
AJOSC: Adaptive Join Order Selection for ContinuousQueries
XINYI YE, Peking University, China
XIANGYANG GOU∗, The University of New South Wales, Australia

LEI ZOU, Peking University, China
WENJIE ZHANG, The University of New South Wales, Australia

Multi-way join, which refers to the join operation among multiple tables, is widely used in database systems.

With the development of the Internet and social networks, a new variant of the multi-way join query has

emerged, requiring continuous monitoring of the query results as the database is updated. This variant is

called continuous multi-way join. The join order of continuous multi-way join significantly impacts the

operation’s cost. However, existing methods for continuous multi-way join order selection are heuristic, which

may fail to select the most efficient orders. On the other hand, the high-cost order computation will become

a system bottleneck if we directly transfer join order selection algorithms for static multi-way join to the

dynamic setting. In this paper, we propose a new Adaptive Join Order Selection algorithm for the Continuous
multi-way join queries named AJOSC. It uses dynamic programming to find the optimal join order with a

new cost model specifically designed for continuous multi-way join. We further propose a lower-bound-based

incremental re-optimization algorithm to restrict the search space and recompute the join order with low

cost when data distribution changes. Experimental results show that AJOSC is up to two orders of magnitude

faster than the state-of-the-art methods.

CCS Concepts: • Information systems→ Query optimization.

Additional Key Words and Phrases: Continuous Queries; Join Order Selection; Adaptive Query Optimization;

Performance Optimization

ACM Reference Format:
Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang. 2025. AJOSC: Adaptive Join Order Selection for

Continuous Queries. Proc. ACM Manag. Data 3, 3 (SIGMOD), Article 126 (June 2025), 27 pages. https://doi.org/

10.1145/3725263

1 Introduction
Multi-way join combines tuples in multiple tables based on the join predicates. It is widely used

in database systems [9, 30, 33]. With the development of the Internet and social networks, a new

variant of the multi-way join query has emerged, called continuous multi-way join. It requires

continuous monitoring of the query results as the database is updated. Continuous multi-way join

queries are widely used in applications such as sales management [44] and fraud detection [20, 33].

For example, the newly added results of some cyclic joins signal recent fraudulent activities in

e-commerce databases [33].

∗
Corresponding author

Authors’ Contact Information: Xinyi Ye, Peking University, Beijing, China, yexinyi@pku.edu.cn; Xiangyang Gou, The

University of New South Wales, Sydney, Australia, xiangyang.gou@unsw.edu.au; Lei Zou, Peking University, Beijing, China,

zoulei@pku.edu.cn; Wenjie Zhang, The University of New South Wales, Sydney, Australia, wenjie.zhang@unsw.edu.au.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2025/6-ART126

https://doi.org/10.1145/3725263

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

https://doi.org/10.1145/3725263
https://doi.org/10.1145/3725263
https://doi.org/10.1145/3725263

126:2 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

The update stream in a continuous multi-way join is composed of a sequence of tuple insertions

and deletions. A query 𝑄 is previously registered in the database system, and for each insertion

(or deletion), we need to find and report the added (or deleted) results in the result set of 𝑄 . These

results must contain the updated tuple 𝑡 . Thus, these results are derived from joining the updated

table containing only tuple 𝑡 with other tables. For example, in Figure 1, the query 𝑄 joins table

𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 ,𝑇𝑌 and𝑇𝑍 in database 𝐷 . When tuple 𝑡0
𝑆
is added to table𝑇𝑆 , Δ𝑄 (𝐷) is the join results

of table 𝑇𝑅,Δ𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 ,𝑇𝑌 and 𝑇𝑍 where table Δ𝑇𝑆 only contains tuple 𝑡0
𝑆
.

Join order is the order in which tables are joined during the execution of a multi-way join. Join

order influences the number of intermediate results generated and is therefore important to query

performance. In continuous multi-way join, the join always starts at the updated table, since this

table contains only the updated tuple and all updated results contain this tuple. But the other tables

still need to be carefully ordered to optimize query efficiency. Thus, for every table, we select and

store the join order starting from it. Whenever a table is modified by tuple insertion or deletion, we

follow the stored join order that starts from it to compute the updated results.

Multiple join order selection algorithms in static settings have been proposed, including greedy

[22] and dynamic programming methods [37]. However, there are few previous works in the

dynamic settings. The existing algorithms for join order selection of continuous multi-way join

queries are based on heuristics [28], which may select suboptimal orders. On the other hand, if we

transform the dynamic programming algorithms in static settings [37] to the dynamic settings, we

can select optimal join orders, but high selection costs will be introduced.

𝑇𝑊

𝑡𝑊
0

𝑡𝑊
1

𝑡𝑊
2

…

𝑡𝑊
10

rswxyz

𝑇𝑅

𝒕𝑹
𝟎

𝑇𝑆

𝒕𝑺
𝟎

𝑡𝑆
1

𝑡𝑆
2

…

𝑡𝑆
10

𝑇𝑋

𝑡𝑋
0

𝑡𝑋
1

𝑇𝑌

𝑡𝑌
0

𝑡𝑌
1

𝑇𝑍

𝑡𝑍
0

𝑡𝑍
1

…

We assume there is a lot of X/Y/Z tuples that satisfy join condition with r, thus match them later has

smaller overhead.

Thus we focus on the order of R,S,W.

…

Step 1: add 𝑡𝑆
0

Step 2: add 𝑡𝑅
0

Step 3: delete 𝑡𝑆
0

Step 4: delete 𝑡𝑅
0

Edges indicate tuple pairs

satisfying join conditions.

Fig. 1. An example of a database 𝐷 where a query 𝑄 that joins table 𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 ,𝑇𝑌 and 𝑇𝑍 is executed.

The dynamic programming algorithm in static settings (abbr. StaticDP) chooses the optimal

order 𝑇1 → 𝑇2 → ... → 𝑇𝑛 of a query 𝑄 in descending order of 𝑖 . When deciding 𝑇𝑖 , the tables

𝑇𝑛,𝑇𝑛−1, ...,𝑇𝑖+1 have been chosen. The remaining unordered tables and the join conditions among

them form a subquery 𝑃 . 𝑇𝑖 is chosen to minimize the estimated computation cost of 𝑃 , where 𝑃 ’s

result is computed by first joining (𝑃 − {𝑇 }) using the optimal order, and then join (𝑃 − {𝑇 })’s
result with table 𝑇 .

However, two challenges will arise if we apply this method to tackle continuous multi-way join

queries in the dynamic settings, which limits its efficiency.

Challenge 1: Its costmodel brings large order selection overhead in the dynamic settings,
since multiple costs need to be estimated for each subquery. Note that we need to estimate

the computation costs of a series of subqueries in the order selection process of StaticDP. In the

dynamic settings, when the updated table changes, the computation cost of a subquery 𝑃 also

changes. This occurs for two reasons. First, the query execution must start from the updated table

in the dynamic settings, thus the updated table influences the join order. Second, only the updated

tuple is included in the updated table when executing the query, thus the updated table influences

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:3

the cardinality distribution. Hence, multiple computation costs must be calculated for the same

subquery, increasing the order selection overhead.

Example 1.1. Consider step 2 and 3 depicted in Figure 1. In this figure, an edge between a pair

of tuples indicates that the pair of tuples satisfies the join condition between the tables. For the

subquery 𝑃 that joins table𝑇𝑅 and𝑇𝑆 , when the updated table is𝑇𝑅 (step 2), the join order is𝑇𝑅 → 𝑇𝑆 .

Since the tuple 𝑡0
𝑅
is added, the table Δ𝑇𝑅 = {𝑡0

𝑅
}. In this case, we join {𝑡0

𝑅
} with all 11 tuples in

𝑇𝑆 . In contrast, when the updated table is 𝑇𝑆 (step 3), the order of this subquery is 𝑇𝑆 → 𝑇𝑅 . Since

the tuple 𝑡0
𝑆
is deleted, the table Δ𝑇𝑆 = {𝑡0

𝑆
}. In this case, we join {𝑡0

𝑆
} with 1 tuple 𝑡0

𝑅
in 𝑇𝑅 . This

shows that the computation cost of the subquery 𝑃 when the updated table is 𝑇𝑆 (step 3) is much

lower than when the updated table is 𝑇𝑅 (step 2). Thus, two computation costs are needed for the

subquery 𝑃 in the dynamic settings.

Challenge 2: dynamic change of data distribution necessitates order recomputation.
With tuples inserted or deleted, the data distribution might change, so the previously optimal

join order might become suboptimal, causing performance degradation. As a result, we need to

recompute the optimal join orders when the data distribution changes, which significantly increases

the order selection overhead.

In this paper, we propose a novel adaptive join order selection algorithm for continuous multi-

way joins (AJOSC), to identify high-quality join orders with low overhead in the dynamic settings.

We propose the following techniques that address the aforementioned challenges and distinguish

AJOSC from prior arts.

Firstly, to tackle challenge 1, we introduce a new cost model, the Look-Ahead Cost (abbr. LA
cost) which enables cost estimations to be shared across updated tables for the same subquery.

The LA cost of a subquery 𝑃 is defined as the cost to use a single instance of 𝑃 to compute the

corresponding results of 𝑄 that contains this instance, where an instance is one row in 𝑃 ’s results.

Different from the computation cost of 𝑃 used in StaticDP, the LA cost is not influenced by the

updated table. Therefore, each subquery only needs one LA cost. Furthermore, we propose an order

selection algorithm that is based on LA cost and searches the optimal join orders with the aid of a

cost dependency graph (abbr. CDG). We can prove that the time complexity of our order selection

algorithm is 𝑛 times smaller than StaticDP, where 𝑛 is the number of tables in the multi-way join.

Secondly, to address challenge 2, we propose an incremental reordering algorithm to update the

join orders when data distribution changes significantly. We keep monitoring statistics about data

distribution in the database. When a significant change is observed, our incremental algorithm

only carries out recomputation in a small area of the CDG which is influenced by the changes. This

reduces recomputation costs. Moreover, we propose a lower-bound-based method. It delays the

update of node values in CDG when they will not affect the optimal order, and further reduces the

recomputation cost.

Thirdly, we design a set of mechanisms to decide when to trigger the join reordering. A naive

approach is to trigger reordering when a statistic changes beyond a predefined threshold. But this

approach can lead to unnecessary reorderings when encountering outliers in statistics, which brings

a large overhead. The reasons are as follows. We monitor statistics by maintaining a weighted

average of collected values in query execution, where recent values are assigned higher weights to

capture the most recent trend. This may cause fluctuations in the statistics if outliers are collected

recently, which triggers unnecessary reorderings. To fix this, we propose the reordering delay

mechanism that delays reordering unless changes in statistics are sustained, thus mitigating the

effects of outliers.

To sum up, our main contributions are as follows:

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:4 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

• We propose a new cost model named LA cost suitable for join order selection in continuous

multi-way join. Based on the LA cost, we propose a cost dependency graph-based dynamic

programming algorithm to select optimal join orders with low cost.

• We propose an incremental order recomputation method which decreases the cost of order

recomputation when the data distribution changes.

• We propose a reordering delay mechanism to decide the timing of updating the join orders

which avoids unnecessary reorderings.

• We conduct extensive experiments to evaluate the performance of AJOSC. AJOSC accelerates

the queries by up to two orders of magnitude compared to existing algorithms.

2 Preliminaries
Definition 2.1 (Multi-way Join Query). A multi-way join query 𝑄 can be formulated as {𝑉 , 𝐸}.

𝑉 is a multiset where its unique elements form a subset of the tables in the database 𝐷 . The set 𝐸

consists of join conditions among these tables, in the form of 𝑇1.𝑎1 = 𝑇2.𝑎2, where 𝑎1 and 𝑎2 denote

attributes in the table. The result set of a query 𝑄 in the database 𝐷 , denoted 𝑄 (𝐷), is a set of tuple
concatenations. Each concatenation in 𝑄 (𝐷) contains exactly one tuple from each table in 𝑉 , and

the tuples satisfy all the join conditions in 𝐸. We call such a concatenation an instance of the query
𝑄 , denoted as 𝑖𝑛𝑠𝑡 (𝑄).

Note that𝑉 is a multiset since a query can include multiple copies of the same table. For example,

an instance of the query with𝑉 = {𝑇𝑅,𝑇𝑆1 ,𝑇𝑆2 } and 𝐸 = {𝑇𝑅 .𝑎1 = 𝑇𝑆1 .𝑎1,𝑇𝑅 .𝑎2 = 𝑇𝑆2 .𝑎1} may appear

in the form (𝑡0
𝑅
, 𝑡0
𝑆
, 𝑡1
𝑆
). Here, 𝑇𝑆1 and 𝑇𝑆2 are copies of table 𝑇𝑆 , while 𝑡0𝑆 and 𝑡1

𝑆
are tuples in table 𝑇𝑆 .

In this paper, we represent a query as {𝑇1,𝑇2, ...,𝑇𝑛} where
𝑇1,𝑇2, ...,𝑇𝑛 are all the tables in 𝑉 . And we represent an instance as (𝑡1, 𝑡2, ..., 𝑡𝑛) where 𝑡𝑖 ∈ 𝑇𝑖 .

Example 2.2. This is a multi-way join query where we join the tables 𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 ,𝑇𝑌 ,𝑇𝑍 to-

gether:

SELECT * FROM 𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 ,𝑇𝑌 ,𝑇𝑍 WHERE

𝑇𝑅.s_id = 𝑇𝑆 .id AND 𝑇𝑊 .r_id = 𝑇𝑅.id

AND 𝑇𝑆 .w_id = 𝑇𝑊 .id AND 𝑇𝑊 .year = 𝑇𝑋 .year

AND 𝑇𝑌 .x_id = 𝑇𝑋 .id AND 𝑇𝑍 .id = 𝑇𝑋 .z_id

We represent this query as {𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 ,𝑇𝑌 ,𝑇𝑍 }. For the database 𝐷 shown in Figure 1, the

concatenation (𝑡0
𝑅
, 𝑡0
𝑆
, 𝑡0
𝑊
, 𝑡0
𝑋
, 𝑡0
𝑌
, 𝑡0
𝑍
) is an instance of the query {𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 ,𝑇𝑌 ,𝑇𝑍 }.

In this paper, we focus on queries with equi-join conditions, but our algorithm can also be

extended to other join conditions. As we focus on join order selection, we do not consider other

operations such as select, project, and aggregate in this paper.

