.

To quantify Mh’s influence, we need to design a model

that estimates TEAF’s performance with a given Mh.

However, we face two challenges with this requirement:

First, we have developed specific strategies for three

different workloads that accommodate the storage struc-

tures for the neighbor lists of heavy and light vertices.

Cuckoo hash tables are utilized for the neighbor lists

of heavy vertices, while sorted arrays are maintained

for light vertices. As a result, the workloads exhibit

various behaviors. For LLI, two sorted neighbor lists

are scanned, the elements are compared, and the pro-

cess proceeds according to the comparison result. HLI

searches for elements in a sorted neighbor list within

cuckoo hash tables. For HHI, we enumerate a hash ta-

ble to find valid search targets and check their existence

in the other hash table. Therefore, workloads should be

estimated based on their respective behaviors.

Second, since our system is running on a CPU-FPGA

heterogeneous platform, it is important to share the

three workloads between the CPU and the FPGA to

avoid wastage of computing power. However, workload

estimation can be challenging due to the completely dif-

ferent architectures of FPGAs and CPUs. CPUs have

sophisticated pipelines designed to execute instructions

from a specific Instruction Set. Every program is trans-

lated into a series of instructions. However, an FPGA

kernel is implemented using lookup tables that can sim-

ulate any user-defined logic on a hardware level with-

out the overhead of fetching and decoding instructions.

A CPU program typically runs at a higher frequency

than a typical FPGA kernel, but an FPGA kernel can

achieve higher parallelism. We can not overlook the dif-

ference in hardware when estimating and allocating the

workloads.

To address the challenges, we begin by breaking

down the running time into two components: the num-

ber of operations and the latency of each operation. We

estimate these factors separately and then approximate

the running time by multiplying them. Regarding the

first challenge, we observe that although the algorithms

for processing LLI, HLI, and HHI differ in behavior,

they perform the same type of operation: pairwise com-

parison. The distinction lies in the selection of elements

to compare and the order in which the neighbor lists

are accessed. Therefore, we can approximate the total

number of comparisons for the three workloads based

on their behavior. We represent the estimated compar-

ison counts for LLI, HLI, and HHI as WLL, WHL, and

WHH .

For the second challenge, we first determine the ap-

propriate hardware to assign different workloads. Our

observation suggests that merging two sorted arrays is

better suited for the cache mechanism of a CPU be-

cause it scans the arrays serially. In contrast, hash-

based search introduces random memory access. Be-

sides, hash-based search can achieve higher parallelism

thanks to the independence among multiple searches,

but parallel merging requires an extra process to en-

sure correctness. In conclusion, a CPU is suitable for
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LLI, while an FPGA is better equipped to handle HLI

and HHI. We estimated the latency of pairwise compar-

ison on an FPGA and a CPU by conducting a pairwise

comparison between two randomly chosen elements one

billion times and recording the average latency. The es-

timation is denoted as LC and LF . Additionally, we

considered parallelism and found that the growth pace

of performance is not linear but instead gets slower as

the number of concurrent threads or PUs increases.

For instance, increasing the number of threads from

one to four may result in a speedup of 2.8x. However,

if the number of threads is further increased to eight,

the speedup may decrease to 4.8x instead of 5.6x. To

avoid the time-consuming task of testing the speedup

trend for every data graph, we use sampling to reduce

the data scale.3 The speedup of systems with differ-

ent numbers of threads or processing units (PUs) is

tested against the serial implementation on the sam-

pled graph. The resulting data points are then fitted

using a polynomial curve. The polynomial function ob-

tained is denoted as fc(nc) for a CPU and ff (nf ) for

an FPGA, where nc represents the number of threads

and nf represents the number of PUs.

As previously stated, our objective is to minimize

the running time, which is equivalent to minimizing the

time of the slowest workload. Now that we have esti-

mated the number of comparisons for WLL, WHL, and

WHH , as well as the comparison latency of CPUs and

FPGAs, LC and LF , and the parallel speedup, fc(nc)

and ff (nf ), we can express our objective as follows:

argmin
Mh

max(
LC

fc(nc)
WLL,

LF

ff (nf )
WHL,

LF

ff (nf )
WHH)(1)

The calculation of WLL, WHL, and WHH is depen-

dent on the intersection strategies employed. For LLI,

a merge-based method is utilized, which involves main-

taining two pointers to the neighbor lists. At each iter-

ation, the pointed elements are compared, and at least

one of the pointers is increased. This procedure termi-

nates when one of the pointers reaches the end of the

list. Therefore, the average of the sizes of the two in-

tersecting lists will provide a suitable approximation.

The system applies cuckoo-hash-based intersections for

HLI and HHI. It searches for each element from one

list within the other, stored as a cuckoo hash table that

guarantees O(1) time for hash search. Therefore, work-

load can be measured as:

WLL =
∑

(u,v)∈ELL

N(u) +N(v)

2
(2)

3 We use a sampling algorithm in [30] that ensures the sam-
pled subgraph has a similar distribution with the original
graph

WHL =
∑

(u,v)∈EHL

|N(v)|Bc (3)

WHH =
∑

(u,v)∈EHL

|N(u)|
tlf

Bc (4)

where ELL, EHL and EHH represent three types of edges,

while tlf denotes the load factor of the cuckoo-hashed

neighbor lists, andBc is the size of hash buckets. It is as-

sumed, without loss of generality, that |N(u)| > |N(v)|.
The workloads of merge-based and cuckoo-hash-based

intersections are measured by the number of pairwise

comparisons. It is important to note that we consider

the load factor in WHH because empty slots will idle

the hash search modules in our design. A fixed tlf of

0.9 is used, which performs best in our experiments.

