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Abstract—The proliferation of RDF datasets has resulted
in studies focusing on optimizing SPARQL query processing.
Most existing work focuses on basic graph patterns (BGPs)
and ignores other vital operators in SPARQL, such as UNION
and OPTIONAL. SPARQL queries with these operators, which
we abbreviate as SPARQL-UO, pose serious query planning
challenges. In this paper, we propose techniques for optimizing
SPARQL-UO queries using BGP execution as a building block,
based on a novel BGP-based Evaluation (BE)-Tree representa-
tion of query plans. On top of this, we propose a series of
cost-driven BE-tree transformations to generate more efficient
plans by reducing the search space and intermediate result
sizes, and a candidate pruning technique that further enhances
efficiency at query time. Experiments confirm that our method
outperforms the state-of-the-art by orders of magnitude.

Index Terms—graph database, graph query, query optimiza-
tion, OPTIONAL expressions, UNION expressions

I. INTRODUCTION

The proliferation of knowledge graphs has generated
many RDF (Resource Description Framework) data man-
agement problems. RDF is the de-facto data model for
knowledge graphs, where each edge is a triple of 〈subject,
predicate, object〉. SPARQL has been the focus of a signifi-
cant body of research as the standard language for accessing
RDF datasets. Most of the existing work focus on basic
graph pattern (BGP) execution, the basic building block of
SPARQL. On the other hand, how to execute and optimize
queries containing operators on graph patterns, such as
UNION and OPTIONAL, has received much less attention.
UNION and OPTIONAL expressions are essential in

SPARQL grammar. Firstly, RDF datasets are semi-structured
and do not enforce a schema. The UNION operator is crucial
in this case since it merges diversely expressed information.
For example, in DBpedia [1], an open-domain knowledge
graph extracted from Wikipedia, persons’ names are repre-
sented using the predicate foaf:name or rdfs:label.
Thus, to fully retrieve all the names of a group of persons
(e.g., Presidents of the United States), it is necessary to use
the UNION operator (Fig. 1(a)). Secondly, RDF datasets
are commonly incomplete. Specifically, an entity may lack
some attributes or relationships that most other entities of
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the same type have. In this case, the OPTIONAL operator is
useful, since it allows attaching some attributes or relations
as optional information. For example, the OPTIONAL query
in Fig. 1(b) fetches all the presidents of the United States,
along with other references to them that are not on the
same Wikipedia page. Since not every president has multiple
references in the database, the triple with the predicate
owl:sameAs is enclosed in an OPTIONAL expression.
UNION and OPTIONAL expressions are widely used in

real-world SPARQL workloads and are part of the SPARQL
1.1 specification. Recent empirical studies [2] show that
UNION and OPTIONAL expressions occur in 25.10% and
31.72% of the valid queries from real SPARQL query logs
across a diverse range of endpoints, respectively. In this
paper, we address the efficient execution of SPARQL queries
with UNION and OPTIONAL expressions, which we abbre-
viate as SPARQL-UO queries.
Our Solution. Since BGP has been well studied, it is
desirable to build SPARQL-UO query optimization on a well-
performing BGP engine. Therefore, we first propose a BGP-
based query evaluation scheme. Specifically, we propose a
BGP-based Evaluation (BE)-tree query plan representation
for the evaluation plan of SPARQL-UO queries, which is
a tree structure with BGPs as leaves and graph pattern
operators as internal nodes. However, if the BE-tree is eval-
uated as it is, some BGPs may generate large intermediate
results. Therefore, we propose a BE-tree transformation
method to generate a more efficient query plan, which is
backed by relational algebra (RA). The BE-tree serves as an
easily constructible and comprehensible intermediate form
between a SPARQL query and its RA-based plan.

We introduce two types of transformations, merge and
inject, that target UNION and OPTIONAL operators, re-
spectively. These transformations expose opportunities for
reducing the cost during the evaluation of BGPs, UNION
and OPTIONAL operators while preserving query seman-
tics, which are one-to-one mapped from the BE-trees to the
RA-based plans for execution. Since there are many different
ways to transform an RA-based plan, we devise a cost
model that accounts for the cost of evaluating both BGPs
and these operators, and choose the transformation that
reduces the most cost. Because of the vast space of possible
transformations, we propose a greedy strategy to determine



SELECT ?x ?name
WHERE
{

!! ?x dbo:wikiPageWikiLink
dbr:President_of_the_United_States.

!" {?x foaf:name ?name}
UNION

!# {?x rdfs:label ?name}
}

!!

!#
!"

!! $

!# $

!" $? #

?x Predicate ?name
dbr:George_H._W._Bush

foaf:name
dbr:Bill_Clinton

person1

foaf:name…

person9999

?x Predicate ?name
dbr:George_H._W._Bush rdfs:label

person2

rdfs:label…

person10000

!!	AND !" 	UNION	{!#}

(a) UNION Clause

!!

!"

!! $

!" $

? #

?x
dbr:George_Washington

…

dbr:Joe_Biden

SELECT ?x ?same
WHERE
{

!! ?x dbo:wikiPageWikiLink
        dbr:President_of_the_United_States.

!% OPTIONAL{?x owl:sameAs ?same}
}

!!	OPTIONAL	{!%}

?x Predicate ?same
dbr:George_Washington owl:sameAs dbr:Washington

person1

owl:sameAs…

person10000

(b) OPTIONAL Clause

Fig. 1: An Example Query with a UNION and OPTIONAL Clause.

the transformations step-by-step. The transformed plan is
then evaluated by the BGP-based scheme, enhanced by the
query-time optimization, candidate pruning, which prunes
the search space of BGP evaluation on the fly.

