World Wide Web (2025) 28:36
https://doi.org/10.1007/511280-025-01344-0

®

Check for
updates

DySpec: Faster speculative decoding with dynamic token tree
structure

Yunfan Xiong' - Ruoyu Zhang' - Yanzeng Li' - Lei Zou'

Received: 13 January 2025 / Revised: 26 February 2025 / Accepted: 13 April 2025 /
Published online: 8 May 2025
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025

Abstract

While speculative decoding has recently appeared as a promising direction for accelerating
the inference of large language models (LLMs), the speedup and scalability are strongly
bounded by the token acceptance rate. Prevalent methods usually organize predicted tokens as
independent chains or fixed token trees, which fail to generalize to diverse query distributions.
In this paper, we propose DYSPEC, a faster speculative decoding algorithm with a novel
dynamic token tree structure. We begin by bridging the draft distribution and acceptance
rate from intuitive and empirical clues and successfully show that the two variables are
strongly correlated. Based on this, we employ a greedy strategy to dynamically expand
the token tree at run-time. Theoretically, we show that our method can achieve optimal
results under mild assumptions. Empirically, DYSPEC yields a higher acceptance rate and
acceleration than fixed trees. DYSPEC can drastically improve throughput and reduce latency
of token generation across various data distribution and model sizes, which outperforms
strong competitors significantly, including Specinfer and Sequoia. Under low temperature
setting, DYSPEC can improve throughput up to 9.1 x and reduce latency up to 9.4 x on
Llama2-70B. Under high temperature setting, DYSPEC can also improve throughput up to
6.21 x, despite the increasing difficulty of speculating more than one token per step for the
draft model.

Keywords Artificial intelligence - Large language models - Inference acceleration -
Speculative decoding

B Lei Zou
zoulei @pku.edu.cn

Yunfan Xiong
yunfan.xiong @stu.pku.edu.cn

Ruoyu Zhang
ry_zhang @pku.edu.cn

Yanzeng Li
liyanzeng @stu.pku.edu.cn

1 Peking University, Beijing 100871, PR. China

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-025-01344-0&domain=pdf

36 Page2of26 World Wide Web (2025) 28:36

1 Introduction

Recent years have witnessed the prosperity of large language models (LLMs), shown by
their unprecedented capabilities in understanding and generating human languages in various
domains and tasks [1, 2].

Despite this rapid progress, the major bottleneck in the real-world deployment of LLMs
stems from their inference latency, due to the nature of auto-regressive decoding. Generating
n tokens requires n sequential runs, making the process time-consuming and leading to
under-utilizing available computation resources.

To address this challenge, recent works [3, 4] have proposed speculative decoding to
accelerate the inference. Speculative decoding first leverages a draft model to sample a
bunch of tokens as candidates, which are later verified in parallel by the target model. If
the verification of a token fails, its succeeding tokens must be rejected to ensure that the
output distribution is unbiased. Therefore, the performance of speculative decoding is strongly
bounded by the acceptance rate of predicted tokens.

To this end, several methods have explored tree structures to improve the acceptance rate.
The naive speculative decoding method is shown in Figure 1(A). [5] developed SpecTr,
introducing DraftSelection algorithm to allow the draft model to select multiple candidates
while maintaining the same output distribution as the target model, as shown in Figure
1(B). [6] created SpecInfer, which constructs token trees using small speculative models
with learnable branch numbers for each layer. Similarly, [7] proposed Medusa, which bases
token tree construction directly on the draft model probabilities, optimizing efficiency when
the draft model closely approximates the target model. Meanwhile, [8] introduced Sequoia,
which estimates acceptance rates for candidate tokens and uses dynamic programming to
optimize the token tree based on the estimated metric. These methods can be classified as
tree structure methods, as shown in Figure 1(C). However, a common limitation of these
methods is their reliance on fixed patterns of tree construction, which can lead to suboptimal

Input tokens

speculated tokens

— - . — |
> — e > > < E

(B)K sequences of tokens (C)Tree of tokens

Figure 1 Different structures of predicted tokens. SpecTr [5] is k-seq structure, while Specinfer [6], Medusa
[7] and Sequoia [8] are tree structure

@ Springer

World Wide Web (2025) 28:36 Page3of26 36

performance across diverse query distributions, resulting in a relatively low acceptance rate
as the tree size grows. This raises an important research question:

RQ 1: How can we find a near-optimal token tree structure for speculative decoding? To
answer the research question, we will first establish the connection between the acceptance
rate and the draft distribution through the following hypothesis.

Hypothesis 1 Predicted tokens of higher draft probability statistically have a higher accep-
tance rate.

Fortunately, this is further validated by our preliminary studies, as demonstrated in Fig-
ure 2. With this observation, we propose DYSPEC to dynamically expand the token tree based
on the draft distribution. DYSPEC employs a greedy search strategy to maximize the expected
length of predicted sequences. Compared with its fixed counterpart, the dynamic token tree
yields a higher acceptance rate and acceleration. DYSPEC introduce 13.4% ~ 31.0% over-
head including running draft model, building draft tree, and verification, to achieve 3x -
12 x output tokens per step. Since constructing dynamic token tree introduce complex irreg-
ular computation, we implement dynamic token tree construction in C++, which reduce the
overhead from ~ 10% to ~ 5%. We conduct benchmarking experiments on various datasets
and different model scales; the experimental results demonstrate that our proposed DYSPEC
can efficiently improve the inference performance. Specifically, on the Llama2-70B model,
DYSPEC achieves a 9.1 x throughput improvement and a 9.4 x reduction in latency.

2 Preliminary

2.1 Speculative decoding

[3] and [4] proposed speculative decoding as a means to accelerate auto-regressive decoding.
This approach samples generations from an efficient draft model as speculative prefixes and

verifies these tokens in parallel using a slower target model. Through rejection sampling, it
ensures that the outputs have the same distribution as those of the target model alone.

1.0

o
-

L 044 044 M R 000 009 0.24 [0.52
N3 T 3- 0.8
g 0.03 0.07 0.06 0.06 0.02 % 0.00 0.07 0.15 0.16 0.03
T} = >
E = ; b=t 0.6 g
2 0.05 0.08 0.07 0.05 0.01 . 0.00 0.12 0.15 0.10 0.01 g
- Qo o
gs- ® 3- 0.4 @
= 0.08 0.11 0.08 0.05 0.01 g_ 0.00 0.19 0.14 0.07 0.01
a3, 2 99 — -0.2
Y |EE0:301 0.22 0.13 0.02 5 1.00 UEN 0.15 0.02
®o -) |) ' | S 0.0 4 | \ | | |

o0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

draft probability(JF68m) draft probability(JF68m)

Figure 2 Connection between acceptance rate/target distribution and draft distribution on CNN DailyMail.
The density of each block is normalized by column

@ Springer

36 Page4of26 World Wide Web (2025) 28:36

We denote the distribution of the draft model as D[-]', and the target distribution as
T'[-]. In speculative decoding, a token x sampled from D is accepted with a probability of
min(1, ;[)[[fc]]). In case of rejection, another token y will be sampled from a residual distribution
norm(relu(T — D)) to adjust the output that is aligned with the target distribution.

2.2 Tree attention

Transformer models [9] use the attention mechanism to aggregate sequential information. In
implementation, the auto-regressive model uses an upper triangle mask to preserve causality.
In the context of tree-based dependency, [10] first proposed tree attention to represent the
hierarchy as:

1, i is ancestor of j,

mask(A)i j = {0 , otherwise.

In speculative decoding, tree attention has later been adopted by SpecInfer (author?) 6
and Medusa [7] for parallel verification.

3 Related work
3.1 Tree-structure speculative decoding

In this section, we introduce the previous work of utilizing tree structure for speculative
decoding in the LLMs’ generating process.