Definition 2.3 (Update Stream). An update stream is a constant flow of update operations

that describes the update process of a database. An update operation is a triple (𝑇, 𝑡, 𝑜𝑝) where
𝑜𝑝 = +(𝑜𝑟 −), which means adding (or deleting) a tuple 𝑡 from a table 𝑇 .

Definition 2.4 (Continuous Multi-way Join). Given a database and an update stream, a contin-

uous multi-way join is a previously registered and continuously monitored multi-way join query.

For each update 𝑑 in the update stream, we need to compute Δ𝑄 (𝐷,𝑑) = 𝑄 (𝐷 + 𝑑.𝑡) − 𝑄 (𝐷) (if
𝑑.𝑜𝑝 = +) or 𝑄 (𝐷) −𝑄 (𝐷 − 𝑑.𝑡) (if 𝑑.𝑜𝑝 = −), i.e., to compute the change of the result set induced

by the update.

Note that Δ𝑄 (𝐷, (𝑇, 𝑡, 𝑜𝑝))) = 𝑄 (𝐷 ′), where 𝐷 ′ is the same as 𝐷 except that the updated table 𝑇

is replaced by Δ𝑇 = {𝑡}.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:5

Example 2.5. For the query in Example 2.2, when the update operation𝑑 = (𝑇𝑅, 𝑡0𝑅, +) is performed

on the database, Δ𝑄 (𝐷,𝑑) are the results of the query
SELECT * FROM Δ𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 ,𝑇𝑌 ,𝑇𝑍 WHERE

Δ𝑇𝑅.s_id = 𝑇𝑆 .id AND 𝑇𝑊 .r_id = Δ𝑇𝑅.id

AND 𝑇𝑆 .w_id = 𝑇𝑊 .id AND 𝑇𝑊 .year = 𝑇𝑋 .year

AND 𝑇𝑌 .x_id = 𝑇𝑋 .id AND 𝑇𝑍 .id = 𝑇𝑋 .z_id

where the table Δ𝑇𝑅 contains only tuple 𝑡0
𝑅
.

Definition 2.6 (Join Graph). A join graph of a query𝑄 is a labeled, undirected graph. Each vertex

in the join graph uniquely represents a table in 𝑄.𝑉 , while each edge in the join graph uniquely

represents a join condition in 𝑄.𝐸. The endpoints of each edge represent the two tables involved in

the join condition.

For example, the join graph in Figure 2 represents the SQL query in Example 2.2.

𝑇𝑊𝑇𝑅

𝑇𝑆

𝑇𝑋

𝑇𝑌

𝑇𝑍

Fig. 2. An example join graph

Definition 2.7 (Subquery). A subquery 𝑃 of a multi-way join query𝑄 = {𝑉 , 𝐸} can be formulated

as another multi-way join query {𝑉 ′, 𝐸′}. Here, 𝑉 ′ ⊆ 𝑉 , and 𝐸′ consists of the join conditions in 𝐸

that involve only tables in𝑉 ′. We use the notation 𝑖𝑛𝑠𝑡 (𝑃) ⊆ 𝑖𝑛𝑠𝑡 (𝑄) to indicate that for all𝑇𝑖 ∈ 𝑉 ′,
𝑖𝑛𝑠𝑡 (𝑃).𝑡𝑖 = 𝑖𝑛𝑠𝑡 (𝑄).𝑡𝑖 .

Example 2.8. Here is the subquery {𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 } of the query {𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 ,𝑇𝑌 ,𝑇𝑍 } in Example

2.2.

SELECT * FROM 𝑇𝑅,𝑇𝑆 ,𝑇𝑊 ,𝑇𝑋 WHERE

𝑇𝑅.s_id = 𝑇𝑆 .id AND 𝑇𝑊 .r_id = 𝑇𝑅.id

AND 𝑇𝑆 .w_id = 𝑇𝑊 .id AND 𝑇𝑊 .year = 𝑇𝑋 .year

The instance (𝑡0
𝑅
, 𝑡0
𝑆
, 𝑡0
𝑊
, 𝑡0
𝑋
) ⊆ (𝑡0

𝑅
, 𝑡0
𝑆
, 𝑡0
𝑊
, 𝑡0
𝑋
, 𝑡0
𝑌
, 𝑡0
𝑍
) because tuples 𝑡0

𝑅
, 𝑡0
𝑆
, 𝑡0
𝑊
, 𝑡0
𝑋
are the same in the

two instances.

Definition 2.9 (Join Order). The join order in the context of a continuous multi-way join query

under an update (𝑇, 𝑡, 𝑜𝑝) refers to the sequence of subqueries, denoted 𝑃1 → 𝑃2 → . . . → 𝑃𝑛 ,

which plays a crucial role in the execution of the query. This sequence satisfies the following

conditions:

(1) 𝑃1 = {Δ𝑇 }, where 𝑇 is the updated table and Δ𝑇 = {𝑡}.
(2) 𝑃𝑛 = 𝑄 .

(3) For any 𝑖 , 𝑃𝑖+1 contains one more table compared to 𝑃𝑖 .

The computation of a continuous multi-way join query under update (𝑇, 𝑡, 𝑜𝑝) involves executing
multiple subqueries in a join order 𝑃1 → 𝑃2 → . . .→ 𝑃𝑛 .

Since 𝑃𝑖+1 contains one more table compared to 𝑃𝑖 , the join order can also be represented as a

sequence of tables 𝑇1 → 𝑇2 → . . .→ 𝑇𝑛 , where:

(1) 𝑇1 = Δ𝑇 denotes the updated table;

(2) 𝑇𝑖 = 𝑃𝑖 .𝑉 − 𝑃𝑖−1 .𝑉 denotes the 𝑖-th table to join.

In subsequent sections, these two representations of join order will be used interchangeably.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:6 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

Note that the join graph of every 𝑃𝑖 must be connected. If a subquery’s join graph is disconnected,

its results become a Cartesian product of the results of its connected components, leading to

numerous subquery results and high computation costs. Therefore, we define a subquery as valid
if its join graph is connected. Any mention of a subquery hereafter will imply a valid subquery by

default.

Problem Statement. Join order selection for continuous multi-way join queries determines the

join orders that optimize the execution efficiency of these queries.

Definition 2.10 (Partial Join Order). The partial join order starting at a subquery 𝑃 refers to

a segment of a join order sequence that starts from 𝑃 and ends with the final query 𝑄 , denoted

𝑃 𝑗 → 𝑃 𝑗+1 → . . .→ 𝑃𝑛 , where 𝑃 𝑗 = 𝑃 and 𝑃𝑛 = 𝑄 . The partial join order can also be represented

as a sequence of tables 𝑇𝑗+1 → 𝑇𝑗+2 → . . . → 𝑇𝑛 , where 𝑇𝑖 = 𝑃𝑖 .𝑉 − 𝑃𝑖−1.𝑉 (𝑗 + 1 ⩽ 𝑖 ⩽ 𝑛). In
subsequent sections, these two representations of the partial join order will be used interchangeably.

We define 2 notations about the partial join order here.

(1) 𝜙𝑃 denotes a partial join order starting at 𝑃 .

(2) 𝑁 (𝑃) denotes table 𝑇𝑗+1 in the optimal partial order 𝑇𝑗+1 → 𝑇𝑗+2 → . . . → 𝑇𝑛 , i.e. the next

table to join after 𝑃 in the optimal partial order.

Table 1. The notation table

Notation Description
𝑡𝑇 a tuple in table 𝑇

𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′)
Set of tuples 𝑡𝑇 that satisfy the join conditions between 𝑇 ′ and 𝑇 with a

given tuple 𝑡𝑇 ′

𝑖𝑛𝑠𝑡 (𝑄) / 𝑖𝑛𝑠𝑡 (𝑃) Instance of the query 𝑄/ subquery 𝑃

𝑖𝑛𝑠𝑡 (𝑃) ⊆ 𝑖𝑛𝑠𝑡 (𝑄) 𝑖𝑛𝑠𝑡 (𝑃) has consistent tuple with 𝑖𝑛𝑠𝑡 (𝑄) for each table in 𝑃

𝜙𝑃 a partial join order starting at the subquery 𝑃

𝐶𝑎𝑛𝑑𝑁 (𝑃) Candidate tables for the next table to join after 𝑃 , where tables inside 𝑃

have been ordered

𝐶𝑎𝑛𝑑𝐿(𝑃) Candidate tables for the last table to join in 𝑃 , where tables outside 𝑃

have been ordered

𝑁 (𝑃) The next table to join after 𝑃 in the optimal partial order

Definition 2.11 (Candidate Table). When selecting a join order 𝑇1 → 𝑇2 → ...→ 𝑇𝑛 , the set of

candidate tables for 𝑇𝑖 includes all tables that can potentially be ordered in the 𝑖-th position (𝑖 ≥ 2)

without inducing invalid subqueries.

In this paper, we select the join order either with a back-to-front manner (in StaticDP) or with

a front-to-back manner (in AJOSC). In the former case, when we select 𝑇𝑖 , tables 𝑇𝑖+1 ∼ 𝑇𝑛 have

been chosen. The unordered tables form a subquery 𝑃 , and 𝑇𝑖 is the last table to join in 𝑃 . We

use 𝐶𝑎𝑛𝑑𝐿(𝑃) to denote the candidate tables of 𝑇𝑖 . A table is selected into 𝐶𝑎𝑛𝑑𝐿(𝑃) only if the

remaining tables in 𝑃 are connected after removing it. In the latter case, when we select 𝑇𝑖 , tables

𝑇1 ∼ 𝑇𝑖−1 have been chosen. The ordered tables form a subquery 𝑃 , and 𝑇𝑖 is the next table to join

after 𝑃 . We use 𝐶𝑎𝑛𝑑𝑁 (𝑃) to denote the candidate tables of 𝑇𝑖 . A table is selected into 𝐶𝑎𝑛𝑑𝑁 (𝑃)
only if it is connected to at least one table in 𝑃 .

Table 1 presents the notations in this paper.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:7

3 StaticDP and Its Limitations
In this section, we introduce the dynamic programming algorithm in static settings (abbr. StaticDP)

[37] and then discuss its limitation when transferred to the dynamic setting. It explains our

motivation to design the new techniques in the following sections.

The dynamic programming algorithm in static settings computes the optimal order by recursively

deciding 𝑇𝑖 with a decreasing order of 𝑖 , i.e. from 𝑇𝑛 to 𝑇1. To decide which table should be 𝑇𝑖 , the

algorithm computes the estimated costs for each candidate table and then selects the one with the

lowest estimated cost. Specifically, 𝑇𝑖 should be decided by

𝑇𝑖 = 𝐴𝑟𝑔𝑚𝑖𝑛𝑇 ∈𝐶𝑎𝑛𝑑𝐿 (𝑃) (𝑆𝐶𝑜𝑠𝑡 (𝑃 − {𝑇 }) + 𝑆 𝐽𝐶 (𝑃 − {𝑇 },𝑇))

where

(1) 𝑃 = {𝑇1,𝑇2, ...,𝑇𝑖 };
(2) 𝑆𝐶𝑜𝑠𝑡 (·) is the cost of computing results of a subquery using the optimal order;

(3) 𝑆 𝐽𝐶 (·) is the cost to join the result of a subquery with a table.

The join cost 𝑆 𝐽𝐶 (·) is estimated by cardinality estimation, and 𝑆𝐶𝑜𝑠𝑡 (𝑃) is recursively computed

by {
𝑆𝐶𝑜𝑠𝑡 (𝑃) = min

𝑇 ∈𝐶𝑎𝑛𝑑𝐿 (𝑃)
(𝑆𝐶𝑜𝑠𝑡 (𝑃 − {𝑇 }) + 𝑆 𝐽𝐶 (𝑃 − {𝑇 },𝑇))

𝑆𝐶𝑜𝑠𝑡 ({𝑇 }) = 0,∀𝑇 ∈ 𝑄
Note that during the process of selecting an order, 𝑆𝐶𝑜𝑠𝑡 (𝑃) of every valid subquery 𝑃 needs to

be calculated.

When transferred to continuous multi-way join, there are 2 limitations that decrease the perfor-

mance of StaticDP.

Firstly, its cost model brings large order selection overhead in the dynamic setting. In continuous

multi-way join, we need to start query execution from the updated table, thus different updated

tables result in different optimal join orders for the same subquery. Moreover, only one updated

tuple is included in the updated table in query execution, thus different updated tables also result

in different cardinality distributions. As a result, the same subquery 𝑃 will get different 𝑆𝐶𝑜𝑠𝑡 (𝑃)
when the updated table is different. Thus, we need to estimate multiple costs for each subquery,

which brings large order selection overhead.