To summarize, we make the following contributions:
1) We propose a novel BE-tree representation for the eval-

uation plan of a SPARQL-UO query and design two RA-
backed BE-tree transformation primitives, merge and in-
ject, to generate more efficient SPARQL-UO query plans.

2) We propose a cost model for SPARQL-UO queries and a
cost-driven BE-tree transformation algorithm.

3) We design a query-time optimization called candidate
pruning that augments the BGP-based query evaluation
scheme by pruning the search space.

4) We conduct experiments on large-scale real and syn-
thetic RDF datasets, which shows that our method out-
performs existing techniques by orders of magnitude.

The rest of the paper is organized as follows. A brief
review of related work is given in Sec. II. Sec. III provides
the necessary preliminary information. Sec. IV presents the
BE-tree plan representation, the transformations, and the
query evaluation scheme. The cost-driven planning algo-
rithm is proposed in Sec. V, and the query-time optimization
is presented in Sec. VI. We experimentally evaluate our
method in Sec. VII and conclude the paper in Sec. VIII.

II. RELATED WORK

Although SPARQL query optimization has been exten-
sively studied, most of the focus has been on evaluating
BGPs [3], including graph-based approaches and relational
approaches. Graph-based approaches include works on ef-
fective index strategies (e.g., gStore [4]) and join order opti-
mization (e.g.,WCOJ [5]). In contrast, relational approaches
rely on a relational DBMS and consider RDF graphs as three-
column tables or other complex table organizations [6], [7].
Processing SPARQL queries is then mapped to its relational
counterparts, as done in Apache Jena [8] and Virtuoso [9].
Relational BGP optimization approaches focus primarily on
efficient data organization (e.g., property table [8], verti-
cal partitioning [10] and single table exhaustive indexing
[11]). However, these BGP optimization techniques cannot
optimize UNION and OPTIONAL, since the semantics of
these operators are fundamentally different from joins. As
explained in later sections, our solution relies on BGP
evaluation as a basic building block, and our proposed

optimization techniques operate on a higher level than BGP
evaluation techniques.

Works on optimizing SPARQL queries with UNION and
OPTIONAL operators are quite scarce. LBR [3] proposes
a query rewriting technique to reduce intermediate re-
sults of left-outer joins, the join semantics represented by
OPTIONAL. To remove inconsistent variable bindings, LBR
uses the nullification and best-match techniques previously
studied in SQL left-outer joins [12], and proposes a semijoin
strategy to prune the candidate results. However, it follows
an execution strategy of two-pass semi-join scans on the join
graph, which introduces additional overhead during query
execution. In this paper, we propose a more comprehen-
sive approach that handles both UNION and OPTIONAL.
Experiments also demonstrate that our techniques signif-
icantly outperform LBR on OPTIONAL queries. Works on
ontology-based query reformulation [13], [14], which target
SPARQL queries with UNION, bear a conceptual similarity
to ours in that they consider a space of possible rewritten
queries and select the one with the lowest cost for execution.
However, the rewriting rules and cost model that they
use are different from ours, and they do not consider
OPTIONAL.

There are a number of theoretical works on optimiz-
ing queries with OPTIONAL [15], [16], which propose
semantics-preserving rewriting rules for such queries. Our
method, which operates on two particular rules, is parallel
to these works and may be extended to support them in a
cost-based manner in the future.

Note that our techniques to optimize UNION expres-
sions can also be applied to conjunctive relational queries
with unions due to their semantic similarity. In fact, all
SPARQL-UO queries can be equivalently mapped to SQL,
but the mapping of OPTIONAL expressions involves sub-
selects in SQL, so our techniques cannot be applied without
major adaptations [17], [18]. We are aware of a recent
demonstration [19] that proposes a join pushing technique
on conjunctive queries with unions, which pushes the join
condition into the unioned sets if a cost model deems it
more efficient. However, no description of the employed cost
model is provided, which renders experimental comparison
impossible. Some works on relational algebra have focused
on outerjoin optimization [20], which can be applied to
our setting. However, to our knowledge, there has not
been similar works that treat rewritings in a systematic



cost-based manner and outperform well-established baseline
RDF systems experimentally.

III. PRELIMINARIES

RDF Dataset.
Definition 1 (RDF dataset): Let pairwise disjoint infinite

sets I , B, and L denote IRI, blank nodes and literals,
respectively. An RDF dataset D is a collection of triples
D = {t1, t2, ..., t|D|}, where each triple is a three-tuple
t = 〈sub jec t, proper t y, ob jec t〉 ∈ (I ∪ B)× I × (I ∪ B ∪ L).
Tab. I is an example RDF dataset with seven triples.
SPARQL Query—Syntax. In the following, we present the
query dialect that we target in this paper, which is a proper
subset of SPARQL 1.1. Assume there is an infinite set V
representing the variables that appear in the query. All
variables differ from IRIs and literals by leading with a
question mark (?), so the set V is disjoint with I and L. This
work focuses on SELECT queries, which retrieve results by
matching the graph pattern in the query with the dataset. A
SELECT query is of the form “SELECT v1 v2 ... vk WHERE
{...}”, in which the SELECT clause represents the query
header, and the WHERE clause represents the query body
(Fig. 2(a)). The SELECT clause determines the projection
variables that need to appear in the query results, and the
WHERE clause gives the group graph pattern that needs to
be matched over the RDF dataset, which may consists of
many other types of graph patterns, defined as follows.

Definition 2 (Triple Pattern): A triple t ∈ (V ∪ I)×(V ∪ I)×
(V ∪ I ∪ L) is a triple pattern.

