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Abstract—With the advent of graph data, graph databases
have garnered significant research interest and efforts in recent
years, especially with respect to graph query processing. There
have been a vast suite of methods for efficient graph query
processing, especially for the core graph query constructs, regular
path queries (RPQs) and subgraph matching queries (SMQs).
In the meantime, there is an observable divide among these
methods as well as confusion between them and their relational
counterparts. We thus propose this tutorial to provide a unified
narrative for graph query processing, so as to bridge the gap
between existent lines of work and offer a comprehensive view
of the query processing workflow in graph databases.

Index Terms—graph query, graph database, query processing,
query planning

I. INTRODUCTION

Graphs are a natural abstraction for modeling interconnected
data, which represent entities as vertices and the relationships
between them as edges. A graph database system uses graphs
as its data model, which brings about opportunities of explor-
ing interconnected data with high efficiency. Thus, significant
effort has been spent designing and optimizing graph databases
in the last decades, especially query processing.

Graph queries typically exhibit greater diversity and com-
plexity than their relational counterparts, incorporating regular
path queries (RPQs), which pose no limit on the path length,
and subgraph matching queries (SMQs), which translate to a
large number of joins. These unique features have prompted
the development of a vast suite of methods for efficient graph
query processing. Though there have been excellent tutorials
[1]–[3] and surveys [4], [5] dedicated at least partly to graph
query processing in recent years, we are still motivated to
come up with a unified narrative that 1) bridges the gap
between the two core graph query constructs, RPQs and
SMQs; 2) crystallizes the relationship between graph and re-
lational query processing, including the overlapping and non-
overlapping aspects; and 3) offers an easily comprehensible
bird’s eye view of the query processing workflow in graph
databases. To our knowledge, no previous survey or tutorial
has achieved all three goals in unison.

In this tutorial, we will start by introducing the preliminary
knowledge regarding graph databases (Sec. III) and defining
the core query constructs, RPQs and SMQs (Sec. IV). Then,
we will put forward the unified set of operators for these
constructs and discuss in detail the relationship between them

and their relational counterparts (Sec. V). On this basis, we
will discuss the classic and state-of-the-art methods used
in the query processing pipeline, including query evaluation
(Sec. VI) and query planning (Sec. VII). We will conclude
with the open challenges of existing techniques and possible
ways to address them in the future (Sec. VIII).

II. ORGANIZATIONAL INFORMATION

• Duration: This 90-minute tutorial covers: (1) Graph
database preliminaries (Sec. III): 10 minutes; (2) Core graph
query constructs (Sec. IV): 10 minutes; (3) The unified set of
graph query operators (Sec. V): 20 minutes; (4) Graph query
evaluation (Sec. VI): 20 minutes; (5) Graph query planning
(Sec. VII): 20 minutes; (6) Open Challenges (Sec. VIII): 10
minutes.

• Target Audience and Assumed Background: This tutorial
is intended for database researchers and practitioners, espe-
cially those with an interest in graphs and query processing.
We do not require any prior knowledge and will provide any
necessary background.

• This tutorial will not be hands-on.

III. PRELIMINARIES

Graph data & query models. The two major types of graph
data models adopted by graph DBMS are property graphs and
RDF (Resource Description Framework) graphs. SPARQL is
the standard query language for RDF graphs, while there are
numerous query languages over property graphs, including but
not limited to GQL and Cypher. The key difference between
the property graph and the RDF graph model is that the
former allows attaching key-value pairs denoting property
names and values to vertices and edges. Such a difference leads
to different graph database storage layouts, which affects the
cost of query operators (Sec. VII). The queries on these data
models can also be different, since queries on property graphs
can involve property values. In this tutorial, we primarily focus
on the common core constructs of property graph and RDF
graph queries (Sec. IV).
Graph storage. Conceptually, the edges in a graph are stored
as a two-column table, each row of which denotes the source
and target vertices of an edge. We omit the storage of vertex
and edge properties, since we do not focus on query constructs
concerning properties in this tutorial. Physically, there are



two distinct types of storage schemes for materializing the
aforementioned structures. The hybrid storage scheme, used
by systems such as Virtuoso [6], leverages relational tables as
the back-end storage engine, storing the edges as table rows.
Contrarily, the native storage scheme, employed by systems
such as Neo4j [7], assigns dense integer IDs to vertices and
stores each vertex’s neighbors as adjacency lists, ensuring that
a vertex’s neighbors can be accessed in constant time. Native
storage schemes are either implemented from scratch or based
on key-value stores. Whether the storage is native or hybrid has
a prominent effect on query evaluation (Sec. VI) and planning
(Sec. VII).