SpecTr. [5] proposed DraftSelection algorithm to make the draft model select multiple
candidates and maintain the same output distribution as the target model. With the fixed
number of candidates k, they modeled an optimal transportation problem to find the best
division factor rho to maximize the acceptance rate, and proposed the K-SEQ algorithm that
extends k candidates to k sequences.

Speclnfer. [6] proposed SpecInfer which leverages many small speculative models to
construct token trees and make the branch number of each layer k; learnable.

Medusa. [7] also introduce an optimized token tree construction. However, Medusa builds
the token tree directly based on the probability of the draft model, instead of a mapping
between the sampling of the draft model and the sampling of the target model. The second
one makes the speculative decoding maximize the efficiency if the draft model is close to the
target model.

Sequoia. [8] estimates an acceptance rate vector for candidates by a few examples. Under
the assumption that the expected acceptance rate of each candidate token is only related to
the number of guesses made, Sequoia uses a dynamic programming method to obtain the
optimized token tree.

Eagle-2. [11] proposed a speculative decoding method with dynamic predicted token
tree. Eagle-2 is a self-speculative method that makes draft predictions based on the target
model’s features, rather than a much smaller draft model. Due to the strong drafting capability,
self-speculative methods (Medusa, EAGLE, and EAGLE-2) can usually guess with higher
accuracy under the same budget. Eagle-2 builds their draft trees with an expand-rerank
procedure: first selects top-k tokens at each node and prunes the candidate tree with draft
probability. The main difference between Eagle-2 and DYSPEC is that DYSPEC performs the

1 We use D[-] as an abbreviation of conditional probability D(x;|x~;), and similarly for T'[-].

@ Springer

World Wide Web (2025) 28:36 Page50f26 36

sampling at each node and dynamically allocates the budget after determining the result of
the sampling. Eagle-2 greedily chooses the top-k draft token at each node and will accept
the token if the target model generates the token in guessed tokens. EAGLE-2 cannot accept
tokens with standard verification, i.e., only reject the draft with probability 1 — Z‘rrj;ff when
draft > target, since the draft tokens are predicted by selection rather than sampling.
The problem here is that even in the case that the draft probability is identical to the target
probability, the latter verification may yield a low acceptance rate. This building method is
difficult to integrate directly into a standard verification framework, as the pruning operation
can be seen as a rejection of certain sampled tokens, potentially affecting the generation
probability distribution.

ReDrafter. [12] proposed a speculative decoding method with dynamic predicted token
tree. ReDrafter uses a beam-search-like method to extend the predicted token tree with
maximum draft token probability. Since ReDrafter greedily chooses the tokens in the building
stage instead of sampling, it cannot apply the standard verification.

Dynamic Depth Decoding. [13] proposed a mechanism for tree-based speculative decod-
ing methods to dynamically select the depth of the predicted token tree. This approach can
be integrated with existing methods, many of which rely on a predetermined fixed depth.
Furthermore, it can be combined with DYSPEC to optimize the threshold selection rather
than the depth, thereby constructing the predicted token tree more efficiently and minimizing
the number of the draft model calls.

4 Bridging draft distribution with acceptance rate
During verification, the acceptance probability of the sample token x is given by min(1, g[[); %).
We now derive the connection between the draft distribution and the acceptance rate as
follows.

Since the draft distribution acts as an approximation of the target distribution, the two
distributions should not be too "far" away. Without loss of generality, we assume that the KL
divergence of D from T is constrained by constant c, i.e.,

Dix]

Dea(D 1 7) = Y Dixllog 7

=c ey

To satisfy the constraint, 7'[-] should not diverge much from D[-]. However, for a token x with
a large draft probability D[x], gl[“;% cannot be too small, as it would contribute significantly
to Dkp.. On the other hand, tokens with small D[x] have less impact than Dgj,, allowing
for greater variation. The above analysis implies that predicted tokens of higher draft
probability statistically have higher target probability and acceptance rate.

We further validate our hypothesis through preliminary experiments. As shown in Figure 2
(right), the draft distribution shows a strong correlation with the target distribution in real-
world scenarios. More importantly, Figure 2 (left) demonstrates that the distributions of
acceptance rate, under the same draft probability, resemble binomial distributions. As the draft
probability grows larger, predicted tokens are more likely to be accepted. These observations
provide strong empirical support for our previous claim. It also inspires us to design a dynamic
token tree construction algorithm to explore more on subtrees with higher draft probability,
since they are more likely to be accepted in later verification.

@ Springer

36 Page6of26 World Wide Web (2025) 28:36

5 Method

Under a fixed speculative budget b (that is, the number of tokens for each verification), the
optimal token tree yields the highest acceptance rate. In practice, finding the optimal tree
is unfeasible since the target distribution is unknown before verification. However, given
Hypothesis 1, we can transform the original problem into the following problems.

5.1 Dynamic token tree construction

Given the speculative token tree, the way we sampling this tree, the draft model output
distribution, and correspond target model output distribution, we can get the expectation of
the total number of Speculative decoding verification. Considering each node #; in speculative
token tree independently, we denote its draft distribution as py4[i, -], and the relevant target
distribution as p[i, -].

Assume that node #; has ancestors ay, ..., a;, and the previous sibling node si, ..., 5;,
then the probability that we verify node #; can be represented as [[; Placceptai] x
]_[j Plrejects;].

In Speculative Decoding, the probability we accept token x with draft probability ps[x]
and target probability p,[x], is min(1, ;’ (’l[[f(]]), denoted as SD[x]. So, the probability that we
take the verification at node #; is [| ; SD[a;] x I j (1—SDl[s;]). Then the contribution of node
1; to the expectation of the total accepted token number is [[; SD[a;] x [] j (I —=S8D[s;]) x
SDI[t].

The total expectation of accepted token number of this speculative token tree is

> T]SPlais,1 x [[(1 = SDIsji,1) x SDI#] 2

J

With the expected acceptance rate, we can construct the optimal speculative token tree.
However, there are still two problems:

1. When we generate a speculative token tree, we cannot know the target probability to get
SD['].

2. The draft token #; is sampled from the draft output distribution, we could only decide
how many samplings we take, instead of which token to take. Otherwise, the action we
made will infect the probability that we keep tokens in the speculative token tree.

To solve problem 1, we note that the acceptance rate is positive-related to draft output
distribution. Given Hypothesis 1, we use the draft model output distribution to estimate the
acceptance rate SD[#;] = pylt;].

To solve problem 2, we only use these estimated values to decide if we will make the
sampling. For given intermediate token tree status, we can detect all expandable tree nodes
and choose the expandable tree node with maximum estimated value. Repeat this action until
we reach the maximum tree size, DYSPEC will generate the optimal speculative token tree.
The proof of optimality is provided in Section 6.

Now we can get the algorithm to generate the optimal speculative token tree.

5.2 Algorithm

Unlike some speculative decoding methods, DYSPEC determines the number of samples to
take only when a token is accepted by the target model (or the verification method). This

@ Springer

World Wide Web (2025) 28:36 Page70f26 36

decision is based on the verification results of the previous tokens (ancestor nodes in the
predicted token tree) and the previous sampling results from the same node. There are two
types of operation of the number of samples: 1. from 0 to 1(expand a node with no leaf no,
the first sampling). 2. from x to x + 1 (failed on the x -th sampling, take the x 4 1 sampling).

Given the prompt, DYSPEC can get the logits of the last token, which is the root of the
speculative token tree. Suppose that we have already constructed a partial speculative token
tree as in Figure 3. There are two ways to expand a node:

1. Any token without a leaf node can undergo the first sampling.

2. The nodes marked with "—/~" indicate that we have already performed several samplings
at the same position and obtained an estimated value for the next sampling at this position
(on the arrow line). The "—/-" node corresponds to the result of the next sampling.

We refer to these two types of nodes as expandable nodes in the current state.