Basic graph patterns (BGPs) are sets of triple patterns.
In this paper, we focus on connected BGPs, i.e., BGPs
that represent connected query subgraphs. For brevity, all
mentions of BGPs refer to connected BGPs henceforth. To
give a formal definition of BGPs, we first introduce the
notion of coalescability.

Definition 3 (Coalescable triple patterns): We say that the
triple patterns t1 = 〈s1, p1, o1〉 and t2 = 〈s2, p2, o2〉 are
coalescable if and only if {s1, o1} and {s2, o2} share at least
one common variable.

Intuitively, two triple patterns are coalescable if they
have common variables at the subject or object positions.
Since a BGP is composed of triple patterns, we can extend
coalescability to BGPs, where we require some of their
constituent triple patterns to be coalescable.

Definition 4 (Coalescable BGPs): We say that the BGPs b1
and b2 are coalescable if there exist t i1 ∈ b1 and t i2 ∈ b2
such that t1 and t2 are coalescable triple patterns. We
denote the coalesce operation as +, e.g., the BGP formed
from coalescing b1 and b2 is denoted as b1 + b2.

Definition 5 (Basic Graph Pattern (BGP)): A BGP is recur-
sively defined as follows:
1) A triple pattern t is a BGP;
2) if P1 and P2 are coalescable BGPs, P1 + P2 is also a BGP.

Definition 6 (Graph Pattern, Group Graph Pattern):
A graph pattern is recursively defined as follows:

1) if P is a BGP, P is a graph pattern;

SELECT ?x ?name ?birth ?same
WHERE
{

!! ?x dbo:wikiPageWikiLink
        dbr:President_of_the_United_States.

!" {?x foaf:name ?name}
UNION

!# {?x rdfs:label ?name}
    OPTIONAL {
        {?x owl:sameAs ?same}
        UNION
        {?same owl:sameAs ?x}}
    ?x dbp:birthDate ?birth.
}

!$

!%
!&

(a)

OPTIONAL

AND UNION

UNION!$

!%

!&

!!

!" !#

AND

(b)

Fig. 2: An example SPARQL query and its tree expression

2) if P is a group graph pattern (defined below), P is a
graph pattern;

3) if P1 and P2 are both graph patterns, P1 AND P2 is also
a graph pattern;

4) if P1 and P2 are both graph patterns, {P1} UNION {P2},
P1 OPTIONAL {P2} are both graph patterns. Note that
{Pi} denotes a group graph pattern (defined below);

A group graph pattern P is recursively defined as follows:

1) If P is a graph pattern, {P} is a group graph pattern.

Fig. 2 is an example SPARQL query with six triple patterns
(t1..6) and UNION and OPTIONAL operators.

SPARQL Query—Semantics. A graph pattern is essen-
tially an expression that contains triple patterns and the
left-associative operators AND, UNION and OPTIONAL,
which accept graph patterns as their operands. AND and
OPTIONAL are binary operators, while UNION can have
two or more operands. Such an expression can be equiv-
alently represented by a tree, where each leaf node rep-
resents a triple pattern and each internal node represents
an operator. The positioning of each node in the tree
is determined by the priority of the operators: AND =
OPTIONAL ≺ UNION. Curly braces override the standard
order of operations and define the scope of the operands.
Fig. 2b shows such a tree expression of the query in Fig. 2a.

A graph pattern P is matched on an RDF dataset D
(denoted by [[P]]D) to produce a bag (i.e., multi-set) of
mappings {µ1,µ2, ... , µn}, which may contain duplicate
mappings. A mapping µ : V 7→ U is a partial function from
V to (I ∪ L), where V represents the variables that appear
in the query, and I and L denote the sets of IRI and literals,
respectively. The set of variables appearing in mapping µ
is denoted by dom(µ). The two mappings µ1 and µ2 are
defined to be compatible (denoted by µ1 ∼ µ2) if and only
if for all variables v ∈ dom(µ1) ∩ dom(µ2) satisfying
µ1(v) = µ2(v). Intuitively, this means that the common
variables of µ1 and µ2 are mapped to the same values. In
the case where µ1 and µ2 are compatible, µ1 ∪µ2 is also a
mapping. If the two mappings µ1 and µ2 are incompatible,
we denote the case as µ1 ≁ µ2.

We denote two bags of mappings by Ω1 and Ω2, and
define several operators on bags as follows:



TABLE I: An example RDF dataset

Subject Predicate Object
dbr:George_W._Bush foaf:name “George Walker Bush"@en
dbr:George_W._Bush rdfs:label “George W. Bush"@en
dbr:George_W._Bush dbo:wikiPageWikiLink dbr:President_of_the_United_States
dbr:Bill_Clinton foaf:name “Bill Clinton"@en
dbr:Bill_Clinton dbo:wikiPageWikiLink dbr:President_of_the_United_States
dbr:Bill_Clinton dbp:birthDate “1946-08-19"^^xsd:date
dbr:Bill_Clinton owl:sameAs fbp:Clinton_William_Jefferson_1946-

1) Ω1 \Ω2 = {µ1 ∪µ2 | µ1 ∈ Ω1 ∧µ2 ∈ Ω2 ∧µ1 ∼ µ2}.
2) Ω1 ∪bag Ω2 = {µ1 | µ1 ∈ Ω1}

⋃

bag{µ2 | µ2 ∈ Ω2}.
3) Ω1 \Ω2 = {µ1 ∈ Ω1 | ∀µ2 ∈ Ω2 : µ1 ≁ µ2}.
4) Ω1 d|><| Ω2 = (Ω1 \Ω1)

⋃

bag(Ω1 \Ω1)

Note that the operators above all preserve duplicate
elements, as they follow the bag semantics.