To achieve a global optimal using this cost model,

one could enumerate every possible Mh. However, this

brute solution has a time complexity of O(|V ||E|) due
to the O(|E|) time cost of calculating the workload,

making it too slow. To address this issue, we have de-

veloped a heuristic approximation algorithm, as demon-

strated in Algorithm 2. At each step, the algorithm

attempts to designate the light vertex with the high-

est current degree as a heavy vertex (Line 4). It then

computes the alterations in the workload estimation

(Line 5) and terminates if no further reduction in W

is achieved (Lines 3 and 6).

Algorithm 2: Optimizing Mh

Input: Sorted vertex list V = {v1, v2...v|V |}
Output: The largest heavy vertex ID Mh

1 Mh ← 0;
2 calculate exact WLL,WHL,WHH ;
3 while true do
4 Mh ←Mh + 1;
5 Update WHH ,WHL,WLL with Algorithm 3;
6 if ∆W < 0 then break ;

7 end

The key to Algorithm 2 is to estimate the changes

in WLL, WHL, and WHH . Algorithm 3 describes our

solution in detail. Note that we only keep vertices with

larger IDs in a neighbor list. When a light vertex v turns

into a heavy one, all light-light edges connected to v

are transferred to heavy-light edges(Lines 3-4). Mean-

while, degi(v) heavy-light edges become heavy-heavy

ones(Line 4-5), where degi(v) indicates the number of

heavy vertices that share an edge with v because we

suppose the direction of an edge to go from high-degree

vertices to low-degree vertices. degi(v) can be recorded

in the edge filtering phase. The only unknown values

here are the sizes of neighbor lists of light vertices con-

nected with v. Since the sizes of light neighbor lists are
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all small, we considered them uniformly distributed. We

can approximate their sizes with the median of light

neighbor lists’ sizes(Line 2).

Algorithm 3: Estimation of workload changes

Input: Sorted vertex list V = {v1, v2...v|V |},
workload estimation WHL,WHL,WHL,
boundary vertex vMh

Output: the changes in workload estimation ∆W ,
updated WHL,WHL,WHL

1 Wold ← max(α1WHL, α2WHL, α3WHL);
2 mid = ⌈(Mh + |V |)/2⌉;
3 WLL ←WLL −

|N(vMh
)|

2
(|N(vMh

)|+ |N(vmid)|);
4 WHL ←WHL+Bc|N(vMh

)|(|N(vmid)|−degi(vMh
));

5 WHH ←WHH + Bc

lr
|N(vMh

)|degi(vMh
);

6 Wnew ← max(α1WHL, α2WHL, α3WHL);
7 ∆W ←Wold −Wnew;

5 Processing unit design

In this section, we introduce the processing unit(PU)

design for the three types of intersection: the light-

light intersection(LLI), heavy-light intersection(HLI),

and heavy-heavy intersection(HHI). We also analyze

the bottleneck and propose optimization techniques,

including pipelining, caching, and co-processing of the

CPU and FPGA.

5.1 Basic workflow

All PUs share a similar basic workflow as shown in Fig.

8(a), which consists of four modules: Task Loader, CSR

Reader, Intersection Module, and Result Writer. These

modules operate in a serial fashion. First, the Task

Loader fetches a task block from DRAM to BRAM with

a burst read. Then, the CSR Reader moves the required

neighbor lists from CSR in off-chip memory to on-chip

buffers. Next, the Intersection Module is started. Each

intersection module contains a set of working submod-

ules that perform the actual intersection computation.

For LLI, one submodule merges two neighbor lists. For

HLI and HHI, a submodule performs a hash-based in-

tersection on a cuckoo-hashed neighbor list. Finally, the

result writer collects the output from the intersection

module and sends it back to the host.

There are two major problems with the basic work-

flow design. First, parallelism relies on running multiple

PUs, but the modules within a PU run serially. Other

modules remain idle while one is working, wasting a

lot of computing resources. Second, memory requests

(a) PUs with Basic workflow

(b) PUs with Optimized workflow

Fig. 8 The organization of Processing Units

can face severe contention when multiple CSR read-

ers access CSR in off-chip memory. Therefore, we de-

velop two targeted optimizations: workflow pipelining

and caching.

5.2 Pipelining

In the basic workflow, the modules process a task block

in a row, without pushing intermediate results to the

next stage as soon as they’re generated, so the fol-

lowing modules must wait. Although we can improve

throughput by increasing the number of parallel mod-

ules, logic resources, and memory ports are limited.

However, thanks to the dataflow optimization technique

mentioned in Section 2.2, we can build a pipeline with

FIFO IO streams to concatenate the modules.

As shown in Fig. 8(b), the Task Loader continuously

fetches edges from the off-chip memory and pushes them

into the FIFO stream to the CSR readers in the opti-

mized PU. When the CSR reader finishes reading the

required neighbor lists into the on-chip buffer, it sends

their location to the Intersection Module via a FIFO

stream. Upon receiving the data, the intersection im-

mediately begins and the results flow to the Result

Writer for later transfer. This greatly reduces the idle
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time of each module. A module now continues its job

when the result of the previous task is transferred to the

FIFO stream. In addition, our design uses the on-chip

BRAM to build shared buffers between the CSR reader

and the intersection module, thus avoiding unnecessary

data transfer. Note that the pipelined PU consists of

hardware-level logic modules without the overhead of

fetching and decoding instructions that is unavoidable

on CPU and GPU.

According to our experiments, the key to improving

the pipeline is to speed up the slowest module, which

often turns out to be the CSR reader. There are two

main reasons for its inefficiency. First, most of the off-

chip memory transactions occur in this module to fetch

the required neighbor lists. Although they are stored

sequentially, and the FPGA’s burst read feature can

speed up such continuous read requests, they are still

much slower than the on-chip memory operation be-

cause of the different storage media. Second, there are

many CSR readers initiating read requests, but the IO

ports of the off-chip memory (DRAM) are limited, so

the concurrent IO bandwidth is also limited. A com-

mon solution to this problem is to reuse data as much

as possible with caching techniques such as LRU (Least

Recently Used Cache) and LFU (Least Frequently Used

Cache). However, the user-controllable on-chip memory

units of FPGAs prompt us to design a graph-structure-

aware caching mechanism.