Add 𝑡𝑆
0 Delete 𝑡𝑅

0

𝑇𝑋

𝑇𝑌

𝑇𝑍

𝑇𝑊

𝑇𝑆

𝑇𝑅

(𝑡𝑅
0, 𝑡𝑆

0, 𝑡𝑊
0 , 𝑡𝑋

0)

(𝑡𝑅
0, 𝑡𝑆

0, 𝑡𝑊
0 , 𝑡𝑋

0, 𝑡𝑌
0) (𝑡𝑅

0, 𝑡𝑆
0, 𝑡𝑊

0 , 𝑡𝑋
0, 𝑡𝑌

0)

(𝑡𝑅
0, 𝑡𝑆

0, 𝑡𝑊
0 , 𝑡𝑋

0, 𝑡𝑌
0, 𝑡𝑍

0) (𝑡𝑅
0, 𝑡𝑆

0, 𝑡𝑊
0 , 𝑡𝑋

0, 𝑡𝑌
0, 𝑡𝑍

0)

(𝑡𝑅
0)

(𝑡𝑅
0, 𝑡𝑊

0)

(𝑡𝑅
0, 𝑡𝑆

0, 𝑡𝑊
0)

Add 𝑡𝑅
0 Optimal order:

𝑇𝑅 → 𝑇𝑊 → 𝑇𝑆 → 𝑇𝑋 → 𝑇𝑌 → 𝑇𝑍

(𝑡𝑅
0, 𝑡𝑊

1)

(𝑡𝑅
0, 𝑡𝑆

1, 𝑡𝑊
1)

… 𝑇𝑋

𝑇𝑌

𝑇𝑍

𝑇𝑅

𝑇𝑊

𝑇𝑆

(𝑡𝑅
0, 𝑡𝑆

0, 𝑡𝑊
0 , 𝑡𝑋

0)

(𝑡𝑅
0, 𝑡𝑆

0, 𝑡𝑊
0 , 𝑡𝑋

0, 𝑡𝑌
0) (𝑡𝑅

0, 𝑡𝑆
0, 𝑡𝑊

0 , 𝑡𝑋
0, 𝑡𝑌

1)

(𝑡𝑅
0, 𝑡𝑆

0, 𝑡𝑊
0 , 𝑡𝑋

0, 𝑡𝑌
0, 𝑡𝑍

0) (𝑡𝑅
0, 𝑡𝑆

0, 𝑡𝑊
0 , 𝑡𝑋

0, 𝑡𝑌
1, 𝑡𝑍

0)

(𝑡𝑆
0)

(𝑡𝑅
0, 𝑡𝑆

0)

(𝑡𝑅
0, 𝑡𝑆

0, 𝑤0)

Delete 𝑡𝑆
0 Optimal order:

𝑇𝑆 → 𝑇𝑅 → 𝑇𝑊 → 𝑇𝑋 → 𝑇𝑌 → 𝑇𝑍

Dataset

Fig. 3. The search process when the updated table is 𝑇𝑅 and 𝑇𝑆 respectively.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:8 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

Example 3.1. Figure 3 shows a database and the search process following the optimal order

when the updated tables are 𝑇𝑅 and 𝑇𝑆 , respectively. The process of computing the change of

the subquery {𝑇𝑅,𝑇𝑆 ,𝑇𝑊 } is shown in purple rounded rectangles. For the subquery {𝑇𝑅,𝑇𝑆 ,𝑇𝑊 }, 5
instances appear in the search process starting from table 𝑇𝑅 , while only 3 instances appear in the

search process starting from table 𝑇𝑆 . Hence, 𝑆𝐶𝑜𝑠𝑡 ({Δ𝑇𝑅,𝑇𝑆 ,𝑇𝑊 }) and 𝑆𝐶𝑜𝑠𝑡 ({𝑇𝑅,Δ𝑇𝑆 ,𝑇𝑊 }) are
different. Similarly, 𝑆𝐶𝑜𝑠𝑡 ({𝑇𝑅,𝑇𝑆 ,Δ𝑇𝑊 }) is also a different cost. Therefore, we need to compute

3 costs for subquery {𝑇𝑅,𝑇𝑆 ,𝑇𝑊 } in the dynamic settings, but only 1 in static settings. Thus, the

overhead is larger in the dynamic settings.

This leads to a higher time complexity of StaticDP in the dynamic settings than static ones.

Theorem 3.2. The time complexity of StaticDP is 𝑂 (𝑛2𝑛) in static settings, but 𝑂 (𝑛22𝑛) in the
dynamic settings (𝑛 = |𝑄.𝑉 |).

Proof. In StaticDP in static settings, the order selection time is dominated by the time to compute

𝑆𝐶𝑜𝑠𝑡 (𝑃) for all subqueries 𝑃 . For a query with |𝑄.𝑉 | = 𝑛, there are 𝑂 (2𝑛) possible subqueries.
To compute 𝑆𝐶𝑜𝑠𝑡 (𝑃) for any subquery 𝑃 , we need to evaluate 𝑆 𝐽𝐶 (𝑃 − {𝑇 },𝑇) for each table 𝑇

in 𝐶𝑎𝑛𝑑𝐿(𝑃). This process has an overhead of 𝑂 (𝑛) for a single subquery. Therefore, when we

consider both the number of subqueries and the overhead to compute their costs, the resulting time

complexity is 𝑂 (𝑛2𝑛).
In the dynamic settings, the overhead to compute one cost is 𝑛 and there are 𝑂 (2𝑛) possible

subqueries, as is the case in static settings. However, in the dynamic settings, for every subquery

𝑃 , we need to estimate |𝑃 .𝑉 | costs, and |𝑃 .𝑉 | = 𝑂 (𝑛). Thus, the time complexity in the dynamic

settings is 𝑂 (𝑛22𝑛).
□

Secondly, StaticDP lacks an efficient order recomputation method. When the data distribution

changes, we need to update the stored join orders to keep them optimal. However, as there is no

incremental order recomputation method in StaticDP, we have to compute all the orders from

scratch, which further increases the overhead.

To address the above two limitations, we propose three key techniques in AJOSC: First, we

propose a new cost model, LA cost, specialized for continuous multi-way joins, which will be

introduced in Section 4. Second, we propose an incremental order recomputation method in Section

5. Third, we propose a set of mechanisms to decide when to trigger the order recomputation in

Section 6.

4 Order Computation with LA Cost
4.1 LA Cost
In this subsection, we introduce the LA cost, which facilitates sharing cost estimation across

different updated tables for the same subquery. Because a single LA cost suffices for each subquery,

the overhead of AJOSC is much smaller than that of StaticDP in the dynamic settings.

4.1.1 Definition of LA Cost
For every subquery 𝑃 , we compute its LA cost 𝐿𝐴(𝑃). 𝐿𝐴(𝑃) is the expected cost to use an instance

of 𝑃 to compute the results of 𝑄 that contains this instance following the optimal order. There are

2 differences between 𝐿𝐴(𝑃) and the 𝑆𝐶𝑜𝑠𝑡 (𝑃) of StaticDP algorithm:

• 𝐿𝐴(𝑃) is the cost to compute the results of 𝑄 using results of 𝑃 , while 𝑆𝐶𝑜𝑠𝑡 (𝑃) is the cost
to compute results of 𝑃 according to the updated tuple. As stated above, the execution of

a continuous multi-way join query starts from the updated table. Because all subqueries 𝑃

that we explore contain the updated table, the cost of joining 𝑃 will be influenced by the

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:9

updated table. On the other hand, as the updated table is not involved in the process of using

𝑃 ’s result to compute 𝑄 ’s results, the optimal order and the computation cost of this process

will not be influenced by it. For example, in Figure 3, the search processes in the two blue

rounded rectangles are the same, but those in the purple rounded rectangles are different.

• 𝐿𝐴(𝑃) is defined for only an instance of 𝑃 , while 𝑆𝐶𝑜𝑠𝑡 (𝑃) is defined for all instances of

𝑃 related to the updated tuple. When the updated tables differ, the number of calculated

instances of 𝑃 might differ, but 𝐿𝐴(𝑃) is irrelevant to it. For example, in Figure 3, there are

two instances of {𝑇𝑅,𝑇𝑆 ,𝑇𝑊 } when the updated table is𝑇𝑅 and one instance when the updated

table is 𝑇𝑆 . But 𝐿𝐴({𝑇𝑅,𝑇𝑆 ,𝑇𝑊 }) is only related to the search process in the blue rounded

triangle, thus the same.

4.1.2 Computation of LA Cost
In this subsection, we discuss how to compute the LA cost. The LA cost 𝐿𝐴(𝑃) is the minimum

expected cost to use one instance 𝑖𝑛𝑠𝑡 (𝑃) to compute {𝑖𝑛𝑠𝑡 (𝑄) | 𝑖𝑛𝑠𝑡 (𝑃) ⊆ 𝑖𝑛𝑠𝑡 (𝑄)} among all

possible partial join orders. 𝐿𝐴(𝑃) can be computed as

𝐿𝐴(𝑃) =𝑚𝑖𝑛𝜙𝑃
𝑐𝑜𝑠𝑡 (𝜙𝑃)

where 𝑐𝑜𝑠𝑡 (𝜙𝑃) is the expected cost to compute {𝑖𝑛𝑠𝑡 (𝑄) | 𝑖𝑛𝑠𝑡 (𝑃) ⊆ 𝑖𝑛𝑠𝑡 (𝑄)} given an instance

𝑖𝑛𝑠𝑡 (𝑃) using the partial join order 𝜙𝑃 .

The 𝑐𝑜𝑠𝑡 (𝜙𝑃) can be divided into two parts. The first part is the expected cost to join 𝑖𝑛𝑠𝑡 (𝑃)
with table𝑇 , where𝑇 is the first table in𝜙𝑃 , i.e. the next table to join. Specifically, this is the expected

cost to compute the result set {𝑖𝑛𝑠𝑡 (𝑃+) | 𝑖𝑛𝑠𝑡 (𝑃) ⊆ 𝑖𝑛𝑠𝑡 (𝑃+)} given 𝑖𝑛𝑠𝑡 (𝑃), where 𝑃+ = 𝑃 ∪ {𝑇 }.
To compute the result set, we need to find all tuples 𝑡𝑇 ∈ 𝑇 that meet this criterion:

Criterion 4.1. For all table𝑇 ′ ∈ 𝑃 where (𝑇 ′,𝑇) ∈ 𝐸, 𝑡𝑇 ′ and 𝑡𝑇 satisfy the join conditions between
𝑇 ′ and 𝑇 , where 𝑡𝑇 ′ is the tuple from table 𝑇 ′ in 𝑖𝑛𝑠𝑡 (𝑃).

To identify these tuples, we examine every table 𝑇 ′ ∈ 𝑃 where (𝑇 ′,𝑇) ∈ 𝐸. For every such table

𝑇 ′, we compute the candidate tuple set𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) which contains all tuples 𝑡𝑇 ∈ 𝑇 that satisfy the

join conditions between𝑇 ′ and𝑇 with 𝑡𝑇 ′ . By computing the intersection∩𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′),
we get the tuples satisfying criterion 4.1. Therefore, by summing the expected sizes of𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′)
for all 𝑇 ′ ∈ 𝑃 such that (𝑇 ′,𝑇) ∈ 𝐸, we can efficiently approximate the cost to join 𝑖𝑛𝑠𝑡 (𝑃) with
table 𝑇 . To closely estimate the expected size of𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′), we employ the statistic 𝑑𝑒𝑔(𝑇 ′,𝑇)
to represent it and iteratively refine its value during the execution of the query. Specifically, we

initiate 𝑑𝑒𝑔(𝑇 ′,𝑇) by 0. Every time we get a set 𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) in query execution, 𝑑𝑒𝑔(𝑇 ′,𝑇) is
updated by

𝑑𝑒𝑔(𝑇 ′,𝑇) ← 𝑑𝑒𝑔(𝑇 ′,𝑇) ∗ (1 − 𝜃) + |𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) | ∗ 𝜃 (1)

where 𝜃 is a predefined parameter. In this way, we obtain a weighted average for 𝑑𝑒𝑔(𝑇 ′,𝑇), where
the weight of the more recent data is larger. Thus, we can catch the distribution of the recent

data and compute the suitable join order for the current data distribution. Note that this statistical

maintenance method is independent of the key contributions in this paper and can be replaced

by other statistical maintenance methods. For example, ADWIN [8] and SDDM [34] can detect

distribution change of a stream. The average of all |𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) | after the last distribution change

can represent the current distribution and can be used as 𝑑𝑒𝑔(𝑇 ′,𝑇).
In summary, the first part of 𝑐𝑜𝑠𝑡 (𝜙𝑃) can be calculated by

∑
𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸 𝑑𝑒𝑔(𝑇 ′,𝑇).

The second part is the expected cost to compute the set {𝑖𝑛𝑠𝑡 (𝑄)} from the set {𝑖𝑛𝑠𝑡 (𝑃+)}, where
𝑃+ = 𝑃 ∪ {𝑇 } and the instances in the two sets satisfy 𝑖𝑛𝑠𝑡 (𝑃) ⊆ 𝑖𝑛𝑠𝑡 (𝑃+) and 𝑖𝑛𝑠𝑡 (𝑃) ⊆ 𝑖𝑛𝑠𝑡 (𝑄).
This cost can be calculated by |{𝑖𝑛𝑠𝑡 (𝑃+)}| ∗𝑐𝑜𝑠𝑡 (𝜙𝑃+), since 𝑐𝑜𝑠𝑡 (𝜙𝑃+) is the expected cost for each
instance 𝑖𝑛𝑠𝑡 (𝑃+) to compute the final result further along the order 𝜙𝑃+ . To estimate |{𝑖𝑛𝑠𝑡 (𝑃+)}|

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:10 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

which is the size of the intersection ∩𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸 |𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) |, we use |{𝑖𝑛𝑠𝑡 (𝑃+)}| = 𝑤 (𝑃,𝑇) ∗∑
𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸 𝑑𝑒𝑔(𝑇 ′,𝑇), where𝑤 (𝑃,𝑇) is the expected value of

|∩𝑇 ′ ∈𝑃,(𝑇 ′,𝑇) ∈𝐸𝑀𝑎𝑡𝑐ℎ (𝑇,𝑡𝑇 ′) |∑
𝑇 ′ ∈𝑃,(𝑇 ′,𝑇) ∈𝐸 |𝑀𝑎𝑡𝑐ℎ (𝑇,𝑡𝑇 ′) | . Similarly

to 𝑑𝑒𝑔(·),𝑤 (·) is updated by

𝑤 (𝑃,𝑇) ← 𝑤 (𝑃,𝑇) ∗ (1 − 𝛿) +
| ∩𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸 𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) |∑

𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸 |𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) |
∗ 𝛿 (2)

where 𝛿 is a predefined parameter.

Note that we need to update the statistics 𝑤 (·) and 𝑑𝑒𝑔(·) during query execution. However,

if we always use the optimal orders to execute the query, some tables 𝑇 may never be selected

as the next table to join for some subqueries 𝑃 , and the corresponding statistics𝑤 (𝑃,𝑇) will not
be updated. This makes some LA costs inaccurate, and the selected orders may get stuck in local

optima. To solve this problem, we use the 𝜖-greedy method. We use the optimal orders to execute

the query with a probability of 1 − 𝜖 and use random orders with a probability of 𝜖 , where 𝜖 is a

predefined parameter. With this strategy, every statistic value has a chance to be updated.

To summarize, the second part of 𝑐𝑜𝑠𝑡 (𝜙𝑃) can be calculated by

𝑐𝑜𝑠𝑡 (𝜙𝑃+) ∗𝑤 (𝑃,𝑇) ∗
∑

𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸 𝑑𝑒𝑔(𝑇 ′,𝑇).
By summing up the two parts, 𝑐𝑜𝑠𝑡 (𝜙𝑃) can be computed recursively using

𝑐𝑜𝑠𝑡 (𝜙𝑃) = (1 +𝑤 (𝑃,𝑇) ∗ 𝑐𝑜𝑠𝑡 (𝜙𝑃+)) ∗
∑︁

𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸
𝑑𝑒𝑔(𝑇 ′,𝑇).