DYSPEC use a heap to maintain all expandable tokens by their estimated values, so that
we can get the node with maximum estimated value in O (logN) time. We then make the
next sampling represented by the top node of the heap. Upon determining the result of the
sampling, we then update the state of the current token tree using the obtained token and its
corresponding estimated value. This process generates two new expandable nodes:

1. When the current node is rejected, the next sampling at the same position, with the
corresponding estimated value being the probability of this sampling failure multiplied
by the expected acceptance rate of the next sampling itself.

2. When the current node is accepted, proceeding with subsequent sampling, with the cor-
responding estimated value being the probability of this sampling success multiplied by
the expected acceptance rate of the next sampling itself.

The Second Sampling after ‘Street’
with draft probability 0.6519
Accepted In Verification
The First Sampling after ‘A Wall'
with draft probability 0.0017
Reject In Verification

The Second Sampling after ‘A Wall' ##ington
with draft probability 0.5755

rep
Accepted In Verification 100017 5220.0010 0.3752 700476
Pe=0.6519 p5=0.0195

The Third Sampling after 'A Wall'
Will not be verified

The Third Sampling after "Street' if available
With 0.1997 estimated accepted tokens

Figure 3 An example of a predicted token tree. The given prompt is A Wall. Assume the predicted token
tree already contains the tokens ##ington and Street. There are three expansion choices: expanding
##ington, expanding Street, or sampling a third token following A Wall. The probability of accepting
the token ##ingtonis 0.0017. The probability of accepting the token St reet is calculated as the probability
of this token being verified (p=0.9983) multiplied by the probability of the verification passing (p=0.5755),
resulting in 0.5745. The probability that both tokens are rejected is 0.4227. DYSPEC prioritizes expanding
the choice with the highest probability, which in this case is expanding Street, yielding the token fund.
Subsequently, the third token is sampled, which might result in ##f1low

@ Springer

36 Page8of26 World Wide Web (2025) 28:36

Algorithm 1 Speculative token tree construction algorithm with fixed number.

Require: Prefix x(, draft model Dg (-|x), and an upper bound of guess tokens number .

Ensure: generated token tree 7'r. Initialize a heap H, Heap Element consists of tree information TreeInfo;,
residual distribution R;, estimate acceptance rate v.

: R < Dg(|xg), v < 1, TreeInfo « ...

. H.push(R, v, TreeInfo)

: while Tr.size < m do

R,v, TreeInfo < H.pop()

NewNodeInfo <« Tr.add(Treelnfo, y)

sample y ~ R

vo = v x R[y]

vi =vx (1 - Ry

9: R[y] <0

10: R < norm(R)

11: H.push(R, vy, TreeInfo) (*expand neighbor node*)

12: get x; from Treelnfo and y

13: dj < De(lx;)

14: H.push(d;, v, NewNodeInfo) (*expand child node*)

15: end while

A R AT

Thus, we have successfully expanded the token tree by one node. This process is repeated
until the predetermined budget is reached. The pseudo-code is presented in Algorithm 1.

5.3 Analyze overhead

Assume that the speculative token tree size is N, depth is D. Greedy expand method will
generate the optimal token tree one by one. For each token, the greedy expand method chooses
the expandable token with maximum estimated value, then makes a sampling to generate the
next token and then update the token tree.

To quickly choose the expandable token with the maximum estimated value, we can
use a heap to maintain all expandable tokens’ estimated value, which introduces O (logN)
time complexity to maintain the token tree and related auxiliary structures. The total time
complexity of token tree construction is O (NIlogN).

Although one step inference’s time consume of draft model is usually much lower than
target model, it is still non negligible. Denote draft model inference time as 7y, target model
inference time as T, the total time of one step of greedy expand method is

O(NlogN + T, + NTy) 3)

With accepted token number e, the latency of generate one token can be represent as
O((NlogN + T, + N1y)/e).

In the implementation, the time complexity of constructing a token tree for a single
operation is O (vocab_size), due to the sampling and updating of the residual distribution.
Typically, the inference of a draft model involves a higher time complexity. However, model
inference benefits from regular computational workloads and can be efficiently accelerated
by GPUs, whereas the complex logical operations involved in token tree construction suffer
from low efficiency when implemented in Python. To mitigate this overhead, we implemented
the token tree construction in C++, reduce the time cost by 2 x.

Even if we disregard the overhead associated with constructing the token tree, accelerating
the target model still requires us to achieve a speedup factor of approximately k =~ 1/e+ IZ—TT:’,
where 1/k represents the acceleration rate. As the number of tokens N increases, theterm N /e
grows significantly. For instance, with N = 64, N /e typically exceeds 10, and for N = 768,

@ Springer

World Wide Web (2025) 28:36 Page90of26 36

N /e can surpass 70. This rapid growth severely limits the potential for acceleration by simply
increasing the size of the token tree.

To address this limitation, we need to develop a more efficient method for generating draft
tokens. It is important to note that the token tree structure will branch out significantly after
a few steps, resulting in a relatively shallow depth. If we can generate draft tokens layer by
layer, the latency for generating one token can be represented as O ((NlogN +1; 4+ DTy)/e),
where the time cost of one step can be considered constant for an appropriate input size. For
N = 64, D is typically less than 10, and for N = 768, D is usually less than 30.

However, the greedy expansion method struggles to align with layer-by-layer generation
because, without revealing the estimated values of all tokens, it is challenging to determine
how many tokens should be included in the shadow layers.

5.4 Construct token tree with threshold

To accelerate inference, we must reduce the number of draft generations. In the greedy
expansion method, we select the token with the highest estimated value at each step, and
this value monotonically decreases with each selection. Once the token tree construction is
complete, all tokens with an estimated value greater than a certain threshold C are chosen,
while those with lower values are discarded. If we could determine this threshold c¢ at the
outset, it would be possible to construct the optimal speculative token tree layer by layer.
In practice, we can choose an appropriate threshold C (typically around 1/r) and relax the
constraint on N. This adjustment has a minimal impact on the number of accepted tokens,
but significantly improves latency. The pseudo-code is provided in Appendix A.2.

6 Proof of the optimal

The goal is to maximize the expected total acceptance tokens, denoted as T = Y, p;, where
pi represents the expected acceptance rate of the token #; within the predicted token tree.
Given the assumptions that (1) the probability of a token appearing in the draft model
outputs, denoted as draf't;, can approximate its acceptance rate, and (2) the acceptance rate
of a token is independent of its preceding tokens, we can express the expected acceptance
rate p; as:
pi = P[Path;)draft; “4)

Where P[Path;] represents the probability of accepting all the ancestor tokens of #; in the
predicted token tree.

For multi-branch tokens under the same ancestor path, the acceptance of subsequent tokens
depends on the rejection of preceding sibling tokens. Assuming all ancestor tokens along the
path have been accepted, the probability of verifying token #; can be expressed as:

Plverifyi|Pathi] = [| (1 - draft)) S
j<k

Where ¢; o denote #;’s previous sibling tokens.
Put all three component together, we have

pi = PlPathi] x [j < k(1 — draft;) x draft (6)
j

@ Springer

36 Page100f26 World Wide Web (2025) 28:36

Although we have a method to estimate the expected acceptance token number, there are
still challenges in finding the optimal structure for speculative decoding. The expectation can
only be known after we have completed the sampling process. After sampling, the predicted
token tree must be updated; otherwise some tokens with low acceptance rates will be pre-
pruned, leading to a slightly skewed output distribution that deviates from the sole target
mode. An alternative solution is to only decide whether to perform the sampling, rather than
whether to add it to the predicted tree.

Assuming that all single samplings have the same acceptance rate, the target can be

modified as:
T =3 pi=)sip

= P[Path;] x]_[jj < k(1 —draftj) x p)

where s; denotes the probability that we make this sampling, and p denotes the acceptance
rate of a single isolated sampling.