IV. CORE GRAPH QUERY CONSTRUCTS

Regardless of the data model, regular path (i.e., navigation)
and subgraph matching (i.e., conjunctive graph) queries are the
core query constructs in graph databases, defined as follows.
(We refer to graph queries consisting of only these two types
of constructs as graph queries henceforth without ambiguity.)
Regular path query (RPQ). Given a regular expression using
the set of graph edge labels as the alphabet, an RPQ returns
either all the graph vertex pairs between which at least
one path has an edge label sequence that conforms to the
regular expression, or the conforming paths. The distinctive
characteristic of RPQs is that they allow Kleene closures (∗
or + in the regular expressions), which can match paths of
unlimited length.
Subgraph matching query (SMQ). Given a subgraph pattern,
a subgraph where the vertices and edges can either be bound to
concrete vertices and edge labels in the graph or be variables,
an SMQ tries to find matches of the subgraph pattern in the
graph by subgraph isomorphism and returns the variables’
bindings if there are valid matches.
Distinction of graph queries from relational queries. Lossless
translation can be conducted from these graph query constructs
to relational queries, which means that they have the same
basic algebraic operators. However, typical graph queries are
distinct from their relational counterparts in terms of the alge-
braic operators’ distributions. Specifically, RPQs with Kleene
closures translate into relational queries with recursion, and
typical SMQs translate into conjunctive relational queries with
many joins. While these features are relatively rare in rela-
tional queries, they are prevalent in graph queries [8], which
necessitate specialized query processing techniques discussed
in the rest of the tutorial.

V. GRAPH QUERY OPERATORS: A UNIFIED NARRATIVE

As discussed in Sec. IV, graph queries and relational queries
share a common set of algebraic operators. These algebraic
operators dictate the semantics of a query. However, these
algebraic operators can be further split or reordered accord-
ing to certain rules, so that multiple semantically equivalent
query plans are generated. This process is called query plan
enumeration, the first step in query planning (Sec. VII).

Though RPQs and SMQs require seemingly different opera-
tors, we present two operators at a higher level of abstraction
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Fig. 1: Join and traverse-intersect (T-i) operators on an exam-
ple SMQ.

that can implement both types of queries, which are called
join and traverse-intersect, respectively. The reason why we
would like to introduce such a unification is twofold. Firstly,
it allows for a holistic understanding of the core graph query
constructs’ evaluation. Secondly, it could open doors to new
opportunities for graph query optimization (Sec. VIII).

Join. In relational contexts, a join happens between two tables
and produces a new table. In the graph query context, a
join happens between the intermediate results of two query
subgraphs (or paths, excluding single edges) that share at least
one common vertex, and produces the results of the merged
subgraph (or path). Such a join is always binary, i.e., it always
has exactly two operands.

Traverse-intersect (T-i). A T-i operator extends a query sub-
graph (or path) by a vertex by traversing the edges extending
from the previous step’s query subgraph (or path) and poten-
tially pointing to the newly added query vertex. Only if there
is exactly one traversed edge or the edges intersect at a vertex
is the target data vertex bound to the added query vertex.

Example. Fig. 1 shows an example SMQ whose last evaluation
step is implemented with a join or T-i operator, respectively.
The join operator merges two query subgraphs with the
common vertices u2 and u3, while the T-i operator extends
the previous step’s subgraph with the vertex u4 by traversing
all the edges pointing to it. The intermediate result tables
associated with each query subgraph are processed accordingly
to produce the operator’s results.



Discussion: Relation with binary joins (BJs) and multi-way
joins (MWJs). The fundamental difference between BJs and
MWJs is in their arity, while the join and the T-i operators fun-
damentally differ in that T-i uses sideways information passing
[9], while join treats its operands independently. Therefore,
the join and T-i operators are not one-to-one mapped to BJs
and MWJs. Instead, a BJ can be mapped to either a join or
a T-i operator depending on its operands, while an MWJ is
mapped to a T-i operator. Such a distinction is particularly
important on native graph storage, which enables pointer-based
joins for sideways information passing (Sec. VII). Sideways
information passing is not employed by the join operator due
to the difficulty in utilizing the passed intermediate results
beyond scanning for single edges.