The recursion terminates with 𝑐𝑜𝑠𝑡 (𝜙𝑄) = 0.

Thus, 𝐿𝐴(𝑃) can be recursively computed by

𝐿𝐴(𝑃) =𝑚𝑖𝑛𝜙𝑃
𝑐𝑜𝑠𝑡 (𝜙𝑃)

=𝑚𝑖𝑛𝑇,𝜙𝑃+
©«(1 +𝑤 (𝑃,𝑇) ∗ 𝑐𝑜𝑠𝑡 (𝜙𝑃+)) ∗

∑︁
𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸

𝑑𝑒𝑔(𝑇 ′,𝑇)ª®¬
=𝑚𝑖𝑛𝑇 ∈𝐶𝑎𝑛𝑑𝑁 (𝑃)©«(1 +𝑤 (𝑃,𝑇) ∗ 𝐿𝐴(𝑃 ∪ {𝑇 })) ∗

∑︁
𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸

𝑑𝑒𝑔(𝑇 ′,𝑇)ª®¬
The recursion ends with 𝐿𝐴(𝑄) = 0. To enhance readability, we add a term 𝐿𝐴(𝑃 |𝑇) to represent

the smallest 𝑐𝑜𝑠𝑡 (𝜙𝑃) among all possible 𝜙𝑃 whose first table is 𝑇 :

𝐿𝐴(𝑃 |𝑇) = (1 +𝑤 (𝑃,𝑇) ∗ 𝐿𝐴(𝑃 ∪ {𝑇 })) ∗
∑︁

𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸
𝑑𝑒𝑔(𝑇 ′,𝑇). (3)

Thus,

𝐿𝐴(𝑃) =𝑚𝑖𝑛𝑇 ∈𝐶𝑎𝑛𝑑𝑁 (𝑃)𝐿𝐴(𝑃 |𝑇). (4)

Recall that the first table in the optimal partial order starting at 𝑃 is denoted by 𝑁 (𝑃). It can be

computed by

𝑁 (𝑃) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑇 ∈𝐶𝑎𝑛𝑑𝑁 (𝑃)𝐿𝐴(𝑃 |𝑇). (5)

4.2 Order Computation
4.2.1 The timing of order computation
When a continuous multiway join query is registered in the database, the query is first executed

using random orders. During query execution, we gather statistics about the data distribution in

the database. After handling a predefined number of updates and collecting enough information,

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:11

we have collected enough statistics. At this time, we compute the optimal orders that start from

each table from scratch. After this, we continue to execute the query and keep monitoring the

statistics, and use an incremental algorithm to update the join orders when the distribution changes

significantly.

4.2.2 The method of order computation
In this section, we introduce how to compute the optimal orders from scratch. The method

to incrementally update these orders will be introduced in Section 5. In order to maximize the

computation sharing of LA costs and support the order selection, we propose a cost dependency

graph (abbr. CDG). It indicates the dependency relationships among the LA costs of all subqueries.

And we can find optimal orders by traversing the CDG.

The CDG is a directed acyclic graph. A node in the CDG represents a subquery 𝑃 . We call 𝐿𝐴(𝑃)
and 𝑁 (𝑃) the values of the node 𝑃 , and store them in the node. An edge illustrates the dependency

between the values of two subqueries, indicating that the values of the source node depend on

that of the destination node. According to Equation 3, 4 and 5, an edge in the CDG must start at

a node 𝑃 and end at a node 𝑃 ∪ {𝑇 }. On each edge from 𝑃 to 𝑃 ∪ {𝑇 }, we annotate 𝐿𝐴(𝑃 |𝑇), the
related statistic 𝑤 (𝑃,𝑇), and the related statistics 𝑑𝑒𝑔(𝑇 ′,𝑇) for all 𝑇 ′ ∈ 𝑃 such that (𝑇 ′,𝑇) ∈ 𝐸.

The statistics and the LA cost of the destination node help calculate 𝐿𝐴(𝑃 |𝑇), and 𝐿𝐴(𝑃 |𝑇) help
calculate the values of the source node.

We define the following concepts in CDG:

...

...

...

......

...
...

join graph

Fig. 4. The CDG structure.

(1) A leaf node is a node without children. According to Equation 3, 4 and 5, 𝑄 is the only leaf

node in a CDG. Note that 𝐿𝐴(𝑄) = 0 and 𝑁 (𝑄) has no meaning.

(2) A root node is a node without parents. For every table 𝑇 ∈ 𝑄 , {𝑇 } is a root node, thus there
are |𝑄.𝑉 | root nodes in a CDG.

(3) An order path is a path from a root node to the leaf node. This path should resemble

{𝑇1} → {𝑇1,𝑇2} → . . .→ {𝑇1,𝑇2, . . . ,𝑇𝑛}, illustrating the join order.

(4) An optimal order path is an order path representing an optimal order. The optimal order

{𝑇1} → {𝑇1,𝑇2} → . . .→ {𝑇1,𝑇2, . . . ,𝑇𝑛} satisfies 𝑇𝑖+1 = 𝑁 ({𝑇1,𝑇2, ...,𝑇𝑖 }) for all 𝑖 .
Example 4.1. The example of a CDG and its corresponding join graph is shown in Figure 4. The

edge from {𝑇𝑅} to {𝑇𝑅,𝑇𝑆 } in Figure 4 indicates that the values of {𝑇𝑅} depend on 𝐿𝐴({𝑇𝑅,𝑇𝑆 }).

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:12 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

We use a bold edge from 𝑃 to 𝑃 ∪ {𝑇 } to show 𝑁 (𝑃) = 𝑇 . We use edges in purple to indicate the

optimal order paths: the leftmost purple path represents the optimal join order 𝑇𝑅 → 𝑇𝑆 → 𝑇𝑊 →
𝑇𝑋 → 𝑇𝑌 → 𝑇𝑍 . Note that all purple edges are bold, indicating that optimal orders are calculated

by computing 𝑁 (·).

We can perform a bottom-up breadth-first search (BFS) on the CDG to compute the values of all

nodes, where 𝐿𝐴(𝑃) is computed with Equation 3 and 4, and 𝑁 (𝑃) with Equation 5. By employing

BFS, we ensure that before calculating the values of a node, the values of all its children are already

computed. This allows for the direct computation of the node’s values via Equation 3, 4 and 5.

For each updated table 𝑇 ∈ 𝑄 , we need to compute an optimal order 𝑇1 → 𝑇2 → ... → 𝑇𝑛 that

starts from it, where 𝑇1 = Δ𝑇 . We can obtain this order by a walk in the CDG guided by 𝑁 (·).
Specifically, we start from the root node 𝑃0 = {𝑇 }, and end at the leaf node 𝑄 . For each node 𝑃𝑖 we

visit, the next node is 𝑃𝑖+1 = 𝑃𝑖 ∪ {𝑁 (𝑃𝑖)}. The nodes we visit form the optimal join order.

4.3 Complexity Analysis
Theorem 4.2. The time complexity of using AJOSC to get optimal orders from scratch is 𝑂 (𝑛2𝑛)

(𝑛 = |𝑄.𝑉 |).

Proof. The order selection time of using AJOSC to compute optimal orders from scratch is

dominated by the time to compute the LA costs for all subqueries 𝑃 . To compute the LA cost for

a subquery 𝑃 , we need to evaluate 𝐿𝐴(𝑃 |𝑇) for each 𝑇 in 𝐶𝑎𝑛𝑑𝑁 (𝑃), which has an overhead of

𝑂 (𝑛). For a query with |𝑄.𝑉 | = 𝑛, there are 𝑂 (2𝑛) possible subqueries. Thus, the time complexity

is 𝑂 (𝑛2𝑛). □

Theorem 4.2 shows that the complexity of using AJOSC to get optimal orders from scratch is a

lot smaller than that of StaticDP (𝑂 (𝑛22𝑛)) in the dynamic settings.

5 Incremental Order Recomputation
In Section 4.2, we discussed how to compute the optimal order from scratch. In this section, we

discuss how to recompute the optimal orders when data distribution changes significantly, where

the criteria for a significant change will be discussed in Section 6. One naive approach would be to

recompute the optimal orders from scratch. This requires visiting and updating all nodes in the

CDG. Since there are𝑂 (2𝑛) nodes and𝑂 (𝑛2𝑛) edges in the CDG (𝑛 = |𝑄.𝑉 |), visiting all of them will

bring an unacceptable overhead when 𝑛 is large. To address this issue, we propose an incremental

method to recompute the order. This method updates only the nodes affected by notable changes

in data distribution. Moreover, we propose the LBR method, a Lower Bound based computation

Reduction technique to further reduce the recomputation cost. For a simpler presentation, we first

introduce the basic incremental recomputation algorithm in Section 5.1, and then discuss the LBR

method in Section 5.2.

5.1 Basic Version
In this section, we introduce how to recompute the order incrementally when the data distribution

changes. The pseudocode is shown in Algorithm 1.

When a statistic 𝑠 changes significantly, we perform bottom-up breadth-first searchs (BFS) to

update the values of all affected nodes (line 1-20 in Algorithm 1). Specifically, the BFSs start at the

nodes whose values are calculated directly from the statistic 𝑠 . These nodes are:

(1) The node 𝑃 if 𝑠 = 𝑤 (𝑃,𝑇).
(2) The nodes 𝑃 that satisfy 𝑇 ′ ∈ 𝑃 and 𝑇 ∈ 𝐶𝑎𝑛𝑑𝑁 (𝑃) if 𝑠 = 𝑑𝑒𝑔(𝑇 ′,𝑇).

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:13

Line 1-6 in Algorithm 1 shows the process to compute these nodes. For every node 𝑃𝑠𝑡𝑎𝑟𝑡 whose

values are calculated directly from 𝑠 , we perform an individual BFS starting from 𝑃𝑠𝑡𝑎𝑟𝑡 . During the

bottom-up BFS (line 7-20 in Algorithm 1), we visit 𝑃𝑠𝑡𝑎𝑟𝑡 ’s ancestors, as their values are based on

𝐿𝐴(𝑃𝑠𝑡𝑎𝑟𝑡) and thus are calculated implicitly based on the changed statistic. We update the values

of each node encountered during the BFS, thus all affected node values are updated according to

Equation 3, 4 and 5. We prune a node from the BFS when its values remain unchanged after the

update (line 17 of Algorithm 1).

(b1) (a) (b2) (c2)

Black：exact value

Blue：lower bound

Gray shade：value change

Bold edge: next_table

Purple path: optimal order path

…… … …

2 3

1

4

5

35

𝑃𝛼: 20

𝑃𝛽: 10

𝑃𝛿: 10

𝑃𝛾: 30

𝑃𝜇: 10 …

40 30

………

𝑃𝛽: 12

𝑃𝛿: 10

𝑃𝜇: 10 …

………

𝑃𝛽: 10

𝑃𝛼: 20 𝑃𝛿: 10

𝑃𝛾: 30

𝑃𝜇: 10 …

………

Basic version LBR LBR

45 40 3030

𝑃𝛽: 10

𝑃𝛿: 10

𝑃𝜇: 10 …

35
30

………

20 30
30 𝑇𝛽, 20

𝑤(𝑃𝛽, 𝑇𝜎) 𝑤(𝑃𝛽, 𝑇𝜎)

𝑤(𝑃𝛼, 𝑇𝛽)
𝑃𝛼: 30 𝑃𝛼: 10

𝑃𝛾: 30𝑃𝛾: 30

𝑃𝛼 = 𝑃𝛾∪ 𝑇𝛼 . 𝑃𝛽 = 𝑃𝛼∪ 𝑇𝛽 . 𝑃𝛿 = 𝑃𝛾∪ 𝑇𝛿 .Purple path: optimal order path. 𝑃: 30

𝐿𝐴(𝑃)

𝑃 ∪ {𝑇}: 20
30

𝐿𝐴(𝑃|𝑇)

Bold edge: 𝑁 𝑃 = 𝑇

Legend

Fig. 5. An example of the basic version and the LBR method. Subfigure (a) show a CDG. Subfigure (b1)
shows the CDG after executing the basic version, while (b2) and (c2) show the CDG after executing the LBR
method. Note that Subfigure (b1) is on the left side of (a). Black values are accurate and blue values are
𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 . Changed nodes are highlighted in grey.

Example 5.1. In Figure 5(a), we illustrate a part of a CDG, where the LA costs are annotated on

every node (see ①). In Figure 5(b1) which is on the left side of 5(a), we demonstrate the behavior

of the basic version when 𝑤 (𝑃𝛽 ,𝑇𝜎) changes from 10 to 15. A BFS is initiated from the node 𝑃𝛽
(see ②). We then recalculate 𝐿𝐴(𝑃𝛽) and 𝑁 (𝑃𝛽), discovering that 𝑁 (𝑃𝛽) remains unchanged but

𝐿𝐴(𝑃𝛽) updates from 10 to 12. Then, we visit 𝑃𝛽 ’s parent, 𝑃𝛼 . Similarly, we recompute 𝑃𝛼 ’s values

and move to its parent, 𝑃𝛾 . Then, since 𝑃𝛾 ’s values do not change after the update, we prune it and

the BFS stops.

After all affected values are updated by the BFS, we derive the optimal orders in the same way

as discussed in Section 4.2 (line 21-29 of Algorithm 1).

This incremental algorithm only updates affected nodes, thus avoids traversing the entire CDG.

We can further reduce the value recomputation by allowing the node values to be inaccurate when

they will not affect the optimal order. See the following subsection for details.

5.2 The LBR Method
In this subsection, we discuss the LBR method that further reduces recomputation cost. The LBR

method is based on the following observation:

Theorem 5.2. If a node 𝑃 is not on any optimal order path in the CDG, the optimal orders will not
change if 𝐿𝐴(𝑃) increases.