We define how to evaluate graph patterns according to
W3C’s standard semantics for SPARQL as follows.

Definition 7 (Evaluation of Graph Patterns on an RDF
dataset): The evaluation of graph patterns P on an RDF
dataset D, denoted as [[P]]D, is recursively defined as
follows, where the order of the operators follow that in the
tree expression:

1) If P is a triple pattern t, [[P]]D = {µ | var(t) = dom(µ) ∧
µ(t) ∈ D} (var(t) represents all variables occurring in
t, and µ(t) mean that all variables appearing in t are
replaced by µ).

2) If P = {P1}, [[P]]D = [[P1]]D.
3) If P = P1 AND P2, [[P]]D = [[P1]]D \ [[P2]]D.
4) If P = P1 UNION P2, [[P]]D = [[P1]]D

⋃

bag[[P2]]D.
5) If P = P1 OPTIONAL P2, [[P]]D = [[P1]]D d|><| [[P2]]D.

IV. PLAN REPRESENTATION: BGP-BASED EVALUATION TREE

The most straightforward approach for evaluating a
graph pattern P is to employ a bottom-up strategy on
the tree representation. In each step, we either evaluate
a triple pattern, or perform an operator (AND, UNION,
or OPTIONAL). This tree-based evaluation strategy strictly
follows the SPARQL semantics discussed in Sec. III, but has
inherent performance limitations due to the large number
of intermediate results generated for each triple pattern
at the leaf nodes. To illustrate this, consider the simple
SPARQL query in Fig. 3. Note that the outermost group
graph pattern of this query only contains a BGP. Following
the tree-based method, we first need to obtain [[t1]]D and
[[t2]]D. Obviously, the triple pattern t2 will generate a large
number of intermediate results, since most persons in the
database have their birth dates as an attribute.

It is more desirable to use BGP evaluation as the basic
building block for executing SPARQL queries, employing
an optimized BGP query evaluation method such as those
used in RDF-3x [11], SW-store [6], gStore [4] and Jena [8].
Thus, in our approach, we design a BGP-based Evaluation
Tree (BE-tree) to represent the intermediate form between
SPARQL queries and their RA-based query plans.

A. BE-Tree & RA-Based Plan Structure

The BE-tree is a conceptually simple syntax parse tree
of the SPARQL dialect considered in this paper, which is
straightforward to construct and intuitive to understand. We
use the BE-tree as an intermediate form between a SPARQL
query and its RA-based plan.

Definition 8 (BGP-based Evaluation Tree (BE-tree)): Given
a group graph pattern Q, its corresponding BE-tree T (Q) is
recursively defined as follows:
• The root of T (Q) is a group graph pattern node (Def. 6)

representing the query Q;
• An internal node of T (Q) can be one of {UNION,
OPTIONAL, group graph pattern} nodes:
– A UNION node represents the UNION expression

that links two or more group graph patterns, called
UNION’ed group graph patterns. It has two or more
child nodes, which are all group graph pattern nodes;

– An OPTIONAL node represents the OPTIONAL ex-
pression that links OPTIONAL-left and OPTIONAL-
right graph patterns. It has exactly one child node:
the OPTIONAL-right graph pattern, which is a group
graph pattern node;

• Each leaf node of T (Q) is a BGP node (Def. 5).
After constructing a BE-tree from parsing a SPARQL query,

all coalescable sibling triple patterns and BGPs whose parent
is a group graph pattern node are coalesced until no further
coalescing can be performed, forming maximal BGPs. When
the triple patterns of siblings or BGPs are on different sides
of an OPTIONAL node, they can only be coalesced when
the OPTIONAL is well-designed [21].

As a concrete example, the BE-tree of the query in Fig. 2a
is given in Fig. 4. Note that the triple patterns t1 and t6
are coalesced to form a BGP node; no other triple patterns
cannot be coalesced, and thus form individual BGP nodes.

The RA-based plan, which dictates how the query is
executed, is defined as follows.

Definition 9 (RA-Based Plan): Given a group graph pattern
Q, its corresponding RA-based plan Plan(Q) is defined as
follows:
• Each internal node of Plan(Q), including the root node,

is an AND, OPTIONAL, or UNION node;
• Each leaf node of Plan(Q) is a BGP node (Def. 5).

Compared with the tree expression in Fig. 2b, the RA-
based plan has the same types of internal nodes, but has
BGPs as leaf nodes instead of triple patterns. For conve-
nience, we denote the internal nodes as the graph pattern



Fig. 3: Inefficiency of binary-tree-based query evaluation

BGP Node

Group Graph 
Pattern Node

Triple pattern 𝑡!
Triple pattern 𝑡" 
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Triple pattern 𝑡$

OPTIONAL 
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UNION 
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Triple pattern 𝑡%

BGP Node

Triple pattern 𝑡&

Fig. 4: Example BE-tree.

BGP BGPBGP

BGP BGP

Fig. 5: Example RA-based
plan.

operators’ respective RA operators, i.e., AND as ▷◁, UNION
as
⋃

bag , and OPTIONAL as d|><|. For example, Fig. 5 shows
the RA-based plan converted from the BE-tree Fig. 4. To
evaluate a SPARQL query, its RA-based plan is traversed in
a depth-first manner, during which the BGPs are evaluated
and their results are combined according to the operators’
semantics, as shown in Alg. 1.