5.3 Graph-structure-aware Caching

Caching is an important way to reduce the memory cost

of the system. It stores frequently used data in faster

memory units. Fortunately, FPGAs provide flexible on-

chip memory that allows us to design customized caches

for a specific application. Our solution is inspired by an

idea from [90] that different memory management ben-

efits graph mining performance. Similar to graph min-

ing, triangle enumeration also requires repeated reading

of neighbor lists. Unlike traditional caching techniques,

we consider the metric of the data graph to exploit the

data locality in triangle enumeration.

We call ours a graph-structure-aware caching strat-

egy. First, the static cache (S cache) maintains a fixed

set of neighbor lists of frequently accessed vertices, so

it is read-only during execution; the dynamic cache (D

cache) is a typical LRU that is updated as we count

triangles. The CSR readers first access the S cache and

the D cache concurrently, and our design ensures that

their contents do not overlap. Only if both caches miss,

off-chip memory is accessed and the D cache is updated.

Fig.8(b) illustrates the memory hierarchies with an

example of 3 PUs. The S cache is shared to reduce con-

currency control overhead because it is read-only dur-

ing execution, and the D cache is private for each PU

to reduce concurrency control overhead. Both S Cache

and D Cache are resident in on-chip memory, so the

available on-chip memory limits their size. On a Xilinx

Alevo U200 card used in the experiments, we allocate

4MB for the S cache and 256KB for each D cache. If the

graph is larger, with more than 100M edges, we expand

the S cache to 16MB and the D cache to 512KB.

The crucial point here is to decide which vertices

are frequent. To estimate the memory access cost M(v)

of vertex v, we focus on the amount of data transfer it

could bring and propose the following equation:

M(v) = (|N(v)|+ degi(v))× |N(v)| (5)

The value of M(v) is dominated by |N(v)|, which is

stored in the CSR structure. In practice, we iterate over

the vertices in ID order, which is sorted by degree in

descending order, and add them to the S cache until it’s

full. In this way, we ensure that the vertices in the cache

have consecutive IDs, so that the CSR reader can check

the existence of a vertex by comparing vertex IDs.

5.4 CPU-FPGA Co-processing

Another important way to improve performance is to

use more computing resources. In the original TEAF de-

sign, after the processing units are started, the host on

the CPU waits for the PUs to finish. The CPU side can

share some tasks instead of sitting idle.

The key is to decide on the workload-sharing strat-

egy. In TEAF, we adopt merge-based and cuckoo-hash-

based intersections. Comparing these two intersection

strategies, merging provides CPU-friendly sequential mem-

ory access, while cuckoo hashing introduces random

access. On FPGAs, we can store the neighbor list on

BRAM with higher random access bandwidth, but not

on the CPU. Moreover, the cuckoo hash-based inter-

section can achieve higher parallelism within a single

task. Therefore, we can conclude that merging is bet-

ter suited to the CPU while hashing is more friendly to

FPGA-based acceleration, so we assign the LLI work-

load to the CPU host. Also, we can still trust our algo-

rithm to get Mh by modifying the α parameter.

Fig. 9 shows the benefits of CPU-FPGA co-processing.

The runtime of preprocesses decreases because the sys-

tem now sends fewer data and task blocks to the FPGA.

Then, the LLI computation occupies the idle time be-

fore the co-processing is applied. With more logic and

memory resources saved, TEAF can start more PUs for

HLI and HHI. As for LLI, we can directly adopt ex-

isting CPU-based algorithms for fast list intersection.
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Fig. 9 Timeline of TEAF before and after CPU-FPGA co-
processing

Therefore, our design can reduce the running time on

both CPU and FPGA sides.

6 Dynamic graph support

There’s a research gap on exact triangle enumeration

for dynamic graphs on heterogeneous platforms. Cur-

rent State-of-the-Art solutions focus more on triangle

enumeration for static graph [69,39,46]. However, if the

graph is static, spending so much effort to boost its per-

formance seems less meaningful and interesting. After

all, we only need to calculate once. Besides, recent re-

search on triangle enumeration with graph updates fo-

cuses more on approximate algorithms and CPU-only

environments. Therefore, we design TEAF to support

both efficient triangle enumeration and fast graph up-

dates to fill the research gaps. As mentioned in Section

2, the key to efficient dynamic triangle counting is to

design a graph data storage technique for the neighbor

lists and guarantee fast scan and update throughput.

Thus, this section will discuss how TEAF stores a dy-

namic graph and handles batch updates.

6.1 Dynamic Graph Storage

The widely-used CSR structure might not be a good

choice for supporting graph updates. A typical CSR

concatenates the neighbor lists and stores them consec-

utively. Hence, inserting an edge requires moving lots of

data to maintain the structure. In the proposed TEAF,

we hold the light neighbor lists on the CPU side and

keep the heavy neighbor lists and light ones connected

with a heavy vertex on the FPGA side. Light neighbor

lists are sorted lists, and heavy neighbor lists are stored

as cuckoo hash tables. To the best of our knowledge,

Packed Memory Array(PMA) shows good performance

in maintaining dynamic sorted lists on both CPU [10,

9] and GPU [75]. The basic idea of PMA is preserv-

ing space for the incoming insertion and managing the

space with a balanced binary tree. Therefore, we di-

rectly adopt PMA to manage the light neighbor lists.