For multi-branch tokens under the same ancestor path, after we sample the first token ¢,
the second token , should never be #| because it will never pass the verification (the residual
probability of target will be zero). We should only sample the second one from the remaining
tokens. Let d; denote the original output distribution of the draft model, then the probability
of sampling the second token #, can be expressed as draft, = d;, /(1 — dy,).

More generally, for the k-th token #, the probability of sampling it can be calculated as:

d,
L=k dry)

Combining the previous formulations, the probability of verifying the i-th token given the
ancestor Path;, Plverify;|Path;], can be expressed as:

Plverifyi|Pathi] =[];_;(1 —draft))

_ . . . 1

=[[j<id =) dzk)) ©
_ . . 1*(Zk<j dfk)fdf‘/

=[1j<) S

=1- Zj<i dtj

For the probability of the path, P[path;], where path; = xi, ..., xj—1, and under the
independence assumption, we have the following:

drafty = (8)

Plpath;] =]_[j<i Placceptx;j|path;]
= [1,-; Plverify;|Path;] x draft;
ds.
=[[. (=2 dtk)m
= Hj<i dfj

Combining these, the final target expression becomes:

T =) pi
=Y ; Plpath;]Plverify;|Path;]p (11
= Zi njepazh,v dtjp

x(1— Zk is the sibling token before i dfk)

(10)

Note that for deeper tokens and sibling tokens after, the acceptance rate p; will monoton-
ically decrease, which means we can construct the predicted tree greedily.

Our method ensures that, at each step, we perform sampling with the maximum expected
acceptance rate. To demonstrate this, assume that there exists an alternative method that

@ Springer

World Wide Web (2025) 28:36 Page 110f26 36

can generate a better tree of the same size n. There must be at least one leaf node that
differs between this alternative method and our method. Let us denote the leaf nodes from
the alternative method as N, and the corresponding leaf nodes from our method as Ny, .
Furthermore, let’s denote the first ancestor node of N, that is not present in our result as M.,
and assume that there are k nodes in the sub-tree of M..

Denote the expected acceptance rate of this sample as P[M,]. Then, the contribution of
the entire sub-tree is at most k x P[M_]. The fact that our method did not choose this sub-tree
implies that the last k samples we made, which are not present in the alternative method,
have an expected acceptance rate higher than P[M_]. The contribution of these k samples to
the expectation of the total number is larger than k x P[M_].

By eliminating these k nodes and applying induction, we can show that E,_x ours >
E,—k.c, where Ey,_ ours and E,_ . represent the expected number of accepted tokens for
our method and the alternative method, respectively. Additionally, we have

k k
Z P[M; ours] > k x P[M.]> Z P[Mi’,c]

, where M; ,urs and My . are the corresponding ancestor nodes in our method and the
alternative method, respectively. Combining these results, we can conclude that E,; ;5 >
E, ¢, proving that our method can maximize the expected number of accepted tokens.

6.1 Greedy optimal proof

The search space for the responses form a hierarchical k-wise tree S, with k being the number
of tokens in the vocabulary. For a model M, it induce a set of weights on the search space.
More specifically, for any node u,, assume the unique path starting from the root that lead
to u, is uog, uy, ..., iy, define the weight for node u,, to be:
-1

Wy, = HZ,:()PM(um+1|uO:m) (12)
Consider a subset S’ of the space S, the weight of the set wg is defined as the summation of
all the nodes’ weights in the subset, i.e.:

wy =) w, (13)

ves’

Define 7 to be the collection of all connected sub-trees that contain the root. We are interested
in finding sub-trees with the max weight with number of nodes less than N, i.e.

Ty ={T|lwr = 14
N =1{T|wr I;lgswr} (14)

Algorithm (Greedy): Suppose we start from the set that only contain the root M| =
{root}.

Define the candidate set C(M;) = N (M;)\M;

Pick the node v* = arg maxyec(m;) Wy

My = M; U {v*}

Theorem:

(A)My €T

B) My € Ty

Proof We will prove each part of the theorem separately.

@ Springer

36 Pagel12o0f26 World Wide Web (2025) 28:36

We first prove (A), which is equivalent to verify My forms a connected tree that contain
the root. The latter fact is trivial since root € M| C My. It’s also straightforward to see the
connectivity as at every step the new added node belongs to the neighbor. Finally, since a
connected subset of a tree S is also a tree, therefore we conclude (A).

For (B), we prove by induction. For N = 1, this is trivial. Suppose for N < k, My €
TN*, we prove this for N = k + 1. For any M,’{_H € Tir+1, and any My € 72*’ we show
W + MaXyeC(My) Wo = Wayy -

To show this, note that |M]’(41l =k+1 >k = |Myg]|, there exist at least one leaf node
v E M,/C 41 such that v ¢ Mj. Consider the unique path that connect the root and v as
ug, ...,up = v. Since ug € My and u, ¢ My, there must be some g € {1, ..., p} satisfy
ug—1 € My and u, ¢ My. By definition, u, € C(Mjy) since it’s the neighbor of M. And
according to the definition of the weight, w, ; = Wu, Now consider the fact that M]’C 41 \wy »
is still a tree since u, is a leaf, so by induction, we have wy, > w M\ Therefore, we
have
Wy + MaXyeC (M) Wo
wy, + Wy,

Wy + Wy, (15)
WMy \wu, + W,

= Wqs’/
My

IV IV IV

Bec.ause M ,’c 11 is chosen arbitrarily, we proved that wy, + maxyec(py) Wy = W mj,,» com-
pleting the proof of (B).

) Tree Construction
Generating Mask

Sampling Tokens

Verification

Draft

Target

Figure 4 The execution times of different components during the inference process. Draft model: JF68M/
Target model: Llama-7B

@ Springer

World Wide Web (2025) 28:36 Page 130f26 36

7 Empirical results
7.1 Setup

We implement DYSPEC using Llama models. We employs JackFram/Llama68M (JF68M) and
Llama2-7B as the draft model and Llama2-7B, Llama2-13B, Llama2-70B [14] as the target
models. We conduct evaluations on various datasets with varying sizes and characteristics,
including C4(en) [15], OpenWebText [16] and CNN DailyMail [17].

For a fair comparison, we follow the setting in Sequoia [8], using the first 128 tokens
as the fixed prompt and generating 128 tokens as a completion. We evaluated our method
with different target temperatures and set the draft temperature to 0.6. All experiments are
conducted on a computation node with one NVIDIA A100 40GB GPU and 32 CPU cores.

7.2 Overhead of tree construction

As analyzed in Section 5.3, the construction of the token tree introduces complex logic, which
is inefficient in Python despite its time complexity of O (NlogNvocab_size). To address
this, we implemented the construction in C++, making the construction time acceptable. The
additional overhead introduced by DYSPEC is the Tree Construction, which accounts for less
than two percent of the total execution time in the JF68M/Llama2-7B(shown in Figure 4)
and JF68M/Llama2-13B pairs(shown in Figure 5). In the Llama2-7B/Llama2-70B pair with

Tree Construction
Generating Mask

Sampling Tokens

Verification

Draft

Target

Figure 5 The execution times of different components during the inference process. Draft model: JF68M/
Target model: Llama-13B

@ Springer

36 Page 140f26 World Wide Web (2025) 28:36

CPU-offloading, all components except draft and target model inference cost less than two
percent of the total execution time(shown in Figure 6).

The generation of masks, sampling tokens, and verification consume significant time
under both the JF68M/Llama2-7B and JF68M/Llama2-13B settings. These three components
represent the common overhead of all speculative decoding methods, with the primary time
spent waiting for the completion of model execution via CUDA synchronization. In the
Llama2-7B/Llama2-70B setting, CPU-offloading and waiting for model execution results
overlap, which is why they are not reflected in the profiling results.