Proof. When 𝑃 is not on any optimal order path, every order path containing 𝑃 corresponds

to an order 𝜙{𝑇 } with 𝜙∗{𝑇 } ≠ 𝜙{𝑇 } , where 𝜙∗{𝑇 } is the optimal order starting at 𝑇 . Since 𝜙∗{𝑇 }
is optimal, we have 𝑐𝑜𝑠𝑡 (𝜙{𝑇 }) ≥ 𝑐𝑜𝑠𝑡 (𝜙∗{𝑇 }). Since 𝐿𝐴(𝑃) increases, 𝑐𝑜𝑠𝑡 (𝜙{𝑇 }) increases, and
𝑐𝑜𝑠𝑡 (𝜙) ≥ 𝑐𝑜𝑠𝑡 (𝜙∗{𝑇 }) still holds. Thus, the optimal order 𝜙∗{𝑇 } is not affected. □

Example 5.3. In Figure 5(b1), when𝑤 (𝑃𝛽 ,𝑇𝜎) increases from 10 to 15, if we do not update nodes

𝑃𝛽 and 𝑃𝛼 , the optimal order path will continue to be ...→ 𝑃𝛾 → 𝑃𝛿 → ... and is correct.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:14 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

Algorithm 1: 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑎𝑙𝑅𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛

Data: the significantly changed statistic 𝑠

Result: the join order after the recomputation

1 𝐷 ← an empty set /* which contains all nodes whose values are calculated

directly from 𝑠. */

/* update the CDG */

2 if 𝑠 = 𝑤 (𝑃,𝑇) then
3 𝐷 ← 𝐷 ∪ {𝑃}
4 else

/* 𝑠 = 𝑑𝑒𝑔(𝑇 ′,𝑇) */

5 foreach 𝑃 that satisfy 𝑇 ′ ∈ 𝑃 and 𝑇 ∈ 𝐶𝑎𝑛𝑑𝑁 (𝑃) do
6 𝐷 ← 𝐷 ∪ {𝑃}

7 foreach 𝑃𝑠𝑡𝑎𝑟𝑡 ∈ 𝐷 do
8 𝑞 ← an empty queue

9 𝑞.𝑝𝑢𝑠ℎ(𝑃𝑠𝑡𝑎𝑟𝑡)
10 while !𝑞.𝑒𝑚𝑝𝑡𝑦 do
11 𝑃 ← 𝑞.𝑝𝑜𝑝 ()
12 𝐿𝐴(𝑃)𝑜𝑙𝑑 ← 𝐿𝐴(𝑃)
13 foreach 𝑇 ∈ 𝐶𝑎𝑛𝑑𝑁 (𝑃) do
14 𝐿𝐴(𝑃 |𝑇) ← (1 +𝑤 (𝑃,𝑇) ∗ 𝐿𝐴(𝑃 ∪ {𝑇 })) ∗∑𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸 𝑑𝑒𝑔(𝑇 ′,𝑇)
15 𝐿𝐴(𝑃) ←𝑚𝑖𝑛𝑇 ∈𝐶𝑎𝑛𝑑𝑁 (𝑃)𝐿𝐴(𝑃 |𝑇)
16 𝑁 (𝑃) ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑇 ∈𝐶𝑎𝑛𝑑𝑁 (𝑃)𝐿𝐴(𝑃 |𝑇)
17 if 𝐿𝐴(𝑃) ≠ 𝐿𝐴(𝑃)𝑜𝑙𝑑 then
18 if 𝑃 is not a root node then
19 foreach 𝑃 ’s parent node 𝑃𝑝𝑎𝑟𝑒𝑛𝑡 do
20 𝑞.𝑝𝑢𝑠ℎ(𝑃𝑝𝑎𝑟𝑒𝑛𝑡)

/* Compute optimal orders according to 𝑁 (𝑃) */

21 𝑜𝑟𝑑𝑒𝑟𝑠 ← an empty dictionary

22 foreach 𝑇 ∈ 𝑄 do
23 𝑃 ← {𝑇 }
24 𝑜𝑟𝑑𝑒𝑟_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← 𝑇

25 while 𝑃 ≠ 𝑄 do
26 𝑜𝑟𝑑𝑒𝑟_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 ← (𝑜𝑟𝑑𝑒𝑟_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 → 𝑁 (𝑃))
27 𝑃 ← 𝑃 ∪ {𝑁 (𝑃)}
28 𝑜𝑟𝑑𝑒𝑟𝑠 [𝑇] ← 𝑜𝑟𝑑𝑒𝑟_𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒

29 return 𝑜𝑟𝑑𝑒𝑟𝑠

Therefore, if the LA cost of a node increases and the node is not on any optimal order path, we

do not need to compute the node’s accurate values, thus reducing recomputation.

In the LBR method, we add a tag to every node 𝑃 in the CDG to record whether the node values

are accurate or not. The tag is either 𝐸𝑋𝐴𝐶𝑇 or 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 . 𝐸𝑋𝐴𝐶𝑇 indicates that the values

are accurate. 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 indicates that the current 𝐿𝐴(𝑃) and 𝑁 (𝑃) are not accurate, and

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:15

that the accurate 𝐿𝐴(𝑃) is no less than the currently stored 𝐿𝐴(𝑃). In other words, the current

𝐿𝐴(𝑃) is the lower bound of the actual 𝐿𝐴(𝑃). When we determine that the change of a node’s

values will not affect the optimal orders, we can simply set its tag as 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 and do not

update its values.

Next, we explain how to maintain the CDG and compute the optimal orders in the LBR method.

Initialization: when the continuous multiway join query begins, we compute the CDG from

scratch using the method in Section 4.2, and set all tags as 𝐸𝑋𝐴𝐶𝑇 .

When a statistic changes significantly, similarly to the basic version, the update of the CDG and

the join orders can be divided into two phases. The first phase is to perform bottom-up BFSs in the

CDG to maintain the values and tags of the affected nodes. The second phase is to compute the

optimal orders.

First Phase: CDG Maintenance. In the first phase, we use different strategies in the BFSs

depending on whether the change is an increase or decrease.

Statistic increment: when a statistic 𝑠 increases, we set the tag of every node visited in the

bottom-up BFSs as 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 , and do not update their values. As stated above, the increment

of an LA cost may not affect the optimal orders. Thus, we delay the value updates to the order

computation phase, where we determine whether these updates will affect the optimal orders, and

apply updates only when necessary. We prune a node 𝑃 from the BFS when either of the following

two cases happens:

(1) When 𝑃 ’s tag is already 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 before we visit it.

(2) When we travel to 𝑃 from (𝑃 ∪ {𝑇 }) and find that P’s tag is 𝐸𝑋𝐴𝐶𝑇 and 𝑁 (𝑃) ≠ 𝑇 .

In the second case, since 𝑁 (𝑃) ≠ 𝑇 , we know that (𝑃 ∪ {𝑇 }) is not in the optimal partial order

𝜙∗
𝑃
before the update. As the statistics increment must result in the increment of 𝐿𝐴(𝑃 ∪ {𝑇 }),

(𝑃 ∪ {𝑇 }) stays out of 𝜙∗
𝑃
after the update. Thus 𝜙∗

𝑃
does not change. Recall that 𝐿𝐴(𝑃) = 𝑐𝑜𝑠𝑡 (𝜙∗

𝑃
),

and 𝑁 (𝑃) is the first table in 𝜙∗
𝑃
. Thus, 𝐿𝐴(𝑃) and 𝑁 (𝑃) is not changed. Hence, the node 𝑃 can be

pruned from the BFS.

Example 5.4. In Figure 5(b2), we illustrate the behavior of the LBR method when 𝑤 (𝑃𝛽 ,𝑇𝜎)
increases from 10 to 15. BFS starts at 𝑃𝛽 (see ③), and 𝑃𝛽 .𝑡𝑎𝑔 is set as 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 (values with

tag 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 are marked in blue). Then, we visit its parent 𝑃𝛼 . Since 𝑁 (𝑃𝛼) = 𝑇𝛽 , we do not

prune 𝑃𝛼 and the BFS continues. We assign 𝑃𝛼 .𝑡𝑎𝑔 to 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 and proceed to its parent

𝑃𝛾 . As 𝑃𝛾 .𝑡𝑎𝑔 = 𝐸𝑋𝐴𝐶𝑇 and 𝑁 (𝑃𝛾) ≠ 𝑇𝛼 , according to the second rule listed above, we can prune

this BFS branch. Note that we avoid recomputing the values of 𝑃𝛾 and 𝑃𝛽 using the LBR method,

thus reducing the overhead.

Statistic decrement: when a statistic decreases, the BFSs to maintain the node values are the

same as the basic version, except for tag maintenance. When we visit a node 𝑃 during BFSs, we

first compute 𝑁 (𝑃) and 𝐿𝐴(𝑃) according to the node values of its children. Then we set 𝑃 .𝑡𝑎𝑔 as

the tag of its child 𝑃 ∪ {𝑁 (𝑃)}. Because 𝐿𝐴(𝑃) are computed by𝑚𝑖𝑛𝑇 ∈𝐶𝑎𝑛𝑑𝑁 (𝑃)𝐿𝐴(𝑃 |𝑇), it relies
on the value of 𝐿𝐴(𝑃 |𝑁 (𝑃)), which further relies on 𝐿𝐴(𝑃 ∪ {𝑁 (𝑃)}). If the tag of 𝑃 ∪ {𝑁 (𝑃)} is
𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 , the node values of 𝑃 are also inaccurate. We prune a node if its current values

and tag do not change.

Example 5.5. In Figure 5(c2), we demonstrate the behavior when𝑤 (𝑃𝛼 ,𝑇𝛽) decreases from 20

to 10. A BFS is initiated from the node 𝑃𝛼 (see ④). At the node 𝑃𝛼 , 𝐿𝐴(𝑃𝛼) updates from 20 to 10,

𝑁 (𝑃𝛼) remains unchanged, and 𝑃𝛼 .𝑡𝑎𝑔 remains the same as 𝑃𝛽 .𝑡𝑎𝑔, namely 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 . We

then visit 𝑃𝛼 ’s parent, 𝑃𝛾 . Since 𝑃𝛾 ’s values and tag do not change, we prune this BFS branch and

the BFS stops.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:16 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

Second Phase: Order Computation.When we complete the BFSs in the first phase, we start

computing the optimal orders. Similarly to the basic version, we compute the optimal order starting

at an updated table 𝑇 by a top-down traverse from root node {𝑇 } following 𝑁 (·). However, as we
delay a part of the node value updates during the above BFSs, the accurate value of 𝑁 (·) of the
descendants of 𝑇 need to be computed in this process.

We use a recursive procedure𝐺𝑒𝑡𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 (𝑃) (Algorithm 2) to calculate the accurate 𝐿𝐴(𝑃)
and 𝑁 (𝑃) for each node 𝑃 that we visit in the top-down search. In the procedure, we initially assign

𝐿𝐴(𝑃) to infinity (line 1). Subsequently, we visit 𝑃 ’s children 𝑃 ∪ {𝑇 } in ascending order of 𝐿𝐴(𝑃 |𝑇)
to refine 𝐿𝐴(𝑃) and 𝑁 (𝑃) until a termination condition is met (line 2-19).

Specifically, when visiting a child 𝑃 ∪ {𝑇 }, we first compute its accurate values (line 6-7). If

the child’s tag is 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 , we call 𝐺𝑒𝑡𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 (𝑃 ∪ {𝑇 }) to get its accurate values.

Otherwise, its values are already accurate. Next, we compute 𝐿𝐴(𝑃 |𝑇) from 𝐿𝐴(𝑃 ∪ {𝑇 }) (line 8).
Finally, we update 𝐿𝐴(𝑃) as the minimum of all seen 𝐿𝐴(𝑃 |𝑇), i.e. update 𝐿𝐴(𝑃) as

𝑚𝑖𝑛(𝐿𝐴(𝑃), 𝐿𝐴(𝑃 |𝑇)). 𝑁 (𝑃) is updated accordingly (line 9-11).

Note that we do not need to visit all the children of 𝑃 . We can stop the visits when we meet one

child 𝑃 ∪ {𝑇 } where 𝐿𝐴(𝑃 |𝑇) ≥ 𝐿𝐴(𝑃) (line 15-19). Because we visit the children of 𝑃 in ascending

order of 𝐿𝐴(𝑃 |𝑇), the following unvisited children must have larger 𝐿𝐴(𝑃 |𝑇) values, and will not

influence 𝐿𝐴(𝑃). Although these 𝐿𝐴(𝑃 |𝑇) may not be accurate, since they are lower bounds, the

accurate values are even higher. Therefore, we can safely prune the visits to them. When this

happens, we set 𝑃 .𝑡𝑎𝑔 = 𝐸𝑋𝐴𝐶𝑇 , and return the procedure (line 18-19).