The heavy neighbor lists are maintained as cuckoo

hash tables. Luckily, hash tables are naturally more

friendly to insertion and deletion than sorted lists. There-

fore, we still use cuckoo hash tables to keep the dynamic

heavy neighbor lists. In other words, the data structure

of TEAF we proposed for triangle enumeration also sup-

ports efficient graph updates. The deletion of an edge

from a cuckoo-hashed neighbor list is easy with a lazy

policy. We can search for the neighbor to be deleted

and mark it as invalid. However, recalling the insertion

example in Fig 7(b), an insertion may cause numer-

ous rounds of element relocation when the load factor

is high. A possible solution is allocating more space to

each cuckoo hash table to lower the load factor, but it

may lead to an out-of-memory problem for large data

graphs. Alternatively, we adopt the two-phase insertion

strategy proposed in MemC3 [26], a popular Key-Value

storage solution, and improve it for the FPGA hard-

ware.

(a) Finding the cuckoo path

(b) Counter-free update

Fig. 10 FPGA-friendly insertion for cuckoo tables

6.2 FPGA-friendly Two-phase Insertion

Our improvement focuses on better updates. When in-

serting an element into a cuckoo hash table, the system

keeps looking for a vacant position and swapping the el-

ements. The two-phase insertion strategy separates the

location detecting and data moving into two phases. It

first searches for an available position without moving

the elements. As shown in Fig 10(a), to insert a new ele-

ment 5 into N(0), the system tries to move the element
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at positions 0,6, and 3 successively and finally discov-

ers an empty position 5. Such a search path is named a

cuckoo path. With the cuckoo path, the system moves

the element in reverse order. The system first swaps el-

ements in positions 3 and 5, swaps those in positions

6 and 3, exchanges elements in positions 6 and 3, and

finally writes the new element into position 0.

In the original design of the Two-phase Insertion, we

should keep a version counter for every element to im-

plement optimistic locking. However, these counters re-

quire extra memory cost on FPGA. Therefore, we pro-

pose a counter-free updating strategy demonstrated in

Fig 10(b). Generally speaking, it is a multi-round up-

date. We first generate all cuckoo paths in parallel at

each round and store them on BRAM. Then, we start

from the end of every path and check for conflicts. We

postpone the execution of the shorter conflicting cuckoo

path to the next round. In this way, we sacrifice certain

parallelism to avoid locks and version counters. Since

we can store the hash tables on BRAM, its fast IO

bandwidth can somewhat amend the parallelism loss.

Fig 10(b) gives a running example of the data mov-

ing phase. Three insertions are required, and the system

generates three cuckoo paths in parallel. Then, it starts

the conflict check in reverse order of the cuckoo path

search phase. In our example, a conflict is detected be-

tween two paths that try to fill position 5 with elements

from different locations. The path 1← 7← 5 is delayed

to the next round because it’s shorter.

7 Experiment

7.1 Experimental Setup

The experiments were conducted on Linux servers, each

with sufficient main memory to store the entire graph

data. Our FPGA PUs are implemented on a Xilinx

Alevo-U200 FPGA board, which has 64GB of DRAM

and 35MB of on-chip memory (7MB of BRAM and

28MB of URAM). The PUs are all implemented using

the Xilinx Vitis Development Kit4. The performance

evaluation implementation consists of 12 PUs. We em-

ploy 12 PUs, although more PUs can be used because

we found that latency becomes unstable on large graphs.

Our GPU-based systems are tested using Nvidia V100

and CUDA 11.3 to compile the GPU projects. To eval-

uate the CPU-based systems, we use two Intel XEON

Gold 6326 CPUs. A default target load factor of 0.9 is

applied. The S cache size is set to 4MB for small graphs

(RE, FN, PA, LJ, KR18) and 16MB for large graphs

4 https://www.xilinx.com/products/design-
tools/vitis.html

(KR21, Orkut, TW). The D cache size for each PU is

256KB for small graphs and 512KB for large graphs.

Table 2 Details of Datasets

dataset |V | |E| triangles typea

roadNet(RN) 1.9M 5.5M 120,676 r
flickr(FE) 0.1M 4.6M 107,981,213 r
patent(PA) 6M 17M 7,515,023 r
com-lj(LJ) 4M 34M 177,820,130 r
kron18(KR18) 3M 25M 281,814,846 s
kron21(KR21) 12M 201M 627,584,181 s
orkut(OK) 3M 117M 1,765,053,740 r
twitter(TW) 62M 1.5B 34,824,916,864 r
a Type denote whether the graph data is real-world(r) or
synthetic(s)

Our datasets are obtained from SNAP5 and HPEC

graph challenge6. The selected datasets are frequently

used in previous work[46,39,40,48]. They include both

real-world and synthetic datasets. The number of edges

ranges from millions to billions to assess the scalability

of our system. Table 2 provides further information on

our datasets. It is important to note that while we com-

pare the overall performance of various systems with

each dataset, we only employ PA, LJ, KR18, KR21,

and OK for other tests. RN and FE were excluded due

to their small size, as most of our optimization designs

are intended for larger graphs. TW is omitted except

for the scalability evaluation because some compared

systems cannot handle a billion-scale graph.

For the baseline, we implement the CPU-only and

parallel version of TEAF7, denoted as TEAF CPU. It uses

the same data structure and intersection method with

TEAF. Another baseline is a parallel forward algorithm

using the merge-based intersection. Both baselines are

compiled with O3 optimization. We also compare TEAF

with previous CPU, FPGA, and GPU solutions, as dis-

played in Table 3. All of the compared methods are

written in C++ and CUDA. Among them, LOTUS CPU

and Huang FPGA are implemented by ourselves because

we can’t find any available public codes. We obtain

the reproduced code of Tricore GPU from other re-

searchers and use the open-source version of Rapid CPU,

Trust GPU, and Gunrock GPU. Apart from comparing

TEAF with other systems, we evaluate our list intersec-

tion strategy by testing it against the merging only,

binary-search only, and a bitmap-based method pro-

posed in [71], which is the best list intersection imple-

mentation on FPGA we can find. Moreover, we compare

our update technique with those from MemC3 [26] and

5 http://snap.stanford.edu/data/
6 https://graphchallenge.mit.edu/data-sets
7 https://github.com/pkumod/TEAF
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[97]. To prove the advantage we mentioned in Section

2.3.1, we include the evaluation of updating the com-

pressed bitmap proposed in [36].