Figure 7 presents the execution times of the pure Python/Pytorch implementation of DYS-
PEC under the JF68M and Llama2-7B configurations. The variation in time costs for Draft
and Sampling tokens, as observed in Figure 4, arises from synchronization issues. In the pure
Python/Pytorch implementation, explicit synchronization is employed to prevent unexpected
synchronization events that could adversely affect other components’ profile. The primary
overhead introduced by DYSPEC stems from its complex logic in constructing the draft tree,
particularly in generating tree attention masks and building the tree structure. By transitioning
to a C++ implementation, we significantly reduced the overhead associated with generating
masks from 7.4% to 3.1% and the overhead of tree construction from 2.5% to 1.3%.

Overall, when using JF68M as the draft model and Llama2-7B as the target model, DYSPEC
introduces approximately 31.0% overhead. This overhead includes running the draft model,
constructing the draft token tree, preparing related parameters, and performing verification.
Similarly, when using JF68M as the draft model and Llama2-13B as the target model, DYSPEC
introduces about 26.7% overhead. Additionally, DYSPEC reduces computational requirements
by ~ 4 times, resulting in a ~ 3 x acceleration for this task.

Others

Draft

Target

Figure 6 The execution times of different components during the inference process. Draft model: Llama2-7B/
Target model: Llama-70B

@ Springer

World Wide Web (2025) 28:36 Page 150f26 36

Tree Construction

Generating Mask

Verification
Sampling Tokens

Draft

Target

Figure 7 The execution times of different components during the inference process with pure Python/Pytorch
implement. Draft model: JF68M/ Target model: Llama-7B. The difference in Draft and Sampling token is
caused by pytorch’s synchronize issues

For Llama2-7B as the draft model and Llama2-70B as the target model, because we use
offload to reduce the memory requirement, the target model runs extremely slow. In this
situation, DYSPEC introduce less than 13.4% overhead, where 12.0% is draft model run.

7.3 Effectiveness of dynamic token tree

Table 1 presents the experimental results, detailing the number of tokens accepted and the
latency per token in seconds, when using JF68M as the draft model and Llama2-7B as the
target model. Similarly, Table 2 shows the corresponding results for the scenario in which
JF68M serves as the draft model and Llama2-13B as the target model. In both cases, the
maximum draft token tree size is set to 64. For the draft model, DYSPEC leverages the CUDA
graph to capture 129 different input lengths ranging from 128 to 258, thus accelerating
inference, much like Sequoia does.

The results indicate that DYSPEC consistently outperforms Sequoia and Specinfer in var-
ious data distributions and generation temperatures, leading to a higher number of accepted
tokens in each decoding step. The values in the table represent the average time taken to
generate a single token in seconds, with the number of tokens accepted by the target model
during a single validation in parentheses.

For larger target models such as Llama2-70B, we employ CPU offloading due to GPU
memory constraints. We selected Llama2-7B as the draft model. Despite the time consumed
for data synchronization between the CPU and GPU, the inference time for the CPU-offloaded
model, with a naive implementation, is approximately 15 seconds per step. By incorporating

@ Springer

36 Page160f26 World Wide Web (2025) 28:36

Table 1 Speedup ratio of

per-token latency compared to Dataset Temp Ours Sequoia Specinfer

direct inference c4 0 3.15%(5.25) 2.64x(4.99) 1.79x(3.32)
C4 0.6 220x(3.71) 1.85x(3.45) 1.80x(3.44)
OWT 0 228x(3.79) 2.19x(3.81) 147x(2.54)
OWT 0.6 240x(3.07) 2.18x(3.04) 2.09%(2.97)
CNN 0 242%(397) 240x(4.04) 1.53x(2.58)
CNN 0.6 2.09%(3.18) 1.99%(3.22) 1.80x(3.06)
GSMSk 0 3.93%(6.86) 2.79x(4.92) 2.01x(3.47)
GSM8k 0.6 244%x(431) 220x(3.55) 1.65%(3.03)
MT-Bench 0 2.59%(4.02) 2.35x(3.55) 1.68x(2.70)
MT-Bench 0.6 2.15x(3.62) 2.11x(3.18) 1.50x(2.71)

The draft model is JF68M and the target model is Llama2-7B. Guess
length is 64

some overlapping tricks for weight loading (adapted from Sequoia), the inference time is
still around 5 seconds per step. In contrast, Llama2-7B requires only about 25 milliseconds
per step, resulting in a 7,/T,; ratio of approximately 2 x 103. Note that DYSPEC did not
employ CUDA Graph in this scenario due to the significant GPU memory overhead associated
with capturing sequences of varying lengths. With 129 distinct sequence lengths and the
memory-intensive nature of the draft model Llama2-7B, this approach would be prohibitively
resource-demanding.

In this scenario, the acceleration rate is roughly equivalent to the number of tokens accepted
per target model step. Set the maximum draft token tree size to 64, DYSPEC achieves up to
a 9.1 x improvement in throughput and a 9.4 x reduction in latency compared to auto-
regressive generation, while also outperforming state-of-the-art methods in consistency, as
demonstrated in Table 3.

Table 2 Speedup ratio of

per-token latency compared to Dataset Temp Ours Sequoia Specinfer

direct inference c4 0 3.13x(4.98) 2.66x(4.35) 1.97x(3.14)
Cc4 0.6 2.26x(3.62) 1.88%(3.15) 1.85x(3.15)
OWT 0 2.45%(3.59) 2.33x(3.44) 1.67x(2.44)
OWT 0.6 1.96x(3.02) 1.78x(2.80) 1.71x(2.75)
CNN 0 2.56x(3.82) 2.45x(3.67) 1.69%(2.52)
CNN 0.6 2.03x(3.11) 1.84%(2.91) 1.78x(2.84)
GSM8k 0 3.17%(5.29) 2.21x(3.92) 1.74x(2.98)
GSMB8k 0.6 2.49%(4.17) 2.10x(3.39) 1.51x(2.72)
MT-Bench 0 2.19%(3.72) 2.19%x(3.46) 2.15x(2.86)
MT-Bench 0.6 2.25%(3.62) 1.93x(3.11) 1.40x(2.84)

The draft model is JF68M and the target model is Llama2-13B. Guess
length is 64

@ Springer

World Wide Web (2025) 28:36 Page 17 0of 26 36

Table 3 Speedup ratio of per-token latency compared to direct inference

Dataset Temp Ours Sequoia Specinfer

C4 0 9.42x(9.10) 6.29%(6.08) 4.89x(4.67)
Cc4 0.6 6.77x(6.21) 5.66%(5.72) 5.76x(5.75)
OWT 0 7.07%(7.23) 6.02x(6.41) 5.07%(4.88)
OWT 0.6 6.05%(6.77) 5.63%(6.07) 5.42%(5.46)
CNN 0 6.50%(6.93) 5.85%(6.42) 4.80%(4.83)
CNN 0.6 5.94%(6.95) 5.71x(6.07) 5.70%(5.75)
GSM8k 0 10.56x(12.39) 7.31x(7.62) 5.22x(5.34)
GSM8k 0.6 7.57x(8.14) 6.62x(6.89) 5.75x%(5.89)
MT-Bench 0 9.95%(11.25) 6.96%(7.46) 4.75%(4.85)
MT-Bench 0.6 8.47x(10.11) 6.96x(7.46) 5.52%(5.67)

The draft model is Llama2-7B and the target model is Llama2-70B. Guess length is 64

8 Conclusion

We introduce DYSPEC, a faster speculative decoding algorithm that incorporates a dynamic
token tree structure for sampling. Based on the connection between draft probability and
acceptance rate, we apply a greedy strategy to dynamically expand the token tree to maxi-
mize the expected length of predicted generations. Empirical results reveal the efficacy and
scalability of DYSPEC by consistent improvements in acceptance rate across various datasets
and generation temperatures. Specifically, on the Llama2-70B model with temperature=0,
DYSPEC achieves a 9.1 x throughput improvement and a 9.4 x reduction in latency.