Algorithm 1: BGP-based query evaluation
Input: RDF dataset D, RA-based plan Plan(Q)
Output: [[Q]]D

1 BGPBasedEvaluation(D, Plan(Q).root);
2 Function BGPBasedEvaluation(D, v):
3 if v is of type ▷◁ then
4 r ← BGPBasedEvaluation(D, v.child[0]);
5 r ← r ▷◁ BGPBasedEvaluation(D, v.child[1]);
6 return r;
7 else if v is of type

⋃

bag then
8 r ← BGPBasedEvaluation(D, v.child[0]);
9 for i in 1,2, · · · , num(child) do

10 r ← r
⋃

bag BGPBasedEvaluation(D, v.child[i]);
11 return r;
12 else if v is of type d|><| then
13 r ← BGPBasedEvaluation(D, v.child[0]);
14 r ← rd|><|BGPBasedEvaluation(D, v.child[1]);
15 return r;
16 else if v is a BGP then
17 return EvaluateBGP(D, ei)

It is straightforward to convert from a BE-tree to an RA-
based plan. Basically, we perform a depth-first search on the
BE-tree, prioritizing each node’s rightmost children. The RA-
based plan is grown from right to left as the BE-tree nodes
are visited. A group graph pattern node in a BE-tree will be
mapped to one or more ▷◁ nodes in an RA-based plan.

B. BE-Tree & RA-Based Plan Transformations

In the previous subsection, we invoke the BGP-based
evaluation procedure (Alg. 1) on the RA-based plan directly

constructed from BE-tree of the query. However, it is possible
to improve the efficiency of query evaluation by altering
the plan. We achieve this by making certain semantics-
preserving transformations.

1) Goals: Our aim is to transform the original RA-based
plan so that the resulting RA-based plan has the following
properties:

• Validity: the resulting RA-based plan should maintain the
previously defined tree structure and have the same node
types.

• Efficiency: the evaluation of the resulting RA-based plan
should be more efficient than the original RA-based plan.

2) Semantics-Preserving Transformations: In order to op-
timize for query execution efficiency while maintaining
correctness, we need to leverage the inherent semantic
equivalences regarding the UNION and OPTIONAL, ac-
cording to the following theorems backed by RA. We first
introduce these transformations on the BE-tree, then map
them to RA-based plans.

Theorem 1: For any graph pattern P1, P2, P3 and any RDF
dataset D, we have

[[P1 AND (P2 UNION P3)]]D = [[(P1 AND P2) UNION (P1 AND P3)]]D.

Proof 1:

[[P1 AND (P2 UNION P3)]]D
= [[P1]]D \ [[P2 UNION P3]]D
= [[P1]]D \ ([[P2]]D ∪bag [[P3]]D)
= ([[P1]]D \ [[P2]]D)∪bag ([[P1]]D \ [[P3]]D)
= [[P1 AND P2]]D ∪bag [[P1 AND P3]]D
= [[(P1 AND P2) UNION (P1 AND P3)]]D.

Note that Thm. 1 is also trivially extendable to UNION
nodes with more than two child nodes.

Theorem 2: For any graph pattern P1, P2 and any RDF
dataset D, we have

[[P1 OPTIONAL P2]]D = [[P1 OPTIONAL (P1 AND P2)]]D.



Proof 2:

[[P1 OPTIONAL (P1 AND P2)]]D
= ([[P1]]D \ [[P1 AND P2]]D)∪bag ([[P1]]D \ [[P1 AND P2]]D)
= ([[P1]]D \ ([[P1]]D \ [[P2]]D))
∪bag ([[P1]]D \ ([[P1]]D \ [[P2]]D))

= ([[P1]]D \ [[P2]]D)∪bag ([[P1]]D \ [[P2]]D)
= [[P1 OPTIONAL P2]]D.

These two equivalences correspond to two semantics-
preserving transformations on the BE-tree: that of merging
a node with the child nodes of its sibling UNION node, and
that of injecting a node into the child node of its sibling
OPTIONAL node, defined as follows.

Definition 10 (Merge transformation): A merge transfor-
mation is performed on a graph pattern P1’s node and
one of its sibling UNION nodes, the child nodes of which
represents the group graph patterns P2, P3, · · · , Pn, when
1) P1 is a BGP node;
2) At least one of the group graph patterns in P2, P3, · · · , Pn

has a BGP child node that is coalescable with P1.
The merge transformation consists of the following steps:

1) Insert P1 as the leftmost child node of P2, P3, · · · , Pn;
2) Coalesce P1 with the other BGP child nodes if possible,

until all the BGP nodes are maximal;
3) Remove P1 from its original position.

Definition 11 (Inject transformation): An inject transfor-
mation is performed on a graph pattern P1’s node and one
of its sibling OPTIONAL nodes to its right, the child node
of which represents the group graph pattern P2, when
1) P1 is a BGP node;
2) P2 has a BGP child node that is coalescable with P1.

The inject transformation consists of the following steps:
1) Insert P1 as the leftmost child node of P2;
2) Coalesce P1 with the other BGP child nodes if possible,

until all the BGP child nodes are maximal.

SELECT ?x ?same
WHERE
{

𝑏!
?x dbo:wikiPageWikiLink

dbr:President_of_the_United_States.

𝑏" OPTIONAL{?x owl:sameAs ?same}
}

SELECT ?x ?same
WHERE
{

𝑏!
?x dbo:wikiPageWikiLink

dbr:President_of_the_United_States.
𝑏! OPTIONAL{

𝑏"

?x dbo:wikiPageWikiLink
dbr:President_of_the_United_States.

?x owl:sameAs ?same. }
}

𝑏! OPTIONAL {𝑏"}

𝑏! OPTIONAL {𝑏!𝑏"}

Transform

BGP node 

OPTIONAL graph pattern node

Group graph pattern node

𝑏+

𝑏,

𝑏+

𝑏,𝑏+

Fig. 6: Example Inject Trans-
formation.

SELECT ?x ?same ?name
WHERE
{

?x owl:sameAs ?same.