Table 3 Compared systems and notations

Notation Method Description
FW CPU Parallel Forward algorithm [74]
TEAF CPU TEAF implemented on CPU
LOTUS CPU SOTA CPU-based solution[25]
Rapid CPU SOTA solution [79] for subgraph matching
Huang FPGA Huang’s work [48] on FPGA
Tricore GPU Uses binary-search based intersection [46]
Trust GPU Uses hashing-based intersection [69]
Gunrock GPU A widely-used graph framework [23]

7.2 Comparison of preprocessing time

Before going to performance comparison, we first dis-

cuss the preprocessing time of the compared systems.

All compared systems require various preprocessing steps

including sorting the neighbor lists, building particular

data structures, constructing auxiliary indices, and re-

ordering the vertices. The time for preprocessing is not

included in the running time in the following sections.

Table 4 Preprocessing time in ms

data Sort&CSR* Lotus Tricore Trust TEAF
PA 41 63 49 45 47
LJ 103 174 151 143 165
KR18 394 475 486 502 432
KR21 1611 2327 2399 2001 2104
OK 592 1087 853 728 731
TW 8264 11775 12534 13463 14872
* Sorting the neighbor lists and building a CSR, as required
by FW CPU, Rapid CPU, Huang FPGA, and Gunrock CPU.

Table 4 presents the preprocessing time for TEAF and

the compared systems. The preprocessing procedure of

FW CPU, Rapid CPU, Huang FPGA, and Gunrock CPU is

the same: sorting the neighbor lists and constructing a

CSR.We denote these operations as Sort&CSR in Table

4. TEAF takes 1.23x longer to finish preprocessing than

Sort&CSR, and is faster than LOTUS CPU in 5 out of 6

datasets. The preprocessing of TEAF is efficient because

our design avoids sorting long neighbor lists, and adopts

optimized parallel updates to build cuckoo hash tables.

After preprocessing, different data structures are

built and stored on various devices (CPUs, GPUs, or

FPGAs). Since we use hash tables for heavy neighbor

lists, chances are that the memory consumption will

increase. Therefore, we compare the memory usage af-

ter the construction in Table 5. Compared with a typ-

ical CSR, the data structure of TEAF consumes more

memory of 1.18x. The space consumption of TEAF is

minor because we set a target load factor of 0.9. We

believe such memory overhead is worthy because this

data structure enables TEAF to support fast intersec-

tion and update at the same time.

Table 5 Space consumption of data structures in MBs

dataset CSR TEAF v.s. CSR
LJ 152.4 188.4 1.23x
KR21 852.7 957.1 1.12x
OK 481.2 582.8 1.21x
TW 6248.9 7214.7 1.15x
avg. - - 1.18x

7.3 Comparison with baselines and competitive

methods

This section analyzes the performance improvement of

TEAF over baselines and previous systems on CPU, FPGA,

and GPU. We compare the runtime of CPU-based and

FPGA-based methods. Regarding GPU-based methods,

we discuss the absolute and energy-averaged through-

put. GPUs are powerful in parallelism but consume a

large amount of energy, while FPGAs achieve higher

throughput with less power. Furthermore, we report the

resource usage and frequency of FPGA-based systems.

By default, performance is calculated as the average

of ten runs. Although the methods compared in this

subsection are intended for static graphs, we report the

performance of TEAF using the proposed data storage

for dynamic graphs, including PMA and cuckoo-hashed

neighbor lists.

Fig. 11 demonstrates that TEAF outperforms all other

systems on CPUs and FPGAs in terms of end-to-end

runtime, including workload allocation, triangle enu-

meration execution, and cross-device data transporta-

tion. It is important to note that the loading time for

large graphs into main memory, which can be quite

time-consuming, was excluded from end-to-end runtime

for all compared systems.

Compared to the baselines, TEAF achieves an av-

erage speedup of 2.48x against TEAF CPU (from 1.96x

to 3.07x). The performance gap is even more signif-

icant between TEAF and FW CPU, ranging from 4.56x

to 6.36x. Our optimizations on the intersection strat-

egy, such as cuckoo hashing, can also be applied to

CPUs to boost TEAF CPU. Additionally, we found that

the previous State-of-the-Art solution on FPGA out-

performs FW CPU but is outperformed by TEAF CPU and
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Fig. 11 TEAF v.s. CPU and FPGA solutions in running time

LOTUS CPU. The running frequency of an FPGA is usu-

ally much lower than that of a state-of-the-art CPU.

If massive parallelism and efficient memory access pat-

terns cannot be achieved, a hybrid solution may be infe-

rior to a CPU-only approach. However, TEAF leverages

the potential of FPGAs as co-processors for CPUs and

therefore outperforms all CPU-only baselines.

Table 6 Resource utilization of FPGA-based methods with
the best performance

Method LUT Register BRAM Frequency
TEAF 36.40% 17.58% 61.09% 255MHz
Huang 28.17% 12.94% 53.72% 241MHz

Compared to FPGA-based systems, TEAF is up to

6.14x faster than Huang FPGA, and 4.47x faster on aver-

age. Huang FPGA has more difficulty dealing with larger

graphs, such as TW and OK, due to its merge-based

intersection design struggling with huge neighbor lists.

In contrast, TEAF utilizes an efficient CPU-FPGA co-

processing and caching mechanism to save a signifi-

cant amount of time-consuming off-chip data transfer.

In addition, we utilize the cuckoo-hash-based intersec-

tion method, which is better suited for intersecting large

neighbor lists and achieving high levels of parallelism.

Once the hash table is constructed, the search complex-

ity for an element becomes independent of the list size.

Additionally, the search operations for different targets

are completely independent.