Algorithm 2: 𝐺𝑒𝑡𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠
Data: Node 𝑃
Result: Accurate 𝐿𝐴(𝑃) and 𝑁 (𝑃). (Return value: 𝑁𝑈𝐿𝐿)

1 𝐿𝐴(𝑃) = 𝐼𝑁 𝐹

2 𝑐ℎ𝑖𝑙𝑑_𝑣𝑒𝑐 ← sort 𝑃 ’s children 𝑃 ∪ {𝑇 } in ascending order of 𝐿𝐴(𝑃 |𝑇).
3 𝑐ℎ𝑖𝑙𝑑_𝑛𝑢𝑚 ← 𝑐ℎ𝑖𝑙𝑑_𝑣𝑒𝑐.𝑠𝑖𝑧𝑒 ()
4 foreach 𝑖 in 0, 1, ..., 𝑐ℎ𝑖𝑙𝑑_𝑛𝑢𝑚 − 1 do
5 𝑇 ← 𝑐ℎ𝑖𝑙𝑑_𝑣𝑒𝑐 [𝑖] − 𝑃 // the child node is 𝑃 ∪ {𝑇 }.
6 if (𝑃 ∪ {𝑇 }) .𝑡𝑎𝑔 = 𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 then
7 𝐺𝑒𝑡𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 (𝑃 ∪ {𝑇 })
8 𝐿𝐴(𝑃 |𝑇) ← (1 +𝑤 (𝑃,𝑇) ∗ 𝐿𝐴(𝑃 ∪ {𝑇 })) ∗∑𝑇 ′∈𝑃,(𝑇 ′,𝑇) ∈𝐸 𝑑𝑒𝑔(𝑇 ′,𝑇)
9 if 𝐿𝐴(𝑃) > 𝐿𝐴(𝑃 |𝑇) then
10 𝐿𝐴(𝑃) ← 𝐿𝐴(𝑃 |𝑇)
11 𝑁 (𝑃) ← 𝑇

12 if 𝑖 = 𝑐ℎ𝑖𝑙𝑑_𝑛𝑢𝑚 − 1 then
13 𝑃 .𝑡𝑎𝑔← 𝐸𝑋𝐴𝐶𝑇

14 return

15 𝑃𝑛𝑒𝑥𝑡_𝑐ℎ𝑖𝑙𝑑 ← 𝑐ℎ𝑖𝑙𝑑_𝑣𝑒𝑐 [𝑖 + 1]
16 𝑇 ← 𝑃𝑛𝑒𝑥𝑡_𝑐ℎ𝑖𝑙𝑑 − 𝑃
17 if 𝐿𝐴(𝑃) ≤ 𝐿𝐴(𝑃 |𝑇) then
18 𝑃 .𝑡𝑎𝑔← 𝐸𝑋𝐴𝐶𝑇

19 return

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:17

Example 5.6. We discuss how to execute 𝐺𝑒𝑡𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 (𝑃𝛾) after updating the CDG when

𝑤 (𝑃𝛼 ,𝑇𝛽) decreases from 20 to 10. The updated CDG is shown in Figure5(c2). 𝑃𝛾 (see ⑤) has two

children, 𝑃𝛼 and 𝑃𝛿 , and their corresponding 𝐿𝐴(𝑃𝛾 |·) values are 35 and 30 respectively. Thus, we

visit the node with the smaller 𝐿𝐴(𝑃𝛾 |·) value first, which is 𝑃𝛿 . Since 𝑃𝛿 .𝑡𝑎𝑔 = 𝐸𝑋𝐴𝐶𝑇 , its LA cost

is accurate. We set 𝐿𝐴(𝑃𝛾) to 30 and 𝑁 (𝑃𝛾) to 𝑇𝛿 . Then we visit 𝑃𝛼 and find that 𝐿𝐴(𝑃𝛾 |𝑇𝛼) = 35,

which is larger than 𝐿𝐴(𝑃𝛾). Thus, we set 𝑃𝛾 .𝑡𝑎𝑔 as 𝐸𝑋𝐴𝐶𝑇 and return the procedure. Note that

we do not need to compute the actual values of 𝑃𝛼 and its descendants.

In this way, when encountering a node 𝑃 whose tag is

𝐿𝑂𝑊𝐸𝑅𝐵𝑂𝑈𝑁𝐷 during the optimal order computation, we call 𝐺𝑒𝑡𝐴𝑐𝑡𝑢𝑎𝑙𝑉𝑎𝑙𝑢𝑒𝑠 (𝑃) to calculate

its actual values.

6 Reordering Delay Mechanism
In Section 5, we covered the method for recomputing the join order when there is a significant

change in a statistic. In this section, we clarify the criteria for a "significant change". Specifically,

we determine when a change in a statistic will trigger join reordering.

One naive approach would be to trigger reordering when a statistic changes beyond a predefined

ratio. Specifically, for each statistic, which is either of the form𝑤 (·) or of the form 𝑑𝑒𝑔(·), we store
two values. The first is a current value, which is used to compute the 𝐿𝐴(𝑃 |𝑇) values. The second
is an actual value, which is updated by Equation 1 or 2 during query execution. When the ratio of

the current value to the actual value (or its reciprocal) is beyond a predefined threshold 𝑡ℎ𝑟𝑒 , we

set the current value as the actual value and trigger the reordering algorithm. Here, the current

value also serves as a historical record of the statistic value.

However, this approach will trigger unnecessary reordering when encountering outliers of

|𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) | values which significantly deviate from its expected values. Recall that the statistic

𝑑𝑒𝑔(𝑇 ′,𝑇) are weighted averages of the |𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) | values encountered during query execution,
with more weight given to recent data. A recent outlier of |𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) | will drastically change

the actual value of 𝑑𝑒𝑔(𝑇 ′,𝑇) and trigger the order recomputation. However, since such outliers

are rare, their impact on the data distribution is small and the statistics will quickly return to the

expected values as new updates are handled. Thus, the recomputations triggered by outliers do not

improve the join orders under the current data distribution and are not worth the overhead.

We propose a reordering delay mechanism to solve this problem. We add a counter for every

𝑑𝑒𝑔(𝑇 ′,𝑇). Every time we update 𝑑𝑒𝑔(𝑇 ′,𝑇) during the execution of the query, we check whether

the ratio of the current value to the actual value (or its reciprocal) is beyond 𝑡ℎ𝑟𝑒 . If so, the counter

is added by 1. When the counter reaches a predefined counter threshold 𝑐 , the reordering algorithm

is triggered and the current value is set as the actual value. In this way, the current value will be

updated only when the actual value persists for a certain period, which indicates that the expected

value of |𝑀𝑎𝑡𝑐ℎ(𝑇, 𝑡𝑇 ′) | has really changed. Thus, we will trigger reordering only when the data

distribution has really changed, and the reordering overhead will be greatly reduced. Note that

we do not use the reordering delay mechanism for the statistics 𝑤 (·), because according to our

experiments, outliers of

|∩𝑇 ′ ∈𝑃,(𝑇 ′,𝑇) ∈𝐸𝑀𝑎𝑡𝑐ℎ (𝑇,𝑡𝑇 ′) |∑
𝑇 ′ ∈𝑃,(𝑇 ′,𝑇) ∈𝐸 |𝑀𝑎𝑡𝑐ℎ (𝑇,𝑡𝑇 ′) | values are very rare and will not influence the

overall performance.

7 Experimental Evaluation
In this section, we discuss the experimental evaluation. In Section 7.1, we introduce the experiment

setup. In Section 7.2, we compare AJOSC with state-of-the-art algorithms in terms of speed. In

Section 7.3, we conduct ablation studies of the LBR method in Section 5.2 and the reordering delay

mechanism in Section 6.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:18 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

7.1 Experiment Setup
In the experiments, all competing algorithms are implemented in c++. The codes are open sourced

anonymously [2]. We conduct experiments on a Linux server with 1TB DRAM and two Intel Xeon

2.30GHz 16-core CPU. We use 𝜃 = 0.04, 𝛾 = 0.05, 𝑡 = 1.5, 𝑐 = 200 by default in the implementation. If

a query takes longer than 4 hours to complete, we terminate the query. The speedups are calculated

using 4 hours as the execution time for queries exceeding 4 hours.

Datasets and workloads. We conduct experiments on three benchmarks, the join order bench-

mark (JOB)[29], LDBC-SNB [17], and JCC-H[10].

In the experiments, the datasets in these benchmarks are used to create the initial databases

and generate the update streams. Specifically, the tables in these benchmarks are divided into 2

categories: dimensional tables and fact tables. The dimensional tables are static and are used to

create the initial databases. The tuples inside these tables are in the initial database and never

deleted. The fact tables are used to generate the update streams. We use the sliding window model

[13] to transform the fact tables into update streams. To be specific, we assign a timestamp to each

tuple in the fact tables. The tuple insertions are generated sequentially according to the assigned

timestamps of the tuples. To generate tuple deletions, we define a sliding window size of 𝑁 and

keep track of the maximum timestamp 𝑇 among the inserted tuples. When 𝑇 − 𝑁 becomes larger

than the timestamp of a tuple, the deletion of the tuple is generated.

As for the query workloads, we remove the select, project and aggregate operators in the queries

of these benchmarks. The compared algorithms differentiate with each other only in the execution

of join operators. The performance of the other operators is the same. Thus, we remove the other

operators to focus on the join performance.

Table 2 shows the statistics of the three datasets.

Table 2. Properties of the benchmarks

tuples

raw dataset size sliding window size

dimensional fact

JOB 1.8M 72.4M 3.6GB 10M tuples

LDBC 24K 175M 6.2GB 3 days

JCC 10K 8.7M 1.1GB 1M tuples

JOB uses the IMDB dataset which includes real-world data about movies and related information

about actors, directors, production companies, etc. It consists of 21 tables. We assign 12 tables with

less than 1M tuples as dimensional tables and 9 other tables as fact tables. We randomly shuffle all

tuples in the fact tables and assign a monotonically non-decreasing timestamp for each tuple with a

fixed rate, except tuples in the "movie keyword" table. We set the sliding window size to 10M tuples.

The insertions and deletions of tuples in the "movie keyword" table are manipulated to examine

the performance of AJOSC under conditions of sudden changes in data distribution, a scenario

frequently encountered in real-world applications. To achieve this, we periodically insert a part

of the tuples in the "movie keyword" table consecutively. These tuples are deleted consecutively

shortly thereafter. Note that the update stream is generated using a combination of the sliding

window model and explicit deletions: the deletions of the tuples in the "movie keyword" table

do not follow the sliding window model. JOB contains 33 query structures. |𝑄.𝑉 | in each query

structure ranges from 4 to 17, and |𝑄.𝐸 | ranges from 4 to 28. Each query structure has 2-6 variants

with different select conditions. Since we omit the select conditions, we obtain 33 queries with

equi-join conditions only.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:19

LDBC-SNB uses a synthetic graph dataset simulating social networks. We transform the dataset

with a scale factor of 10 from the graph model to the relational model following [24] to obtain a

relational dataset. It includes 13 tables, where the LDBC SNB documentation [1] categorizes 3 tables

as dimensional tables and 10 tables as fact tables. The update stream is generated with the sliding

window model. We set the sliding window size to 3 days and assign the timestamp to every tuple

using the creation dates given in the original dataset. These creation dates are generated to simulate

real-world social networks [1], thus its data distribution change reflects the pattern in real-world

applications. LDBC-SNB has 21 graph queries. We transform the queries to multiway join queries

following [24]. After the transformation, some queries contain no more than 2 tables, and thus

are not multi-way join queries. We omit those queries to get 6 cyclic and 6 acyclic multi-way join

queries. |𝑄.𝑉 | of each query ranges from 3 to 6, and |𝑄.𝐸 | ranges from 2 to 8.

JCC-H represents a modified form of TPC-H, which is a benchmark designed for decision support.

The dataset models the retail industry market, and it features highly skewed data distributions.

It consists of 8 tables, where we assign 3 tables with less than 0.1M tuples as dimensional tables,

and 5 other tables as fact tables. In the experiments, we randomly shuffle all tuples and assign

monotonically non-decreasing timestamps to them with a fixed rate. We set the sliding window

size to 1M tuples. As for query workloads, JCC-H consists of 22 queries, which contain select,

project, and aggregate operations. After deleting these operations, only 4 different queries remain.

To expand the query set, we randomly select 30 additional queries from the JCC-H dataset. We

transform the dataset into a graph and sample 30 subgraphs of sizes 4, 6, and 8. Then we transform

these subgraphs back to multi-way join queries. Since most of these queries take more than 4 hours

to execute, we only report queries that can be completed within 4 hours in Section 7.2. |𝑄.𝑉 | in
each reported query ranges from 3 to 6, and |𝑄.𝐸 | ranges from 3 to 7.

Comparative Algorithms. We compare AJOSC with 5 algorithms. There are four state-of-the-

art join order selection methods for continuous multi-way joins, named Two-Step+ [28], Golab’s

algorithm [18], Lottery scheduling [6] and AGreedy [7] respectively. All algorithms use heuristics.

Specifically, TwoStep+, Golab’s and AGreedy use greedy approaches, where the table that is expected

to yield the smallest intermediate results is ordered first. Two-Step+ recomputes the join order

every time an update appears. Golab’s algorithm recomputes the join orders only when the ratio

of the recent stream rates to previous rates (or their reciprocal) exceed a predefined threshold

which is set as 1.2 in our experiments. AGreedy uses a structure called matrix view to maintain

statistics and recompute the order when the statistics show that an invariant is violated. The other

heuristic, Lottery Scheduling, decides the next table to join using a probabilistic approach, where

the tables expected to yield the smallest intermediate results have more chance to be selected. In

addition to the 4 heuristics, we also compare AJOSC with the dynamic programming algorithm

(StaticDP) described in Section 3. We use StaticDP to recompute the join orders from scratch in a

batch manner to adapt to changes in data distribution. The batch size is set to 1000 updates.

These methods are all the state-of-the-art join order selection methods for continuous multi-way

joins we find.

Data ingestion method. In our experiments, we process data updates in the update stream

consecutively in the order of their timestamps. When an algorithm finishes processing an update

operation, it will immediately get the next one in the update stream. In this way, each algorithm

is evaluated with its utmost processing power, i.e. with the maximum data ingestion rate it can

handle. This processing method is widely use in previous works, e.g. [28].

7.2 Speed Comparison
We compare the execution time and the tail latency of the queries.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:20 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

0

5

10

15

20

25

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33

E
xe

cu
ti

o
n

 t
im

e
 (

se
co

n
d

s)

AJOSC TwoStep+ Golab's StaticDP Lottery AGreedy |Q.V|

Fig. 6. Comparison of the execution time on JOB. The underlined queries involve the "movie keyword" table
and are influenced by abrupt fluctuations in data distribution. The execution times exceeding 4 hours are
marked as 4 hours.

Table 3. Average execution time (seconds)

AJOSC TwoStep+ Golab’s StaticDP Lottery AGreedy

JOB 359 2857 1048 1225 638 698

LDBC 404 1604 1302 618 806 881

JCC 2935 7950 7240 4014 4747 5919

Table 4. Average 99.9% tail latency (microseconds)

AJOSC TwoStep+ Golab’s StaticDP Lottery AGreedy

JOB 62 1386 130 419 107 100

The average execution time is shown in Table 3. Due to space limitation, we only show the

execution time of every query in JOB in Figure 6. AJOSC is faster than all the comparative algorithms

and the speed-up is up to 2 orders of magnitude. Averaging across all three benchmarks, AJOSC is

on average 4.0x faster than Two-Step+, 2.6x faster than Golab’s algorithm, 1.8x faster than StaticDP,

1.7x faster than Lottery Scheduling, and 2.0x faster than AGreedy. As stated in Section 7.1, the

execution time reflects the maximum data ingestion rate that an algorithm can handle, which can

be computed by dividing the total update number by the execution time.