𝑏! {?x foaf:name ?name.}
UNION

𝑏" {?x rdfs:label ?name.}
}

𝑏! AND 𝑏" UNION {𝑏#}

BGP node 

UNION graph pattern node

Group graph pattern node

𝑏*

𝑏+ 𝑏,

𝑏#

Transform

SELECT ?x ?same ?name
WHERE
{

𝑏# {?x owl:sameAs ?same.
?x foaf:name ?name.}

UNION
𝑏# {?x owl:sameAs ?same.

?x rdfs:label ?name.}
}

𝑏! AND 𝑏" UNION {𝑏#}

𝑏!

𝑏"

𝑏+𝑏* 𝑏,𝑏*

Fig. 7: Example Merge
Transformation.

Example. In Fig. 6 and 7, we give examples of these trans-
formations’ effects on SPARQL queries targeting DBpedia.

In Fig. 6, b4 is a grandchild BGP node of the OPTIONAL
node to the right of b1, and b1 and b4 are coalescable.
Therefore, the available inject transformation will coalesce
b4 with b1, which can help improve efficiency. According
to the original BE-tree, b4 is directly evaluated, and the
results are left-outer-joined with those of b1. Since a large
number of entities have the ?sameAs relation, which
denotes the equivalence between references to the same
real-world object, b4 has many matches, causing both its
evaluation and the left-outer-join to be costly. However,
presidents of the United States is a minority of the entities,
making b1 highly selective. After the inject, we can rely
on the underlying evaluation engine to efficiently evaluate
the coalesced b1 b4 by choosing a join order that evaluates
the much more selective b1 first. The left-outer-join is also
rendered less expensive due to the decrease in the number
of results of b1 b4 compared with b4.

This example also explains why the transformations are
only defined on coalescable BGPs. If no coalescing happens,
the repeated evaluation of the merged or injected BGP will
incur overhead.

However, not all available transformations can help im-
prove efficiency, which necessitates enumeration and cost-
based selection. Fig. 7 shows an available merge transforma-
tion on an example UNION query, which merges the BGP b1
with its sibling UNION node. Since b1 has low selectivity,
merging it does not accelerate BGP evaluation or reduce
the number of intermediate results, and even incurs extra
overhead because it now has to be evaluated twice.

When mapped onto the RA-based plan, the scope of a
transformation is not as obvious as sibling nodes in the
BE-tree. To search for UNIONs and OPTIONALs viable
for transforming with a BGP, we need to search the BGP’s
ancestors until finding the ▷◁ operator closest to the root
without passing through any

⋃

bag node. All the
⋃

bag ’s and
d|><|’s reachable from this ▷◁ through only ▷◁’s are exactly this
BGP’s siblings in the BE-tree and can be considered for
transformation. We denote the set of

⋃

bag ’s and d|><|’s that
can be considered by a BGP b as scope(b).

V. COST-DRIVEN PLAN SELECTION

In this section, we introduce the cost-driven approach
selecting the expectedly most efficient transformations to
be performed on an RA-based plan.

Our cost-driven approach operates on a higher level than
BGP evaluation, but still relies on estimations of the eval-
uation costs and result sizes of BGPs, which are obtainable
from the underlying BGP evaluation engine [22].

A. Cost Models

1) Cost Model for SPARQL-UO: SPARQL-UO query execu-
tion cost is made up of two main components: the cost of
evaluating BGPs and of computing graph pattern operators:
▷◁,
⋃

bag , and d|><|. We are primarily concerned with the cost
difference caused by a transformation, which we call ∆-
cost. A transformation is expected to improve efficiency only



when its∆-cost is negative. In the following, we discuss how
to estimate the ∆-cost.

...

BGP

...

BGP
...

...

(a)

...

...

...

BGP ...

(b)

Fig. 8: Merge & Inject Transformations on an RA-Based Plan.

a) Merge transformation: Consider the RA-based plan
in Fig. 8a. The merge transformation shown as the red arrow
will cause the following structural changes in the RA-based
plan: the outer BGP will be coalesced with the

⋃

bag ’s child
BGPs, and if some children of the

⋃

bag are not BGPs or are
not coalescable with the outer BGP, new ▷◁’s will join them
with the outer BGP. The transformation will also affect the
cost of the
⋃

bag , since the operands’ result sizes will change.
The cost of all the ancestor operators of the

⋃

bag will also
change if the result size of the

⋃

bag changes, but we do not
account for them for efficiency. When estimating the ∆-cost
of a merge operation, we only need to account for the cost
of the affected parts in the RA-based plan before and after
the operation.

Suppose a merge transformation concerns the outer BGP
b and the
⋃

bag node u; the set of child nodes of u in
the RA-based plan is denoted as child(u). We can express
the aforementioned affected parts’ cost before and after the
merge by the following formulas:

costBGP(b, u) = cost(b) +
∑

bi∈child(u)

cost(bi) (1)

costalgebra(b, u) = cost(u) (2)

costBGP(merge(b, u)) =
∑

bi∈child(u)

cost(b+ bi) (3)

costalgebra(merge(b, u)) = cost(u′) +
∑

pi∈child(u)

cost(▷◁ (b, pi)) (4)

∆cost(b, u) = costBGP(b, u) + costalgebra(b, u) (5)

− costBGP(merge(b, u))
− costalgebra(merge(b, u))

where Eq. 1 and 3 represent the cost of the affected BGPs,
i.e., the outer BGP b and the child BGPs of u that are
coalescable with b, denoted as bi , before and after the
merge operation, since b is coalesced with each bi during
the merge; while Eq. 2 and 4 represent the cost of the
affected algebraic operators, including u and the newly
introduced ▷◁’s. Thus, the ∆-cost of this merge operation

is the difference between the summed cost of the affected
BGPs and algebraic operators before and after the operation.