Apart from evaluating the running time, we also

analyze the resource usage and implemented frequency

of the FPGA-based methods. For Huang FPGA, we use

the data from an implementation of our own because

the original code is not open-source, and the required

data were not reported in [48]. As shown in Table 6,

both TEAF and Huang FPGA are mainly bounded by the

size of BRAM because they load the intersecting neigh-

bor lists to on-chip memory. However, TEAF makes bet-

ter use of BRAM by designing customized caches for

neighbor lists. This accounts for the increase in LUT

and BRAM utilization. Besides, the achieved frequency

of TEAF is higher because Huang FPGA is influenced by

more I/O conjunction.

(a) Absolute throughput

(b) Energy-averaged throughput

Fig. 12 Absolute and energy-averaged throughput v.s. GPU
solutions

As for CPU-based systems, LOTUS CPU is an up-to-

date system optimized for CPU-only systems and ex-

ploits targeted triangle enumeration strategies for dif-

ferent vertices. However, TEAF still has a superiority

of 1.71x on average against LOTUS CPU. Besides, TEAF

shows more advantages on graphs with higher skewness,

thanks to massively parallel FPGA-based processing

units carrying the hash-based intersection. In fact, with

our CPU-FPGA co-processing mechanism, the perfor-

mance optimization techniques on CPU and FPGA are

orthogonal. We can adopt any CPU-optimized solution

to handle the LLI workload. However, for fairness, we

conduct parallel merge on the CPU side in our experi-

ments.
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Fig 12 illustrates the comparison with GPU systems

regarding absolute and energy-averaged throughput by

Edges Processed Per Millisecond (EPMS). We can cal-

culate this metric by dividing the number of edges by

the product of execution time (ms). The power con-

sumption of the GPU is attained from the Nvidia Sys-

tem management interface (nvidia-smi) provided by its

manufacturer. The power consumption of FPGA comes

from the Vitis design reports. When running the eval-

uation of power efficiency, we only consider the power

consumption of co-processors (the FPGA and GPU)

for two reasons. First, though we can attain the over-

all power consumption of the CPU or memory, it is

not easy to decide what percentage of the power con-

sumption is from the evaluated program, because many

processes are running on the server. Second, we ensure

the workloads assigned to the FPGA or GPU kernel are

the same. Specifically, we slightly modify the workload

assignment logic of the GPU-based solutions, instruct-

ing them to count triangles derived from HHI and HLI

only. In this way, we make sure that our comparison is

fair.

FPGA-based systems may not be faster than GPU-

based SOTA regarding absolute performance. However,

it still achieves higher throughput than Gunrock GPU.

For energy-averaged throughput, TEAF prevails the GPU

systems on all datasets, with an average advantage of

1.51x against Trust GPU and 2.22x against Tricore GPU.

We believe the comparison of throughput per watt in

our experiments is worthwhile. Reducing power con-

sumption is drawing increasing attention, especially from

the industry.

7.4 Evaluation on system design choices

This section compares TEAF under different settings to

prove the effectiveness of our system design choices. We

focus on the effect of intersection strategies and the

vertex classification algorithm.

7.4.1 Impact of the intersection strategy.

The results in Fig 13 illustrate that our intersection

strategy is better for CPU-FPGA heterogeneous plat-

forms. We compare the runtime of the processing units

using different intersection algorithms for HHI and HLI.

The runtime of TEAF includes the time for building

cuckoo hash tables. We omit the LLI experiments since

we moved this workload to the CPU.

Compared with the baselines, for HLI, TEAF out-

performs the system using merely merging by 72% on

average and binary search by 39%. For HHI, our lead

remains 59% against merging and 52% against binary

(a) Various strategies for HLI

(b) Various strategies for HHI

Fig. 13 Runtime evaluation for intersection strategies

search. Our advantage is slightly lower because empty

elements in the cuckoo hash table do affect our perfor-

mance to an acceptable extent. The gap between merg-

ing and binary search is narrower on HHI than on HLI

because merging is more suitable for intersecting two

lists of similar sizes. However, the large lists still limit

its parallelism. Merging features sequential memory ac-

cess pattern and linear complexity, making it suitable

for dealing with LLI on CPU.

Compared with the list intersection solution on FPGA

by Qu et al., TEAF is 1.46x faster for HLI and 1.23x for

HHI. Qu’s solution first converts the neighbor list into

a bitmap with |V | bits and partitions the bitmap into

fixed-sized blocks. The blocks where all bits are zero

are removed. The remaining partitions and an ID as

identification are stored as a CSR. The parallelism of

Qu’s solution is not as high as ours because only inter-

intersection parallelism is implemented. Worse, since

the compressed bitmaps are stored in a CSR, it’s costly

to insert a new edge when it does not belong to any ex-

isting partitions. By contrast, our design supports par-

allelism between and within different intersection tasks.

Moreover, our solution requires less preprocessing time

than our competitor.

7.4.2 Effect of optimization methods for Mh.

In Section 4, we mention that the selection ofMh signifi-

cantly influences system performance. Fig 14(b) demon-

strates its effect. We gradually increase the value of Mh

and record the end-to-end runtime of TEAF on three of

our datasets. KR18 and OK are more irregular, and

the Mh reaches the optimal earlier. The x-coordinate
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in Fig 14(b) is the ratio between |V | and Mh. At first,

Mh is a small number. When it increases, at first, the

runtime decreases because more long neighbor lists are

stored as cuckoo hash tables, and the workload is more

balanced. However, when Mh continues growing, many

short neighbor lists are also considered heavy. It causes

a severe imbalanced workload. What’s more, we notice

that on different datasets, the best choice of Mh also

varies, telling us it is necessary to use an adjustable

value of Mh attained by data-driven algorithms instead

of a fixed value.

(a) Brute search v.s. our algorithm. We use the brute search as
a baseline and calculate the ratio of speedup of preprocessing
time or the loss of performance.

(b) Runtime with various Mh. The x-coordinate is the ratio
between |V | and Mh and the y-coordinate is the exact runtime.