VI. GRAPH QUERY EVALUATION

The two basic operators introduced in Sec. V, join and T-i,
are sufficient for evaluating the core graph query constructs,
RPQs and SMQs. In this section, we will introduce the classic
and state-of-the-art graph query evaluation methods and how
they can be mapped to the basic operators.

A. SMQs

There are mainly two lines of work on optimizing SMQ
evaluation: one takes the perspective of join algorithms, while
the other follows the filtering-ordering-enumeration framework
[10].

Join algorithms. Since an SMQ can be viewed as joining the
respective edge tables on the intersecting query vertices, it can
be evaluated with join algorithms, including BJs and MWJs.
MWJs, when used across the entire query, achieves worst-case-
optimality, which guarantees that the intermediate result sizes
do not exceed the final result size in the worst case (i.e., the
AGM bound [11]). However, BJs can still be more efficient in
practice when the query subgraph pattern is acyclic. These two
types of join can be used in conjunction to evaluate a SMQ,
which requires novel planning techniques [12]. As discussed
in Sec. V, both BJs and MWJs can be implemented with the
aforementioned basic operators.

Filtering-ordering-enumeration framework. Commonly seen
in works that treat SMQ evaluation as an algorithmic problem
as opposed to a query optimization problem, this framework
generates candidate result sets for each query vertex, selects
an order for them that expectedly maximizes efficiency, and
finally enumerates the valid results according to the order. In
fact, the third stage in the framework, i.e., enumeration, is
equivalent to evaluating an SMQ using MWJs only.

B. RPQs

The two main RPQ evaluation methods in the literature
are automaton-based and extended-relational-algebra-based (e-
RA-based), respectively.

Automaton-based evaluation. These methods convert the
given regular expression into a finite automaton, compute the
product automaton between it and the data graph, search for

paths in the product automaton, and map the paths back to the
data graph to produce the results.
e-RA-based evaluation. These methods extend relational alge-
bra with operators for computing Kleene closures. There are
multiple ways of extension, including α-RA [13] and µ-RA
[14]. The given regular expression is compiled into an e-RA
tree, and the graph is treated as a set of edge tables. All the
RA operators except for the extended operator are executed
according to their standard definitions, while the extended
operator performs a fix-point operation, which self-joins the
intermediate results until no new results are produced.
Hybrid method. Since automaton-based and e-RA-based eval-
uation methods are not entirely overlapping, [13] proposes a
hybrid evaluation method based on extended automata that
allows bidirectional transitions and using views (i.e., cached
intermediate results) as transition labels.
Implementing RPQs with the basic operators. RPQs without
Kleene closures are a special case of SMQs where the query
subgraph is a path, and thus can be implemented with the basic
operators. Kleene closures make up the essential difference
between RPQs and SMQs. They are evaluated using automata
by traversing the same edge label sequence repeatedly until
the path cannot be further extended, or using e-RA with the
extended fix-point operator, which self-joins the intermediate
results repeatedly until no new results are produced. The first
operation can be implemented with T-i with a self-loop that
symbolizes recursion, while the second can be implemented
with a fix-point operator with a join or T-i operator as its only
child operator.

C. Physical Implementation Issues

Apart from sideways information passing as discussed in
Sec. V, there are other important physical implementation
issues that are not covered in the operators’ definition but can
impact query efficiency.
Depth-first- and breadth-first-style (DFS-style and BFS-style)
implementations of T-i. A DFS-style implementation operates
on each row of the intermediate results, carrying it over to
the subsequent operator after it is successfully extended with
the current query vertex; while a BFS-style implementation
operates on the entire intermediate result table, only proceed-
ing to the next operator after extending all the rows. DFS-
style implementations are more space-efficient, while BFS-
style implementations can take the opportunity of observing
all the intermediate results to detect and reduce redundant
computation.
Pointer- and value-based joins. Native graph storage, which
assigns dense integer IDs to vertices, enables pointer-based
joins as opposed to value-based joins in relational DBMSs.
Pointer-based joins use the integer ID of each vertex as
a pointer to access its attributes or neighbors in constant
time. Value-based joins compare the values in the specified
table columns to sift out matching rows. Pointer-based joins
are typically more efficient, unless there are indexes on the
join conditions built for value-based joins. The proposed join



operator can only use value-based joins, since the intermediate
results are stored as tables. Whether the traverse step in T-
i uses pointer- or value-based joins depends on the graph
storage. Native graph storage may favor using T-i as opposed
to the join operator, since it can leverage pointer-based joins.