Recall that the JOB dataset simulates sudden changes in data distribution by continuously

inserting and deleting tuples from the "movie keyword" table. In Figure 6(a), queries involving this

table are underlined. AJOSC is 4.48x faster than StaticDP for these queries in terms of average

query time. This is significantly higher compared to the speedups for the queries with stable

data distribution. This demonstrates the effectiveness of AJOSC in timely response to distribution

change. In contrast, StaticDP with the batch manner update cannot adapt quickly to the change

and suffers from sub-optimal orders. On the other hand, when the distribution is stable, AJOSC is

still faster than StaticDP because of its lower overhead of order computation.

In queries with larger |𝑄.𝑉 |, the speedup of AJOSC over StaticDP is greater, which supports the

theoretical analysis presented in Section 4.3 that the time complexity of StaticDP is 𝑂 (|𝑄.𝑉 |) times

larger than that of AJOSC. For example, the |𝑄.𝑉 | of query 1 and 28 are respectively 5 and 14, and

the speedups are 1.22x and 14x respectively. The speedup of the larger query 28 is much larger

than that of the smaller query 1.

The 99.9% tail latencies are shown in Table 4. Compared to AJOSC, Two-Step+’s average latency

is 22x higher, Golab’s is 2.1x higher, StaticDP’s is 8x higher, Lottery Scheduling’s is 1.7x higher and

AGreedy’s is 1.6x higher. These findings indicate a significant performance disparity in favor of

AJOSC with respect to latency management.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:21

0

1000

2000

3000

4000

AJOSC TwoStep+ Golab's StaticDP Lottery AGreedyA
ve

ra
g

e
 t

im
e
 (

se
co

n
d

s)

order selection decide whether to trigger selection

statistic maintanence execution

0

1000

2000

3000

4000

AJOSC TwoStep+ Golab's StaticDP Lottery AGreedy

A
ve

ra
g

e
 t

im
e
 (

se
co

n
d

s)

order selection statistic maintanence execution

Fig. 7. Running Time Breakdown

7.3 Ablation Studies
In this subsection, we prove that the LBR method and the reordering delay mechanism are effective,

by comparing AJOSC with degraded versions without those techniques using the JOB benchmark.

The experiment results are shown in Table 5.

Table 5. Ablation study: Average execution time (seconds).

AJOSC basic incremental naïve trigger reordering

JOB 359 485 535

The effect of the LBR method.We compare AJOSC with a degraded version using the basic

version of the incremental reordering algorithm in Section 5.1. The full AJOSC is 1.35x faster than

the degraded version on average, which proves the effectiveness of the LBR method.

The effect of the reordering delay mechanism. We compare AJOSC with a degraded variant

that utilizes a naive triggering reordering algorithm, which triggers order recomputation whenever

statistics change beyond a predefined threshold. The full AJOSC is 1.49x faster than the degraded

version on average, which proves the effectiveness of the reordering delay mechanism.

7.4 Running Time Breakdown
The process of running a continuous multiway join query includes maintaining statistics, selecting

join orders, and executing the query. Figure 7 shows the average running time breakdown on JOB.

As shown in the figure, the overhead of AJOSC is remarkably small. The running time is almost all

on query execution. The overhead of Golab’s and AGreedy is also very small, but their selected

orders are worse than AJOSC’s, since they are both greedy heuristics. The overhead of Lottery

scheduling, StaticDP and TwoStep+ is much larger than AJOSC, but they fail to select better orders.

7.5 Scalability Evaluation
In this subsection, we vary the sliding window size to test the scalability of AJOSC. The results are

shown in Figure 8. We show the average time of all queries in JOB, and show the results of queries

5, 19 and 29 which cover small, medium, and large query sizes. As shown in Figure 8, the execution

time is longer with larger sliding window sizes. This is because when the window size increases,

the number of active tuples in the fact tables increases, where active tuples are the tuples inserted

and not deleted yet. Having a larger number of active tuples leads to higher join costs among these

tuples.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:22 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

1E+2

1E+3

1E+4

5M 10M 15M 20M

q
u

e
ry

 t
im

e
 (

se
co

n
d

s)

sliding window size

average query 5 (|Q.V|=5) query 20 (|Q.V|=10) query 29 (|Q.V|=17)

Fig. 8. Performance with different sliding window sizes

1E+0

1E+1

1E+2

1E+3

0.02 0.04 0.08 0.16

T
im

e
 (

se
co

n
d

s)

𝜃

0.025 0.05 0.1 0.2
𝛿

1.2 1.5 1.8 2.1
𝑡ℎ𝑟𝑒

query 20 (JOB) is6 (LDBC) s4-3 (JCC)

QUERYWISE：

50 100 200 400

𝑐

Fig. 9. Sensitivity

7.6 Sensitivity Evaluation
In this subsection, we vary the parameters 𝜃, 𝛿 , 𝑡ℎ𝑟𝑒 and 𝑐 to test the sensitivity of AJOSC to the

parameters on all 3 benchmarks. We choose query 20 from JOB, is6 from LDBC, s4-3 from JCC as

the representative queries. These queries cover all benchmarks, and show the sensitivity of AJOSC

for different data distributions. The results are shown in Figure 9.

Recall that 𝜃 determines the weights of new values when updating the 𝑑𝑒𝑔(·) statistics (Equation
1), and 𝛿 determines the weights of new values when updating the 𝑤 (·) statistics (Equation 2).

For these 2 parameters, increasing their values tends to create greater jitter in statistics. This will

trigger unnecessary reorderings that bring greater overhead. Furthermore, when encountering

outliers, larger parameters will cause the statistics to increase greatly. This leads to inaccurate

statistics, which cause AJOSC to select suboptimal orders. In contrast, smaller parameters make

reordering less frequent, which can lead to outdated orders. As shown in Figure 9, both larger and

smaller 𝜃 and 𝛿 result in longer execution time.

𝑡ℎ𝑟𝑒 is the threshold for a "significant" change in statistics (Section 6). When 𝑡ℎ𝑟𝑒 is small, AJOC

frequently triggers reordering, leading to high overhead. When 𝑡ℎ𝑟𝑒 is large, the algorithm rarely

reorders, which results in outdated orders. As shown in Figure 9, both larger and smaller 𝑡ℎ𝑟𝑒 result

in longer execution time.

𝑐 is the count threshold in the reordering delay mechanism. When 𝑐 is small, outliers trigger

more unnecessary order recomputations, which enlarges overhead and causes suboptimal orders

because outliers make statistics inaccurate. When 𝑐 is large, when data distribution changes, order

recomputation will be delayed, which results in suboptimal orders when orders have not been

recomputed. As shown in Figure 9, both larger and smaller 𝑐 results in longer execution time.

Generally, the performance of AJOSC is stable when 𝜃 ranges from 0.02 to 0.04, when 𝛿 ranges

from 0.025 to 0.05, and when 𝑐 ranges from 100 to 400. On JOB and LDBC, the performance of

AJOSC is stable when 𝑡ℎ𝑟𝑒 ranges from 1.2 to 1.5. On JCC, the performance of AJOSC is stable

when 𝑡ℎ𝑟𝑒 ranges from 1.2 to 2.1. Note that JCC has a lower sensitivity to parameters. Because the

data distribution is stable on JCC, delay in order recomputation will not lead to suboptimal orders.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:23

7.7 Assumption Verification
Recall that when a tuple is inserted into (or deleted from) the database, we assumpt that the join

order needs to start at the updated table. In this subsection, we conduct experiments to verify this

assumption. We conduct this experiment on query 1 of JOB. We enumerate all the 36 possible

join orders that can keep the join graph connected and avoid Cartesian products in the joining

process. For each join order, we use it in the whole executing process of a query. Since the updated

table is constantly changing, most continuous queries are executed with a join order that does not

start from the updated table. It turns out that none of these 36 experiments finishes in 4 hours.

In contrast, it only takes 72 seconds to run query 1 of JOB when the join orders always start at

the updated table. This shows that if the updated table is not the first in the join order, the query

execution will be really slow.

8 Related Work
8.1 ContinuousQueries
Continuous queries, also known as standing queries, continuously monitor query results as the

database is updated. The CQL continuous query language [5] is a SQL-based declarative language to

register continuous queries. AJOSC can be used in CQL engines to accelerate continuous multi-way

join.

8.2 Join Order Selection
8.2.1 Static setting. The join order selection problem, i.e. how to select a good join order for a

multi-way join query, has been richly explored in the static settings [11, 14, 31, 36, 37, 41, 42, 47–49].

One classical solution is StaticDP [37], which we discuss in Section 3. With the development of

machine learning, recently several works use deep reinforcement learning to learn a good join

order [11, 31, 48, 49].

Static setting + adaptive query processing. In static settings, cardinality estimation is impor-

tant for join order selection, but estimating cardinalities before query execution both accurately and

quickly is very hard. To get proper join orders without using too much time estimating cardinalities

before execution, some works begin query execution with suboptimal orders, but gather addi-

tional information during query execution. This additional information helps refine the cardinality

estimates, and the query processing system can switch to better join orders using the refined

accurate estimates. This technique is called adaptive query processing. The works on adaptive

query processing in static settings include [41, 42, 47]. They use machine learning techniques to

use new information to compute new query plans.

8.2.2 Dynamic setting. Join order selection for the dynamic settings has also been explored in pre-

vious works [6, 7, 18, 28]. Since in the dynamic settings, data distribution may change dramatically

over time, the idea of adaptive query processing is also used in the dynamic settings. Adaptive query

processing techniques in the dynamic settings collect information during query execution and

compute new join orders suitable for the current data distribution. The lottery scheduling method

[6] decides the next table to join using the current join selectivity estimates. However, it spends

a lot of time exploring suboptimal orders [32], which makes it slower than AJOSC. This is also

shown in our experiments in Section 7.4. Two-Step+ [18] and Golab’s algorithm [28] use greedy

approaches to choose join orders using the current cost estimates. The Stanford STREAM system

[4] proposes AGreedy [7], a greedy approach to adaptively change the filtering order of pipelined

stream filters, which can be transformed to compute the join order. Comparing to [7, 18, 28], AJOSC

can select optimal join orders if the statistics are accurate, while these 3 greedy approaches cannot.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

126:24 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

Thus, AJOSC spends less time executing the queries, which is shown in our experiments in Section

7.4.

8.3 Other Techniques for Continuous JoinQueries
To accelerate the execution of continuous multiway join, numerous works maintain intermediate

results of the join queries and join the incoming tuple with the intermediate results to obtain

the results directly. This topic is called incremental view maintenance (abbr. IVM), and extensive

research has been conducted on this topic [3, 21, 25, 40, 43]. These works [19, 23, 32, 46] apply

adaptive query processing methods to accelerate incremental view maintenance. Continuous

subgraph matching (abbr. CSM) algorithms [12, 27, 35, 38, 39], which are analogous to continuous

multi-way join algorithms in the context of graph databases, operate similarly to IVM approaches.

AJOSC differs from these works: IVM and CSM algorithms maintain views to accelerate the queries,

which occupy large amounts of memory, making these works inapplicable to scenarios with a

large amount of data. For example, [25] processes 125M tuples (totaling 5GB), but requires 32GB of

memory, which is 6.4 times the data size. In contrast, AJOSC does not use views and consumes

much less memory, making it applicable in a broader range of scenarios. Moreover, the join order

selection algorithm of the IVM/CSM methods cannot work without maintaining views, since the

join orders of these methods depend on the views.

There are also prior works studying window-based multi-joins, e.g. [50]. In these works, tuples

are deleted in the order of their timestamps. In contrast, AJOSC is capable of managing not only

window-based multi-joins, but also arbitrary deletions (which are also called explicit deletions). In

the explicit deletion scenario, tuples are deleted according to received instructions, which do not

follow temporal order.

There are also studies on sharing the computation of multiple continuous multi-way join queries

[16, 33] and reaching high scalability in the distributed setting [15, 26, 45]. In this paper, we focus

on accelerating a single query on a single computation node.

9 Conclusion
In this paper, we propose AJOSC, an adaptive join order selection algorithm for continuous multi-

way join queries. We propose a new cost model named LA cost that can select high-quality join

orders with low overhead, an incremental reordering algorithm that can recompute the join orders

with low overhead when data distribution changes, and a reordering delay mechanism to decide

the timing of updating the join orders which avoids unnecessary reorderings. Experimental results

show that AJOSC accelerates the queries by up to two orders of magnitude compared to prior arts.

Acknowledgments
This work was supported by The National Key Research and Development Program of China under

grant 2023YFB4502303, ARC DP230101445 and ARC FT210100303. The corresponding author is

Xiangyang Gou.

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:25

References
[1] 2024. ldbc-snb-specification. https://ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf

[2] 2024. Source code of AJOSC. https://anonymous.4open.science/r/AJOSC/

[3] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012. DBToaster: Higher-order Delta Processing for

Dynamic, Frequently Fresh Views. (2012).

[4] Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh

Srivastava, and Jennifer Widom. 2016. STREAM: The Stanford Data Stream Management System. In Data Stream
Management: Processing High-Speed Data Streams, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi (Eds.).

Springer, Berlin, Heidelberg, 317–336. doi:10.1007/978-3-540-28608-0_16

[5] Arvind Arasu, Shivnath Babu, and Jennifer Widom. 2006. The CQL continuous query language: semantic foundations

and query execution. The VLDB Journal 15 (2006), 121–142.
[6] Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive Query Processing. ACM SIGMOD Record

29, 2 (June 2000), 261–272. doi:10.1145/335191.335420

[7] Shivnath Babu, Rajeev Motwani, Kamesh Munagala, Itaru Nishizawa, and Jennifer Widom. 2004. Adaptive Ordering of

Pipelined Stream Filters. In Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’04). Association for Computing Machinery, New York, NY, USA, 407–418. doi:10.1145/1007568.1007615

[8] Albert Bifet and Ricard Gavalda. 2007. Learning from time-changing data with adaptive windowing. In Proceedings of
the 2007 SIAM international conference on data mining. SIAM, 443–448.

[9] Arezo Bodaghi and Babak Teimourpour. 2018. Automobile insurance fraud detection using social network analysis.

Applications of Data Management and Analysis: Case Studies in Social Networks and Beyond (2018), 11–16.

[10] Peter Boncz, Angelos-Christos Anatiotis, and Steffen Kläbe. 2018. JCC-H: adding join crossing correlations with skew

to TPC-H. In Performance Evaluation and Benchmarking for the Analytics Era: 9th TPC Technology Conference, TPCTC
2017, Munich, Germany, August 28, 2017, Revised Selected Papers 9. Springer, 103–119.