(c) Workload balance using fixed Mh = 0.1|V |

(d) Workload balance using flexible Mh with our proposed
method

Fig. 14 Evaluation on the impact and selection of Mh

So the critical factor becomes whether it is worth

using a brute search to get closer to the global optimal

Mh. According to Fig 14(a), the answer is negative. We

compare the two methods to determine Mh in terms

of performance gain and time cost. We calculate two

ratios: performance ratio and time cost ratio. The for-

mer is the ratio between the system runtime achieved

by brute search and our heuristic algorithm. The latter

is the division of the actual runtime for the two algo-

rithms to finish. We use our proposed algorithm as a de-

nominator for both ratios. Even though the brute force

algorithm can get a better Mh, the performance gap is

minimal, which means the proposed heuristic algorithm

can get a good enough result. However, the time cost re-

duced by the heuristic algorithm is significant, and the

advantage is more evident on larger graphs. In practice,

we can use the brute search solution for small graphs

and switch to the heuristic algorithm to handle large

graphs. Fig. 14(c) and Fig. 14(d) compare the runtime

gap among the fastest PU, the slowest PU and the CPU

processing. With the proposed flexible Mh estimation,

this gap decreases by 14%.

7.5 Evaluation on hardware-related optimization

This section focuses on the three optimizations pro-

posed in Section 5: graph-structure-aware caching, CPU-

FPGA co-processing, and pipelining. These techniques

consider the features of the FPGA to boost the per-

formance of the processing units on the heterogeneous

device. Therefore, we can say they are heterogeneous-

friendly optimizations.

7.5.1 Impact of graph-structure-aware caching.

Fig 15(a) presents the performance of TEAF with various

cache settings. Experimental results indicate that TEAF

is 2.49x faster than the system without caching. The

advantage of larger graphs like KR21 and OK is higher

than 3x because memory cost contributes more to total

runtime when the graph is large. The hybrid caching

technique is better than using only one caching mech-

anism. We are 1.35x faster than only the S Cache and

1.58x than only the D Cache. Comparing the cache hit

rate in Table 7, we find that the S cache is more useful

on graphs of higher skewness because the high-degree

vertices bring much more workload.

Note that the S Cache maintains a consistent set of

the largest neighbor lists, and every S Cache hit saves a

lot of off-chip memory access. However, the number of

lists in the S Cache is limited. When two neighbor lists

are required in an intersection, the performance may be

bounded by the neighbor lists absent in the S Cache.
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(a) Evaluation of different cache settings

(b) Running time of HHI, HLI, and LLI on the CPU and FPGA

(c) Evaluation of pipelining

Fig. 15 Evaluation on hardware-related optimization

The D Cache and workload allocation mechanism can

alleviate this problem.

Table 7 Cache hit rate on various datasets

Dataset S cache D cache

PA 29% 36%
LJ 54% 27%

KR18 63% 31%
KR21 65% 29%
OK 59% 44%

7.5.2 Impact of CPU-FPGA co-processing.

Fig 15(b) compares the running time of HHI, HLI, and

LLI on a CPU and FPGA, respectively. From the re-

sults, we have two observations. First, LLI on CPUs

is faster than FPGAs in every dataset, with an average

advantage of 1.89x. However, FPGAs outperform CPUs

for HHI (1.58x) and HLI(1.61x). The gap between the

two devices is wider for larger datasets. This is because

we use merge-based intersection for LLI and hashing-

based intersection for HLI and HHI. Merge-based inter-

section scans two lists in order, but hash-based inter-

section jumps between hash buckets to check the exis-

tence of elements. The different memory access pattern

makes merge-based intersections a better fit for CPUs.

When the graph is large, the locality of doing hash

searches on a CPU is worse. Instead, the customized

caches and parallel hash search we proposed help the

FPGA-based PUs handle hash-based intersection bet-

ter. Second, the proposed coprocessing technique can

improve the overall performance by 2.11x on average.

The best improvement is achieved on the largest graph.

Our workload allocation strategy for CPU-FPGA co-

processing is coarse-grained, simple, but effective. We

don’t split the workload of LLI, HLI, and HHI because

our selection algorithm for Mh can help to balance the

workload between the CPU and FPGA.

7.5.3 Impact of pipelining.

As shown in Fig 15(c), applying the pipelining opti-

mization to the processing units can boost our sys-

tem by 2.69x. The performance gain is more evident

on larger graphs because it can significantly reduce the

idle time of the modules in a processing unit.

7.5.4 Memory bandwidth utilization

In this subsection, we discuss the achieved memory

bandwidth utilization of our implementation to verify

the bottleneck of our system.

Fig. 16 Memory bandwidth utilization and time cost for
reading/writing the memory

Since the profiling and monitoring tools are not as

detailed as those for CPUs, we measure the peak mem-

ory bandwidth by hand using an example code provided

by the hardware manufacturer 8. Then, we acquire the

averaged transfer rate of TEAF from the Vitis report

and our own calculation, which is dividing the amount

of data we read/write during execution by the running

8 https://github.com/Xilinx/Vitis Accel Examples
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Table 8 Evaluation on update strategies

50-50 Insertion Pure Insertion 70-30 Insertion
serial M3 Han Zhang ours serial M3 Han Zhang ours serial M3 Han Zhang ours

PA 90 214 173 235 304 74 183 158 216 267 84 199 166 222 281
LJ 85 208 159 217 272 72 179 136 201 214 79 189 139 209 252

KR18 64 196 110 204 248 48 166 112 153 229 56 171 140 177 233
KR20 61 184 99 198 236 40 157 121 168 204 46 181 153 189 217
OK 73 169 104 171 199 42 151 135 156 182 59 214 161 169 186

time. We choose the smaller value of these two num-

bers. Besides, we also demonstrate the percentage of

running time TEAF spends on reading/writing data

with the blue polyline for our bottleneck analysis.