The cost of the BGPs can be directly obtained from the
BGP evaluation engine, while the cost of the algebraic
operators are functions on the result sizes of their operands.
These functions may differ with physical implementations.
In our experiments, to fit the system we choose for im-
plementation, the cost of ▷◁ is set as the product of its
arguments’ result sizes, and the cost of the

⋃

bag is set
as the sum of its arguments’ results sizes. A BGP node’s
result size estimate can be obtained from the BGP evaluation
engine. The result sizes of other types of nodes need to be
estimated based on an assumed distribution of data. In our
experiments, we estimate the result size of any ▷◁ or d|><| as
the product of their operands’ result sizes, and the result
size of
⋃

bag to be the sum of its operands’ result sizes.
b) Inject transformation: An inject transformation such

as the red arrow in Fig. 8b will cause a BGP in the subtree
rooted at the right child of the d|><| node to coalesce with the
outer BGP. In practice, we choose the first coalescable BGP as
the target for injection for convenience. The transformation
will also affect the cost of the d|><| as well as all the ▷◁’s on
the path from the d|><| to the coalesced BGP.

Suppose an inject transformation concerns the outer BGP
b and the d|><| node o due to the change in result sizes. The
following formulas show the affected parts’ cost before and
after injecting:

costBGP(b, o) = cost(bi) (6)

costalgebra(b, o) = cost(o) +
∑

a j∈p(o,bi )

cost(a j) (7)

costBGP(inject(b, o)) = cost(b+ bi) (8)

costalgebra(inject(b, o)) = cost(o′) +
∑

a′j∈p(o,bi )

cost(a j′) (9)

∆cost(b, o) = costBGP(b, o) + costalgebra(b, o) (10)

− costBGP(inject(b, o))
− costalgebra(inject(b, o))

where bi in Eq. 6 denotes the BGP in o’s right child’s sub-
tree; after injecting, it coalesces with b as shown in Eq. 8.
a j denotes the ▷◁’s on the path p(o, bi) from the d|><| to the
coalesced BGP. o′ and a j′ denotes the d|><| and ▷◁’s whose cost
changes due to the change in cardinality.

The cost and cardinality of the BGPs and the algebraic
operators involved are estimated in the same way as for
merge transformations.

2) Cost Model for BGPs: We briefly introduce the BGP cost
models employed by gStore, one of the systems we select for
implementation, for completeness. The evaluation of BGPs
consists of joins. Thus the cost of a BGP plan T is the sum
of each join j’s cost:

cost(T ) =
∑

j∈T

cost( j)

BGP evaluation in gStore uses the worst-case optimal
(WCO) join. For each result tuple on the existing vertices,
all such edges need to be scanned at least once to check



whether this tuple can be extended to match the newly
extended vertex. Suppose the set of existing vertices is
{v1, · · · , vk−1}, and the newly extended vertex is vk. The cost
of a WCO join can then be estimated as follows:

cost(W COJoin({v1, · · · , vk−1}, vk))
= card({v1, · · · , vk−1})× min

i∈[1,k−1]
average_size(vi , p)

where card({v1, · · · , vk−1}) indicates the estimated cardi-
nality, and average_size(vi , p) indicates the average number
of edges (i.e., triples) with p as predicate and vi as subject
or object.

The cardinality estimation of query vertex sets starts
from single triple patterns, whose exact cardinality can be
obtained from the RDF store. Each time a new query vertex
is added to the set, we sample the candidate result set, and
collate how many result tuples can be generated from the
sample by extending to the new query vertex. The estimated
cardinality is updated by scaling up the previous estimate:

card(Vk) =max(
#ex tend
#sample

× card(Vk−1), 1)

B. Cost-Driven Transformation

In this subsection, we discuss RA-based plan transfor-
mation selection algorithms that leverage the cost model
discussed above to decide on transformations for obtaining
the most efficient query plan for execution.

1) Transforming a Single BGP: We first concentrate on the
simpler case where only transformations concerning a BGP
are considered, in which case the algorithm for transforma-
tion selection is shown in Alg. 2. The algorithm first finds the
sets of
⋃

bag ’s and d|><|’s in the RA-based plan that can perform
a transformation with the given BGP (Line 2), the details of
which will be introduced below. According to Thm. 1 and 2,
a merged BGP is removed from its original position, while an
injected BGP maintains its original occurrence. This means
that a BGP can only be merged with one of the

⋃

bag ’s,
but can be injected into multiple d|><|’s. Therefore, in order to
decide on a merge transformation, we need to look at all the
viable
⋃

bag ’s and choose the transformation that incurs the
lowest ∆-cost (Lines 3-11 and 14-17). On the other hand,
inject transformations are mutually independent, so we scan
over each d|><| and decide individually which ones should be
transformed based on the ∆-cost (Lines 12-13 and 18-22).

We further explain how to find the sets of
⋃

bag ’s and
d|><|’s viable for transformation with a given BGP, i.e., the
FindRelevantUO subroutine in Alg. 2. Assuming well-
designed OPTIONALs [21] throughout the query, the set of
viable d|><|’s consists exactly of those joined with the given
BGP via any number of ▷◁’s or d|><|’s, while the set of viable
⋃

bag ’s consists exactly of those joined with the BGP via any
number of ▷◁’s. Therefore, we search upwards for a root of
a subtree in the RA-based plan via only ▷◁’s or only ▷◁’s and
d|><|’s (Lines 26-32) and put all the

⋃

bag ’s or d|><|’s reachable
via these operators from the root into the viable sets (Lines
33-34 and 36-43).