Appendix A: Token tree construction algorithm

We present the details of our token tree construction algorithms and the corresponding veri-
fication method to ensure that the output probability distribution is consistent with the target
model.

A.1 Token tree construction algorithm with fixed size

We demonstrate the proposed token tree construction algorithm with fixed size in Algorithm 1.

The optimal predicted token tree can be generated by greedily expanding the leaf node
with the highest expectation. This method can be implemented using priority queues, similar
to REST [18].

Assume that we have a partial token tree. Then we use a heap to maintain all extendable
nodes (leaf nodes or the last predicted node of its parent). Each time we extend the extendable
node with the highest estimated acceptance rate. After adding one node to token tree, there
are two more extendable node. One is its first child(the first prediction following this token).
This prediction will only occur if the current node is received, so its estimated acceptance rate
isprevious_rate x p, where p is the estimated acceptance rate of the current token. The
other extendable node is its next neighbor(the next prediction of the same previous tokens).

@ Springer

36 Page180f26 World Wide Web (2025) 28:36

This prediction will only occur if the current node is rejected, so its estimated acceptance
rate is previous_rate x (1 — p).

The algorithm starts with a single root node, which represents the input prefix. Then
repeat the aforementioned process m times. The estimated acceptance rate of the node can
be expressed as the product of its all ancestor nodes’ probability multiplying the probability
that all its previous predictions failed under the same prefix tokens. The new extendable
nodes (i.e., vg and v in Algorithm 1) should have the lower estimated acceptance rate than
the previous predicted tokens. It means that we generated tokens with decreasing acceptance
rate and the residual nodes remain in heap or are not extendable have lower acceptance rate
than any generated tokens, which means that we get the optimal token tree.

Note that the estimated acceptance rate is independent of its actual tokens, because we
made this prediction before we know what the token is. If what this token is affects whether
or not we keep the sample in draft token tree, then the final result will be biased.

Algorithm 1 will call the draft model m times, which is inefficient for large m. An alter-
native way is to generate predicted tokens layer by layer. To do this, we can relax the fixed
limitation m to an appropriate threshold. Algorithm 1 will greedily generate the first m nodes
with the highest estimated acceptance rate. If we set the threshold to be the same as the accep-
tance rate of the last token, we will exactly get the same result as the previous algorithm.
And it will only call the draft model layer number times.

A.2 Token tree construction algorithm with threshold

Algorithm 2 Token tree construction algorithm with threshold.

Require: Prefix xq, draft model Dg (+|x), and a threshold 7.

Ensure: generated token tree 7r. R <— Dg(+|xg), v < 1, TreeInfo « ...
1: LeafNodes <« root

2: while LeafNodes #) do

3: NewLeafNodes <«

4 for all node; € LeafNodes do

5 get input x; from node;

6: di < De(-|x;)
7
8

get estimate acceptance rate v; from node;
while v; <t do

9: sample y ~ d;

10: NewNode <« Tr.add(node;, y)

11: NewLeafNodes.append(NewNode, v; * d;[y]) (*expand child node;*)
12: vi = v; * (1 =d;[y])

13: di[y]=0

14: d;i < norm(d;)

15: end while

16: end for

17: LeafNodes <— NewLeafNodes
18: end while

We present our token tree construction algorithm with threshold in Algorithm 2. The
difference between Algorithms 1 and 2 is that we extend all nodes with estimated acceptance
rate above the threshold.

A.3 Verification

After the token tree process, we need a corresponding verification method to ensure that the
output probability distribution is consistent with the target model. Our method can be seen

@ Springer

World Wide Web (2025) 28:36 Page 190f26 36

as the method dynamically choosing the branch number of each token. So, the verification
method is similar to SpecInfer [6] and Sequoia [8].
We present our verification algorithm in Algorithm 3.

Algorithm 3 Verify Algorithm.

Require: draft model distribution Draft(-), target model distribution Target(-), speculated token tree Tr.
Ensure: Accepted token sequence A.

1: CurrentNode < Tr.root

2: A< 0

3: while CurrentNode.branches # ¢ do

4: D <« Draft(CurrentNode, -)
5: T < Target(CurrentNode, -)
6: R<«T
7.
8
9

for node; € CurrentNode.branches do
get token y from node_i
sample ¢ ~ N (0, 1)

10: if c < g[[y]] then

11: A.append(y)

12: CurrentNode < node_i

13: break

14: else

15: R < norm(max(R — D, 0))
16: D[y] <0

17: if D is all O then

18: break

19: end if

20: D < norm(D)

21: end if

22: end for

23: if CurrentNode isn’t updated then
24: sample y ~ R

25: A.append(y)

26: break

27: endif

28: end while

The major difference between Sequoia and ours is that we return directly when the dis-
tribution of draft output becomes all zeros. In that case, the estimated acceptance rate in our
method is 0 and will never be extended.

Appendix B: Additional experiments
For all experiments, we selected 1000 pieces of data from each dataset to conduct the exper-

iment. For CNN daily we used test splits. For openwebtext, we used the train split. For C4,
we used en splits. All results were the result of a single run.

B.1 DYSPEC with large token tree size
Under CPU-offloading setting, the target model inference is extremely larger than the draft

model. For Llama2-70B as the target and 1lama2-7b as the draft on A100-40G, target model
inference time is 2000 x larger than the draft model, which gives us the opportunity to

@ Springer

36 Page20o0f26 World Wide Web (2025) 28:36

Table 4 Latency per token in seconds(accepted token per step)

Dataset Temp Ours Sequoia Specinfer Baseline
C4 0 0.42412(16.04) 0.62841(9.40) 0.86(8.66)* 5.59650
C4 0.6 0.88494(7.14) 0.66293(8.96) 1.09(6.93)* 5.34781
OWT 0 0.54885(11.79) 0.62979(9.81) 1.02(7.36)* 5.52462
OWT 0.6 0.81002(7.66) 0.65147(9.12) 1.21(6.18)* 5.30340
CNN 0 0.54739(11.46) 0.60206(9,54) 0.95(7.87)* 5.31049
CNN 0.6 0.87648(7.02) 0.65835(8.80) 1.02(6.24)* 5.29280

This data is sourced from [8]
The draft model is Llama2-7B and the target model is Llama2-70B. Guess length is 768

construct a larger token tree. Following Sequoia’s setting, we also make the guess token tree
size up to 768. The result shows that our method can achieve a higher accepted token per
step and lower latency per token than SOTA at the O target temperature.

Athigher temperatures, DYSPEC demonstrates superior performance compared to Specin-
fer, but it does not surpass Sequoia. This is due to efficiency constraints that prevent us from
implementing the full version of DYSPEC’s greedy method. Instead, we must employ a thresh-
old to construct the token tree layer by layer. The exact threshold varies over time, which
limits our ability to fully utilize the 768-token budget. For instance, at a target temperature
of 0.6 on the OpenWebText dataset, with a maximum tree size set to 768 and a threshold

#accepted token / actual tree size

40 1
c
301
S
©
3
Q.
S 20 1
[+]
H#

10 1 g O o

o :
o :
200 300 400 500 600 700

actual tree size

Figure 8 Token Tree size with accepted token number each step

@ Springer

World Wide Web (2025) 28:36 Page210f26 36

of 0.001, the average tree size is 551.79. Figure 8 illustrates the token tree size at each step
alongside the number of accepted tokens.

To maximize the potential of DYSPEC’s greedy expansion method, we need to develop
mechanisms for dynamically adjusting the threshold or create an alternative algorithm that
eliminates the draft model inference overhead while preserving the token-by-token expansion
mechanism.