As shown in Fig. 16, we achieve an average mem-

ory bandwidth utilization of 50.2%. We have two ob-

servations on these data: (1) At first, when the scale

of data graphs increases (from PA to KR18 to LJ), the

memory bandwidth utilization goes up. This is because

the amount of data to be accessed grows rapidly as

|V | increases. However, the proposed cache optimiza-

tion and co-processing design lessen the IO pressure

upon DRAM, so the ratio of IO time against the total

time is less than 40%. (2) When the data scale keeps on

growing (LJ and KR21), the memory bandwidth uti-

lization decreases. This is because the size of on-chip

memory is limited so more heavy neighbor lists will be

resident on DRAM for larger data graphs. Accessing

these lists incurs random memory access (checking hash

buckets). According to our tests, our device’s random

access bandwidth is only 24% of the peak bandwidth.

Besides, the blue polyline in Fig. 16 shows that the

percentage of IO time against the total time is always

going up. In other words, the larger the datasets, the

more time we spend on reading and writing the data.

This observation accords with the conclusion from pre-

vious work that triangle enumeration is IO-bounded es-

pecially when the data graph is large. [40].

7.6 Evaluation on dynamic graph support

This section focuses on the performance of TEAF when

dealing with dynamic graphs. We still use the five datasets

in subsection 7.4 and 7.5. We are most interested in two

metrics: (1) the overall runtime to output the affected

triangles after each batch of graph modification opera-

tions. (2) The update efficiency of the dynamic graph

data structure. For the first metric, note that we eval-

uate the runtime of TEAF using dynamic graph data

storage while the compared works are only for static

graphs. However, TEAF still prevails over its competi-

tors.

For the second metric, we measure it in the follow-

ing routine. First, we build the PMA structure and hash

tables with the entire data graph. Then, we generate a

batch of 107 operations randomly and conduct it on

the data graph. We launch local triangle enumeration

before and after the graph update. Then, we use their

sum as the runtime of this round. We repeat the up-

date process a thousand times to get the average values

of the two metrics. The results are reported in table 8.

The measure of update speed is kilo operations per sec-

ond (kops). We compare TEAF with four competitors:

(1) Serial update. (2) the update technique proposed in

MemC3 [26], denoted as M3

For update speed evaluation, we compare our two-

phase update method combining PMA and cuckoo hash

table with the serial update strategy and the update

technique proposed in MemC3 [26], denoted as M3. We

record the update speed under two different settings

of graph update workload: one consists of half insertion

and half deletion (50-50 Insert), only insertion (Pure In-

sert), and 70% insertion (70-30 Insertion). Lazy deletion

is used in all methods, so insertion is more costly than

deletion. Our lead in update speed is obvious, reaching

a speedup of 3.34x against serial update, 1.26x against

M3, and 1.22x against Zhang on 50-50 Insertion. For

Pure insertion, the speedup is 3.93x against serial up-

date, 1.35x against M3, and 1.23 against Zhang. As for

70-30 insertion, our advantage becomes 3.97x, 1.29x,

and 1.20x. All methods suffer performance loss when

the ratio of insertion increases, but the decline is the

smallest for our method.

Also, we include the update speed of the data struc-

ture proposed in Han’s work [36] to support our dis-

cussion in section 2. As shown in Table 8, the update

throughput of Han’s work [36] is beaten by TEAF on all

update batch settings by approximately 1.75x.

7.7 Scalability

This section tests the scalability of TEAF with our largest

dataset, TW. Fig 17(a) studies the performance of TEAF

when the number of processing units (PU)s increases.

The number of PUs activated simultaneously for HLI,
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and HHI is equal. As we can see in Fig 17(a), at first,

the system performance is significantly improved with

the increase in PU number. However, performance re-

mains unchanged and is even worse when the growth

continues. This is because the memory bandwidth be-

tween off-chip memory and on-chip memory limits the

number of PUs. Too many running PUs possibly cause

stalling memory requests.

(a) Varying the number of PUs

(b) Varying the number of edges

Fig. 17 Scalability evaluation

Fig 17(b) further evaluates the scalability of TEAF

when the scale of the data graph grows. We randomly

sample a fixed number of edges from TW to get a series

of data graphs. The edge number begins at 100M and

increases by 100M at a time. We record the runtime

of TEAF,LOTUS CPU, and Huang FPGA on every sampled

subgraph of TW. We cut the curve when the runtime

exceeds 50,000 ms for a better demonstration effect.

TEAF and LOTUS CPU achieve a similar trend when the

data graph is enlarged, but the curve of LOTUS CPU is

always above TEAF’s curve. The runtime of Huang FPGA

grows much sharper than Huang FPGA.

8 Conclusion

In this paper, we propose a triangle enumeration ac-

celeration system called TEAF, which applies an adap-

tive strategy to handle the computational bottleneck

of triangle enumeration, optimized for CPU-FPGA co-

processing systems, considering the features of both

CPU and FPGA. Furthermore, TEAF supports triangle

enumeration on both static and dynamic graphs. Ex-

tensive experiments on large graphs confirm that TEAF

outperforms the existing systems on CPU and FPGA

and also beat the GPU-based system in terms of energy-

averaged performance.

In the future, we will continue to improve triangle

enumeration following two potential directions. One is

designing or adopting a more meticulous graph data

structure for dynamic graphs. The other one is explor-

ing the acceleration in a distributed heterogeneous en-

vironment to support efficient triangle enumeration on

billion-scaled real-world graphs.
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Young, J.S., Çatalyürek, Ü.V.: Linear algebra-based tri-
angle counting via fine-grained tasking on heterogeneous
environments : (update on static graph challenge). 2019
IEEE High Performance Extreme Computing Confer-
ence (HPEC) pp. 1–4 (2019)

92. Yasar, A., Rajamanickam, S., Wolf, M.M., Berry, J.W.,
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