[11] Jin Chen, Guanyu Ye, Yan Zhao, Shuncheng Liu, Liwei Deng, Xu Chen, Rui Zhou, and Kai Zheng. 2022. Efficient Join

Order Selection Learning with Graph-based Representation. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD ’22). Association for Computing Machinery, New York, NY, USA, 97–107.

doi:10.1145/3534678.3539303

[12] Sutanay Choudhury, Lawrence Holder, George Chin, Khushbu Agarwal, and John Feo. 2015. A Selectivity Based

Approach to Continuous Pattern Detection in Streaming Graphs. arXiv:1503.00849 [cs]

[13] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 2002. Maintaining Stream Statistics over Sliding

Windows. Siam Journal on Computing 31, 6 (2002), 1794–1813.

[14] David DeHaan and Frank Wm Tompa. [n. d.]. Optimal Top-Down Join Enumeration (Extended Version). ([n. d.]).

[15] Manuel Dossinger and Sebastian Michel. 2019. Scaling Out Multi-Way Stream Joins Using Optimized, Iterative Probing.

In 2019 IEEE International Conference on Big Data (Big Data). 449–456. doi:10.1109/BigData47090.2019.9005973
[16] Manuel Dossinger and Sebastian Michel. 2021. Optimizing Multiple Multi-Way Stream Joins. In 2021 IEEE 37th

International Conference on Data Engineering (ICDE). IEEE, Chania, Greece, 1985–1990. doi:10.1109/ICDE51399.2021.
00188

[17] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Arnau Prat, Minh-Duc Pham, and

Peter Boncz. 2015. The LDBC Social Network Benchmark: Interactive Workload. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). Association
for Computing Machinery, New York, NY, USA, 619–630. doi:10.1145/2723372.2742786

[18] Lukasz Golab and M. Tamer Özsu. 2003. - Processing Sliding Window Multi-Joins in Continuous Queries over Data

Streams*. In Proceedings 2003 VLDB Conference, Johann-Christoph Freytag, Peter Lockemann, Serge Abiteboul, Michael

Carey, Patricia Selinger, and Andreas Heuer (Eds.). Morgan Kaufmann, San Francisco, 500–511. doi:10.1016/B978-

012722442-8/50051-3

[19] Joseph Gomes and Hyeong-Ah Choi. 2008. Adaptive Optimization of Join Trees for Multi-Join Queries over Sensor

Streams. Information Fusion 9, 3 (July 2008), 412–424. doi:10.1016/j.inffus.2007.06.001

[20] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolfgang Lehner. 2020. General dynamic

Yannakakis: conjunctive queries with theta joins under updates. The VLDB Journal 29, 2 (2020), 619–653.
[21] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolfgang Lehner. 2020. General Dynamic

Yannakakis: Conjunctive Queries with Theta Joins under Updates. The VLDB Journal 29, 2-3 (May 2020), 619–653.

doi:10.1007/s00778-019-00590-9

[22] Balakrishna R Iyer and Arun N Swami. 1994. Method for optimizing processing of join queries by determining optimal

processing order and assigning optimal join methods to each of the join operations. US Patent 5,345,585.

[23] Albert Jonathan, Abhishek Chandra, and Jon Weissman. 2020. WASP: Wide-area Adaptive Stream Processing. In

Proceedings of the 21st International Middleware Conference. ACM, Delft Netherlands, 221–235. doi:10.1145/3423211.

3425668

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

https://ldbcouncil.org/ldbc_snb_docs/ldbc-snb-specification.pdf
https://anonymous.4open.science/r/AJOSC/
https://doi.org/10.1007/978-3-540-28608-0_16
https://doi.org/10.1145/335191.335420
https://doi.org/10.1145/1007568.1007615
https://doi.org/10.1145/3534678.3539303
https://arxiv.org/abs/1503.00849
https://doi.org/10.1109/BigData47090.2019.9005973
https://doi.org/10.1109/ICDE51399.2021.00188
https://doi.org/10.1109/ICDE51399.2021.00188
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1016/B978-012722442-8/50051-3
https://doi.org/10.1016/B978-012722442-8/50051-3
https://doi.org/10.1016/j.inffus.2007.06.001
https://doi.org/10.1007/s00778-019-00590-9
https://doi.org/10.1145/3423211.3425668
https://doi.org/10.1145/3423211.3425668

126:26 Xinyi Ye, Xiangyang Gou, Lei Zou, and Wenjie Zhang

[24] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and Semih Salihoglu. 2017. Graphflow: An

Active Graph Database. In Proceedings of the 2017 ACM International Conference on Management of Data. ACM, Chicago

Illinois USA, 1695–1698. doi:10.1145/3035918.3056445

[25] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2023. F-IVM: Analytics over Relational Databases under

Updates. doi:10.48550/arXiv.2303.08583 arXiv:2303.08583 [cs]

[26] Jeyhun Karimov, Tilmann Rabl, and Volker Markl. 2019. AJoin: Ad-Hoc Stream Joins at Scale. Proceedings of the VLDB
Endowment 13, 4 (Dec. 2019), 435–448. doi:10.14778/3372716.3372718

[27] Kyoungmin Kim, In Seo,Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong, Hassan Chafi, Hyungyu Shin, and Geonhwa

Jeong. 2018. TurboFlux: A Fast Continuous Subgraph Matching System for Streaming Graph Data. In Proceedings of the
2018 International Conference on Management of Data. ACM, Houston TX USA, 411–426. doi:10.1145/3183713.3196917

[28] Danh Le-Phuoc. 2018. Adaptive Optimisation For Continuous Multi-Way Joins Over RDF Streams. In Companion
of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18. ACM Press, Lyon, France, 1857–1865.

doi:10.1145/3184558.3191653

[29] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas Neumann. 2015. How Good

Are Query Optimizers, Really? Proceedings of the VLDB Endowment 9, 3 (Nov. 2015), 204–215. doi:10.14778/2850583.
2850594

[30] Feifei Li. 2019. Cloud-native database systems at Alibaba: Opportunities and challenges. Proceedings of the VLDB
Endowment 12, 12 (2019), 2263–2272.

[31] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim Kraska, Olga Papaemmanouil,

and Nesime Tatbul. 2019. Neo: A Learned Query Optimizer. Proceedings of the VLDB Endowment 12, 11 (July 2019),

1705–1718. doi:10.14778/3342263.3342644 arXiv:1904.03711 [cs]

[32] Mengmeng Liu, Zachary G. Ives, and Boon Thau Loo. 2016. Enabling Incremental Query Re-Optimization. In Proceedings
of the 2016 International Conference on Management of Data. ACM, San Francisco California USA, 1705–1720. doi:10.

1145/2882903.2915212

[33] Amine Mhedhbi, Chathura Kankanamge, and Semih Salihoglu. 2021. Optimizing One-time and Continuous Subgraph

Queries Using Worst-case Optimal Joins. ACM Transactions on Database Systems 46, 2 (May 2021), 6:1–6:45. doi:10.

1145/3446980

[34] Simona Micevska, Ahmed Awad, and Sherif Sakr. 2021. SDDM: an interpretable statistical concept drift detection

method for data streams. Journal of intelligent information systems 56, 3 (2021), 459–484.
[35] Seunghwan Min, Sung Gwan Park, Kunsoo Park, Dora Giammarresi, Giuseppe F. Italiano, and Wook-Shin Han. 2021.

Symmetric Continuous Subgraph Matching with Bidirectional Dynamic Programming. Proceedings of the VLDB
Endowment 14, 8 (April 2021), 1298–1310. doi:10.14778/3457390.3457395

[36] Guido Moerkotte and Thomas Neumann. 2006. Analysis of two existing and one new dynamic programming algorithm

for the generation of optimal bushy join trees without cross products. In Proceedings of the 32nd International Conference
on Very Large Data Bases (Seoul, Korea) (VLDB ’06). VLDB Endowment, 930–941.

[37] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. 1979. Access path selection

in a relational database management system. In Proceedings of the 1979 ACM SIGMOD International Conference on
Management of Data (Boston, Massachusetts) (SIGMOD ’79). Association for Computing Machinery, New York, NY,

USA, 23–34. doi:10.1145/582095.582099

[38] Shixuan Sun, Xibo Sun, and Bingsheng He. 2022. RapidFlow: An Efficient Approach to Continuous Subgraph Matching.

Proceedings of the VLDB Endowment 15, 11 (2022), 2415–2427.
[39] Xibo Sun, Shixuan Sun, Qiong Luo, and Bingsheng He. 2022. An In-Depth Study of Continuous Subgraph Matching.

Proceedings of the VLDB Endowment 15, 7 (March 2022), 1403–1416. doi:10.14778/3523210.3523218

[40] Christoforos Svingos, Andre Hernich, Hinnerk Gildhoff, Yannis Papakonstantinou, and Yannis Ioannidis. 2023. Foreign

Keys Open the Door for Faster Incremental View Maintenance. Proceedings of the ACM on Management of Data 1, 1
(May 2023), 40:1–40:25. doi:10.1145/3588720

[41] Kostas Tzoumas, Timos Sellis, and Christian S Jensen. 2008. A Reinforcement Learning Approach for Adaptive Query

Processing. (2008).

[42] Junxiong Wang, Immanuel Trummer, Ahmet Kara, and Dan Olteanu. 2023. ADOPT: Adaptively Optimizing Attribute

Orders for Worst-Case Optimal Join Algorithms via Reinforcement Learning. Proceedings of the VLDB Endowment 16,
11 (July 2023), 2805–2817. doi:10.14778/3611479.3611489

[43] Qichen Wang and Ke Yi. 2020. Maintaining Acyclic Foreign-Key Joins under Updates. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. ACM, Portland OR USA, 1225–1239. doi:10.1145/3318464.

3380586

[44] Qichen Wang, Chaoqi Zhang, Danish Alsayed, Ke Yi, Bin Wu, Feifei Li, and Chaoqun Zhan. 2021. Cquirrel: Continuous

Query Processing over Acyclic Relational Schemas. Proceedings of the VLDB Endowment 14, 12 (July 2021), 2667–2670.

doi:10.14778/3476311.3476315

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

https://doi.org/10.1145/3035918.3056445
https://doi.org/10.48550/arXiv.2303.08583
https://arxiv.org/abs/2303.08583
https://doi.org/10.14778/3372716.3372718
https://doi.org/10.1145/3183713.3196917
https://doi.org/10.1145/3184558.3191653
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.14778/3342263.3342644
https://arxiv.org/abs/1904.03711
https://doi.org/10.1145/2882903.2915212
https://doi.org/10.1145/2882903.2915212
https://doi.org/10.1145/3446980
https://doi.org/10.1145/3446980
https://doi.org/10.14778/3457390.3457395
https://doi.org/10.1145/582095.582099
https://doi.org/10.14778/3523210.3523218
https://doi.org/10.1145/3588720
https://doi.org/10.14778/3611479.3611489
https://doi.org/10.1145/3318464.3380586
https://doi.org/10.1145/3318464.3380586
https://doi.org/10.14778/3476311.3476315

AJOSC: Adaptive Join Order Selection for ContinuousQueries 126:27

[45] Qihang Wang, Decheng Zuo, Zhan Zhang, Siyuan Chen, and Tianming Liu. 2023. An adaptive non-migrating

load-balanced distributed stream window join system. The Journal of Supercomputing 79, 8 (2023), 8236–8264.

[46] Zuozhi Wang, Kai Zeng, Botong Huang, Wei Chen, Xiaozong Cui, Bo Wang, Ji Liu, Liya Fan, Dachuan Qu, Zhenyu Hou,

Tao Guan, Chen Li, and Jingren Zhou. 2023. Tempura: A General Cost-Based Optimizer Framework for Incremental

Data Processing (Journal Version). The VLDB Journal 32, 6 (Nov. 2023), 1315–1342. doi:10.1007/s00778-023-00785-1
[47] Ziyun Wei and Immanuel Trummer. 2022. SkinnerMT: Parallelizing for Efficiency and Robustness in Adaptive Query

Processing on Multicore Platforms. Proceedings of the VLDB Endowment 16, 4 (Dec. 2022), 905–917. doi:10.14778/

3574245.3574272

[48] Zhengtong Yan, Valter Uotila, and Jiaheng Lu. 2023. Join Order Selection with Deep Reinforcement Learning:

Fundamentals, Techniques, and Challenges. Proceedings of the VLDB Endowment 16, 12 (Sept. 2023), 3882–3885.

doi:10.14778/3611540.3611576

[49] Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. 2020. Reinforcement Learning with Tree-LSTM for Join Order

Selection. In 2020 IEEE 36th International Conference on Data Engineering (ICDE). 1297–1308. doi:10.1109/ICDE48307.
2020.00116

[50] Dongdong Zhang, Jianzhong Li, Kimutai Kimeli, and Weiping Wang. 2006. Slidingwindow based multi-join algorithms

over distributed data streams. In 22nd International Conference on Data Engineering (ICDE’06). IEEE, 139–139.

Received October 2024; revised January 2025; accepted February 2025

Proc. ACM Manag. Data, Vol. 3, No. 3 (SIGMOD), Article 126. Publication date: June 2025.

https://doi.org/10.1007/s00778-023-00785-1
https://doi.org/10.14778/3574245.3574272
https://doi.org/10.14778/3574245.3574272
https://doi.org/10.14778/3611540.3611576
https://doi.org/10.1109/ICDE48307.2020.00116
https://doi.org/10.1109/ICDE48307.2020.00116

	Abstract
	1 Introduction
	2 Preliminaries
	3 StaticDP and Its Limitations
	4 Order Computation with LA Cost
	4.1 LA Cost
	4.2 Order Computation
	4.3 Complexity Analysis

	5 Incremental Order Recomputation
	5.1 Basic Version
	5.2 The LBR Method

	6 Reordering Delay Mechanism
	7 Experimental Evaluation
	7.1 Experiment Setup
	7.2 Speed Comparison
	7.3 Ablation Studies
	7.4 Running Time Breakdown
	7.5 Scalability Evaluation
	7.6 Sensitivity Evaluation
	7.7 Assumption Verification

	8 Related Work
	8.1 Continuous Queries
	8.2 Join Order Selection
	8.3 Other Techniques for Continuous Join Queries

	9 Conclusion
	Acknowledgments
	References