Appendix C: Block-sparsity friendly token order

The special sparsity in tree attention brings opportunity to further optimize the attention
operation. Since modern attention libraries (e.g. FLASHATTENTION) compute block by block,
different token permutations can have distinct computation workloads. To find the optimal
token order, we formalize the optimization problem as below:

Definition 1 (Block-Sparsity Friendly Token Order) Given a tree 7 with size n and compu-
tation block size b, find a permutation P, s.t. the attention mask of tree P(7") has the minimal
number of non-zero blocks.

Exhaustively searching through all permutations is computationally prohibitive. A near-
optimal solution to this problem is heavy path decomposition (HPD) [19], which traverses
nodes in descending order of their subtree sizes. This approach is effective because it groups
nodes along longer paths into the same blocks whenever possible, while the long path con-
tributes a lot to the total number of blocks in the tree attention mask (O (L?) blocks for a
path with length L). Given the way DYSPEC constructs the speculative token tree, previous
sibling nodes are often allocated more budget to constrain their subtrees. Consequently, the
depth-first search(DFS) order closely approximates the HPD order. DYSPEC leverages DFS
to rearrange node indices, thereby reducing the number of non-zero blocks in the attention

Speculated
Token Tree

— D 1s in attention mask
not empty blocks

it |ta|ts|ts|t6|t7|tg it |ta |ty |ts|t6|t7|tg
t4 t4
19} t
t3 t3
ty — Y
ts ts
to 7 to
t7 t7
t tg

Figure 9 Comparing DFS order with original order

@ Springer

36 Page22o0f26 World Wide Web (2025) 28:36

Figure 10 Tree attention mask of predicted token tree in different order. The left image is the origin order, the
right image is the DFS order

mask. Figure 9 is an example of reorder method. Figure 10(Left) is an origin order tree atten-
tion mask from real workload and Figure 10(Right) is the DFS order tree attention mask of
the same case. It shows that the DFS order is typically more conducive to block sparsity.

C.1 Efficiency of optimized tree attention

For different tasks, there exist diverse patterns of attention masks. In response to the block
sparsity of these masks, numerous implementations of attention operators based on FlashAt-
tention have been developed, However, those methods are not well-suited to support arbitrary
patterns of attention masks. XFormers [20] and DeepSpeed [21] do not have a specific API for
arbitrary custom mask. Recently, PyTorch [22] introduces FlexAttention, which optimizes
for arbitrary attention masks. However, to fully leverage its optimization, we must compile
the kernel for different masks, which is not suitable for our target scenario of tree-based
speculative decoding, where the tree attention mask changes with each iteration.

We have implemented a version of FlashAttention that supports custom masks, allowing
efficient handling of empty blocks in Triton [23]. Our experiments with arandom tree attention
mask demonstrate that DYSPEC Tree reordering can reduce the number of attention mask
blocks by up to 5.9x, and the attention operation can run up to 2.1 x faster, as detailed in
Table 5.

Table 5 Efficiency of Optimized Tree Attention with random tree structure

Tree Size custom kernel Manual Attn Xformer Block Count
(Reorder) latency/s latency/s latency/s

256 (False) 0.07548 0.14089 0.17559 36

256 (True) 0.05406 0.14124 0.16721 22.5

512 (False) 0.21317 0.56264 0.15985 135.5

512 (True) 0.11364 0.55965 0.17285 52.8

1024 (False) 0.63368 2.08612 0.49049 490.2

1024 (True) 0.31801 2.08142 0.48922 119.3

2048 (False) 2.27148 9.20739 1.87807 1654.5

2048 (True) 1.02645 9.13469 1.87753 278.7

@ Springer

World Wide Web (2025) 28:36 Page230f26 36

In the experiment, we set Q, K, V as shape (batch = 1, head_num = 64, seqlen, head_dim
= 128), where head_num = 64 and head_dim = 128 is the parameter used by Llama2-70B.
The block size is 32, which is usually used in the attention kernel according to the limited
shared memory size, and it can also provide considerable block sparsity. The seqlen varies
from 256 to 2048. We also compared our custom kernel with Manual Attention and Xformer,
which demonstrates that our implementation kernel is on par with the on-shelf kernel in terms
of performance. The negligible performance improvement of this kernel demonstrates that
the performance enhancement of our method is entirely attributable to the reduction in the
number of blocks.

In our experiment, we configured Q, K, and V with the shape (batch=1, head_num=64,
seqlen, head_dim=128), aligning with the parameters used by Llama2-70B, where head_num
=64 and head_dim=128. The block size was set to 32, a common choice in attention kernels
due to the constraints of shared memory size, which also facilitates significant block sparsity.
The sequence length (seqlen) varied from 256 to 2048. We benchmarked our custom kernel
against Manual Attention and Xformers, revealing that our implementation performs compa-
rably to existing kernels. The marginal performance improvement observed in those kernels
underscores that the enhanced performance of our method is entirely due to the reduction in
the number of blocks.

However, this improvement is not significant in the end-to-end situation. These are two
problems:

1. The improvement is only significant with large context length, where extremely large
sizes will result in diminishing marginal benefits of increasing size on the acceptance rate
of speculative decoding. Despite the decline in acceptance rate as the tree size increases, the
ratio of inference speeds between the target model and the draft model itself limits the size
of the tree.

—— Triton (Custom Mask)
=== Triton (Custom Mask) [REORDER]
8 4 — Manual Attn
—== Manual Attn [REORDER]
—— XFormers Memory-Efficient Attn
5 ——=- XFormers Memory-Efficient Attn [REORDER]
a
>
o)
[
3
T 4+
2 .
0 -

250 500 750 1000 1250 1500 1750 2000
N_CTX

Figure 11 Efficiency of Optimized Tree Attention with random tree structure

@ Springer

36 Page24o0f26 World Wide Web (2025) 28:36

block count / prefix length, tree size = 768 block count / prefix length, tree size = 1024

w/o reorder 800 w/o reorder
reorder reorder
450 4
n‘; 700
’ >
@ -
400 § o q,;‘ {;’u‘t > -
A% Y oL ¥ ~ **.
- -N' "’&5‘%2 b ; g e s

500 ;Q&, S
3 . ; 400
250 M

-
o w "
A

150 200
140 160 180 200 220 240 260 280 140 160 180 200 220 240 260 280
prefix lenght prefix lenght

block count
8 b}
3 S
»
block count
5 ;’
¥

Figure 12 Block Count with tree attention mask with/without tree reorder, with different prefix length. The
left image is with tree size 768, the right image is with tree size 1024

Using a large model like Llama2-70B with CPU-offloading will the ratio of inference
speeds between the target model and the draft model, however, there is a new problem that
under this setting, the most time cost operation is moving weight between CPU and GPU,
and the attention operation only contributes a little in end—to—end latency.

2. The prompt is included in the attention mask. As the context becomes longer, the
majority of the attention calculations involve interactions between the newly added tokens
and the existing context tokens. Consequently, the influence of the tree structure decreases.

Figure 12 illustrate the block count on a real workload tree attention mask with varying
prefix lengths with different tree size. Specifically, for a tree size of 768, the block count with
reordering is 218.31, compared to 366.12 with the original order. Similarly, for a tree size of
1024, the block count with reordering is 295.59, while it is 580.07 with the original order.

Only when these two issues are resolved can reordering effectively accelerate the end-
to-end latency of tree-based speculative decoding. The first issue requires a more advanced
speculative decoding method capable of handling extremely large tree sizes. The second issue
likely necessitates optimizing the attention computation between the prompt sequence and
new tokens, thereby shifting the bottleneck to the tree attention mask itself.

Author Contributions All authors disucssed the idea of this paper. Yunfan Xiong wrote the main manuscript
text and Lei Zou revised this paper. All authors reviewed the manuscript.

Funding No funding was received for conducting this study.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Competing interests The authors declare no competing interests.

Ethics approval Not applicable.