VII. GRAPH QUERY PLANNING

As mentioned in Sec. V, though the semantics of a query
is fixed, its operators can be split or reordered in a semantics-
preserving manner. Any organization of a query is referred to
as one of its query plans. Different plans of the same query can
lead to drastically different execution efficiency. Therefore, it
is crucial to select an efficient query plan for execution, the
process of which is called query planning.

Graph query planning differs from its relational counterpart
due to the difference in their query workloads’ characteristics
(Sec. IV), i.e., graph queries typically have recursion and
a large number of joins. Such differences pose challenges
to graph query planning. We will introduce the concept of
plan spaces that is integral to planning, the main query
planning methods, how they address these challenges, and
what challenges remain unaddressed.
Plan space. The plan space of a given query is the space
consisting of all its semantically equivalent query plans. The
operators allows in query plans as well as the constraint on
their order define the shape, size, and contents of the plan
space. For example, referring back to the proposed set of
basic graph query operators, the plan space will be different
depending on which one or both of them are allowed. On
one hand, a larger plan space that subsumes a smaller one
means that the globally optimal plan is at least as good. On
the other hand, a larger plan space also means more time
needs to be spent exploring it for a potentially optimal plan,
which increases the planning overhead. Therefore, whether
more operators should be allowed and more constraints should
be removed is a delicate tradeoff. Currently, many distinct plan
spaces exist for both RPQs and SMQs. It is preferable to devise
a unification so as to simultaneously leverage various existing
query evaluation techniques, such as using the set of operators
proposed in this tutorial.
Cost-based planning. Cost-based planning methods first enu-
merate semantically equivalent query plans, then use the cost
estimator to assess the cost of these plans, and finally choose
the plan with the lowest cost estimate for evaluation. Cost
estimation necessitates a cost model that accurately assesses
each operator’s cost according to its operands’ cardinalities
as well as the operands’ cardinality estimates. Cost models
for SMQs are well-established, but not so much for RPQs.
Specifically, how to accurately model the cost of evaluating
a Kleene closure is still an open problem. As for cardinality
estimation, the cardinality of SMQs is arguably more challeng-
ing to estimate accurately than relational join queries due to
the typically larger number of joins. To address the challenge,
existing works diverge from their relational counterparts by
building synopses based on subgraph patterns, devising sam-
pling strategies that reduce the sampling space [15], using

graph neural networks (GNN) to capture the graph structure
[16], etc. Estimating the cardinality of RPQs with Kleene
closures is also open, since the existing works all manually
enforce a maximum path length.

Heuristics-based planning. Unlike cost-based methods,
heuristics-based planning methods do not estimate a query
plan’s execution cost, but rely on other, typically less
computation-intensive metrics such as the number of edges
with a certain label or the portion of the search space that is
guaranteed to be reduced [17]. They are thus typically used to
control the planning overhead when the number of joins is par-
ticularly large. It is possible to combine cost- and heuristics-
based planning, e.g., planning a subquery’s execution with a
cost-based method and deciding the remaining evaluation steps
using heuristics.

VIII. OPEN CHALLENGES

At the end of the tutorial, we will sum up the open
challenges in graph query processing as follows and shed some
light on potential solutions:
• Unified query plan representation. We have proposed a

unified set of operators that bridge the gap between RPQ and
SMQ evaluation. The apparent next step is to derive a query
plan representation and the corresponding planning methods
so as to synthesize the existing lines of work in graph query
processing and expose new optimization opportunities. It
is yet unclear how such a unified representation should be
defined.

• Query planning for RPQs. As discussed in Sec. VII,
the cost and cardinality estimation for RPQs remain open
problems due to the recursive nature of Kleene closures.
Providing a solution that eliminates the need to manually
enforce a maximum path length will benefit both the graph
theory and database systems community.

• Processing conjunctive RPQs (CRPQs). This tutorial and
most of the past literature focus on RPQs and SMQs
in isolation, while a large portion of real graph queries
incorporate both constructs, i.e., CRPQs. It is imperative to
consider synthesizing RPQ and SMQ processing techniques
to devise a principled framework for optimizing CRPQ
processing.
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