References

1. OpenAl: GPT-4 Technical Report (2023)
2. Anthropic: Introducing the Next Generation of Claude

@ Springer

World Wide Web (2025) 28:36 Page 250f26 36

16.
17.

20.

21.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre, L., Jumper, J.: Accelerating large language model
decoding with speculative sampling. arXiv:2302.01318 (2023)

Leviathan, Y., Kalman, M., Matias, Y.: Fast inference from transformers via speculative decoding. In:
Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., Scarlett, J. (eds.) International Conference
on Machine Learning, ICML 2023, 23-29 July 2023. Honolulu, Hawaii, USA (2023)

Sun, Z., Suresh, A.T., Ro, J.H., Beirami, A., Jain, H., Yu, EX.: Spectr: Fast speculative decoding via opti-
mal transport. In: Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., Levine, S. (eds.) Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023 (2023). http://papers.
nips.cc/paper_files/paper/2023/hash/6034a661584at6c28fd97a6f23e56c0a- Abstract-Conference.html
Miao, X., Oliaro, G., Zhang, Z., Cheng, X., Wang, Z., Zhang, Z., Wong, R.Y.Y., Zhu, A., Yang, L., Shi,
X., Shi, C., Chen, Z., Arfeen, D., Abhyankar, R., Jia, Z.: Specinfer: Accelerating large language model
serving with tree-based speculative inference and verification. In: ASPLOS (3), pp. 932-949 (2024).
https://doi.org/10.1145/3620666.3651335

Cai, T.,Li, Y.,Geng, Z., Peng, H., Lee,].D., Chen, D., Dao, T.: Medusa: simple LLM inference acceleration
framework with multiple decoding heads. In: Forty-first international conference on machine learning
(2024). https://openreview.net/forum?id=PEpbUobfJv

Chen, Z., May, A., Svirschevski, R., Huang, Y.-H., Ryabinin, M., Jia, Z., Chen, B.: Sequoia: Scalable and
robust speculative decoding. In: The thirty-eighth annual conference on neural information processing
systems (2024). https://openreview.net/forum?id=rk2L.9YGDi2

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polo-
sukhin, I.: Attention is all you need. In: Guyon, I., Luxburg, U., Bengio, S., Wallach, H.M.,
Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.) Advances in neural information processing
systems 30: Annual conference on neural information processing systems 2017, December 4-9,
2017, Long Beach, CA, USA, pp. 5998-6008 (2017). https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa- Abstract.html

Liu, W, Zhou, P., Zhao, Z., Wang, Z., Ju, Q., Deng, H., Wang, P.: K-bert: Enabling language representation
with knowledge graph. In: Proceedings of the AAAI conference on artificial intelligence, vol. 34, pp.
2901-2908 (2020)

. Li, Y., Wei, F,, Zhang, C., Zhang, H.: Eagle-2: faster inference of language models with dynamic draft

trees. arXiv:2406.16858 (2024)

Cheng, Y., Zhang, A., Zhang, X., Wang, C., Wang, Y.: Recurrent drafter for fast speculative decoding in
large language models. arXiv:2403.09919 (2024)

Brown, O., Wang, Z., Do, A., Mathew, N., Yu, C.: Dynamic depth decoding: faster speculative decoding
for llms. arXiv:2409.00142 (2024)

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava,
P, Bhosale, S., et al.: Llama 2: Open foundation and fine-tuned chat models. arXiv:2307.09288 (2023)

. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu, P.J.: Exploring

the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 140-114067
(2020)

Gokaslan, A., Cohen, V.: OpenWebText Corpus. http://Skylion007.github.io/OpenWebTextCorpus (2019)
Nallapati, R., Zhou, B., Santos, C., Gulcehre, C., Xiang, B.: Abstractive text summarization using
sequence-to-sequence RNNs and beyond. In: Riezler, S., Goldberg, Y. (eds.) Proceedings of the 20th
SIGNLL conference on computational natural language learning, pp. 280-290. Association for Computa-
tional Linguistics, Berlin, Germany (2016). https://doi.org/10.18653/v1/K16-1028. https://aclanthology.
org/K16-1028

He, Z., Zhong, Z., Cai, T., Lee, J., He, D.: REST: Retrieval-based speculative decoding. In: Duh,
K., Gomez, H., Bethard, S. (eds.) Proceedings of the 2024 conference of the north american chap-
ter of the association for computational linguistics: Human language technologies (Volume 1: Long
Papers), pp. 1582-1595. Association for Computational Linguistics, Mexico City, Mexico (2024). https://
aclanthology.org/2024.naacl-long.88

Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: Proceedings of the thirteenth annual
acm symposium on theory of computing, pp. 114-122 (1981)

Lefaudeux, B., Massa, F., Liskovich, D., Xiong, W., Caggiano, V., Naren, S., Xu, M., Hu, J., Tintore,
M., Zhang, S., Labatut, P., Haziza, D., Wehrstedt, L., Reizenstein, J., Sizov, G.: xFormers: a modular and
hackable Transformer modelling library. https://github.com/facebookresearch/xformers (2022)

Rasley, J., Rajbhandari, S., Ruwase, O., He, Y.: Deepspeed: System optimizations enable training deep
learning models with over 100 billion parameters. In: Gupta, R., Liu, Y., Tang, J., Prakash, B.A. (eds.)
KDD °20: The 26th ACM SIGKDD conference on knowledge discovery and data mining, Virtual Event,
CA, USA, August 23-27, 2020, pp. 3505-3506 (2020). https://doi.org/10.1145/3394486.3406703

@ Springer

http://arxiv.org/abs/2302.01318
http://papers.nips.cc/paper_files/paper/2023/hash/6034a661584af6c28fd97a6f23e56c0a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6034a661584af6c28fd97a6f23e56c0a-Abstract-Conference.html
https://doi.org/10.1145/3620666.3651335
https://openreview.net/forum?id=PEpbUobfJv
https://openreview.net/forum?id=rk2L9YGDi2
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
http://arxiv.org/abs/2406.16858
http://arxiv.org/abs/2403.09919
http://arxiv.org/abs/2409.00142
http://arxiv.org/abs/2307.09288
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.18653/v1/K16-1028
https://aclanthology.org/K16-1028
https://aclanthology.org/K16-1028
https://aclanthology.org/2024.naacl-long.88
https://aclanthology.org/2024.naacl-long.88
https://github.com/facebookresearch/xformers
https://doi.org/10.1145/3394486.3406703

36 Page260f26 World Wide Web (2025) 28:36

22. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, L.,
Lerer, A.: Automatic differentiation in pytorch (2017)

23. Tillet, P, Kung, H.T., Cox, D.: Triton: an intermediate language and compiler for tiled neural network
computations. In: Proceedings of the 3rd ACM SIGPLAN international workshop on machine learning
and programming languages. MAPL 2019, pp. 10-19. Association for Computing Machinery, New York,
NY, USA (2019). https://doi.org/10.1145/3315508.3329973

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

https://doi.org/10.1145/3315508.3329973

	DySpec: Faster speculative decoding with dynamic token tree structure
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Speculative decoding
	2.2 Tree attention

	3 Related work
	3.1 Tree-structure speculative decoding

	4 Bridging draft distribution with acceptance rate
	5 Method
	5.1 Dynamic token tree construction
	5.2 Algorithm
	5.3 Analyze overhead
	5.4 Construct token tree with threshold

	6 Proof of the optimal
	6.1 Greedy optimal proof

	7 Empirical results
	7.1 Setup
	7.2 Overhead of tree construction
	7.3 Effectiveness of dynamic token tree

	8 Conclusion
	Appendix A: Token tree construction algorithm
	A.1 Token tree construction algorithm with fixed size
	A.2 Token tree construction algorithm with threshold
	A.3 Verification

	Appendix B: Additional experiments
	B.1 DySpec with large token tree size

	Appendix C: Block-sparsity friendly token order
	C.1 Efficiency of optimized tree attention

	References