2) Handling an RA-Based Plan: Handling the en-
tire RA-based plan, which often consists of multiple

Algorithm 2: Single-BGP Transformation Selection
Input: RDF dataset D, RA-based plan P, a BGP b

1 Function SingleBGPTransform(D, P, b):
2 U , O← FindRelevantUO(b, P)
3 minUnionCost ← 0
4 targetUNION ← empty node
5 foreach u ∈ U do
6 minUnionCostCur ← DecideMerge (b, u)
7 if minUnionCostCur < minUnionCost then
8 minUnionCost ← minUnionCostCur
9 targetUNION ← u

10 if minUnionCost < 0 then
11 Perform merge on subBGPglobal and targetUNION
12 foreach o ∈ O do
13 DecideInject (b, o)
14 Function DecideMerge(b, u):
15 if constraints are violated then
16 return 0
17 return ∆cost(b, u) (Eq. 5)
18 Function DecideInject(b, o):
19 if constraints are violated then
20 return
21 if ∆cost(b, o)< 0 (Eq. 10) then
22 Perform inject on b and o
23 Function FindRelevantUO(b, P):
24 U ← ;, O← ;, curNode ← b
25 localRootU ← empty node, localRootO ← empty node
26 while curNode is not P’s root do
27 if curNode.parent is

⋃

bag or d|><| and localRootU is an empty node
then

28 localRootU ← curNode
29 if curNode.parent is

⋃

bag then
30 localRootO ← curNode
31 break
32 curNode ← curNode.parent
33 SearchSubtree(localRootU, P, U)
34 SearchSubtree(localRootO, P, O)
35 return U , O
36 Function SearchSubtree(v, P, S):
37 if v is an empty node then
38 v← P.root
39 if The elements in S are of the same type as v then
40 S← S ∪ {v}
41 else if v is ▷◁ or those in S are d|><| and v is d|><| then
42 SearchSubtree(v.leftChild, P, S)
43 SearchSubtree(v.rightChild, P, S)

BGPs, is challenging because of the possible interdepen-
dence between transformations across BGPs. For exam-
ple, if we consider transforming the group graph pattern
{P1 OPTIONAL {P2 OPTIONAL P3}} (P1, P2 and P3 are
all coalescable BGPs), there are 23 possible transformations
involving whether P1 is injected into P2, whether P2 is
injected into P3, and whether P1 is injected into P3. This
results in a plan space that is exponential in terms of the
depth of the RA-based plan.

In order to balance the time complexity and the efficiency
of the transformed plan, we propose a greedy strategy to
decide on the transformations on the entire RA-based plan
(Alg. 3). Specifically, the algorithm first conducts a topolog-
ical sort over the RA-based plan (Line 1). The BGPs are then
considered in a reverse topological order for transformations
(Lines 3-5). In this way, we ensure that the BGPs that
are lower in the plan have been appropriately transformed
before considering transforming the BGPs higher up in the
plan, preventing expensive backtracking.



Algorithm 3: RA-Based Plan Transformation Selection
Input: RDF dataset D, RA-based plan P

1 Function RAPlanTransform(D, P):
2 Do a topological sort on P’s nodes
3 Let B be the BGPs in P sorted in descending topological order
4 foreach b ∈ B do
5 SingleBGPTransform(D, P, b)

VI. QUERY-TIME OPTIMIZATION: CANDIDATE PRUNING

In the previous section, we introduced how to select trans-
formations on the RA-based plan based on cost estimations
prior to execution. In this section, we present candidate
pruning, a query-time optimization incorporated into Alg. 1
to enhance efficiency.

BGP node 

OPTIONAL graph pattern node

Group graph pattern node

…
…

…

…

?x

?x

Intermediate results for ?x

Candidates for ?x
Pruned space

Fig. 9: Candidate pruning for OPTIONAL.

The basic idea of candidate pruning is also drawn from
Thm. 1 and 2. The equivalence between the evaluation
results implies that the results of the

⋃

bag ’s and d|><|’s are
constrained by those of the outer graph pattern in term
of the common variables. Therefore, when a

⋃

bag or d|><|

is encountered during evaluation, we can set the current
results on the common variables as candidate results when
executing the child BGPs of that node. For ease of expli-
cation, we show the mechanism of candidate pruning for
an OPTIONAL query in Fig. 9, where the results of the
variable ?x from the already evaluated graph patterns serve
as the candidate results of ?x for the child BGP of the group
graph pattern below the OPTIONAL, pruning redundant
matchings of ?x that will be materialized if the BGP is
evaluated independently.

To achieve a pruning effect, we need to ensure that the
size of the candidate results is smaller than the size of the
actual results of the BGP. A smaller candidate result size
also reduces the overhead incurred by scanning them and
setting them as candidates. Therefore, we adopt an adaptive
threshold on the candidate result size. The cost model for
BGPs (Sec. V-A2) invoked as part of the transformation
selection procedure (Alg. 2) provides an estimate of the
actual BGP result size, which we employ as the threshold
on candidate result size whenever possible. When no such
estimate is available, we set the threshold based on the
dataset size. (Please refer to Sec. VII for the threshold
setting in our experiments.)

To implement candidate pruning, we modify Alg. 1 as
follows (Note that the results can be passed as arguments
in the form of pointers to prevent expensive copying):

• Add a third argument cand, which denotes the candidate
results, to the BGPBasedEvaluation function;

• Pass the current results r as the third argument to
BGPBasedEvaluation when processing a

⋃

bag or d|><|

(Lines 10 and 14);
• Pass cand as the third argument to EvaluateBGP (Line

17). Only when the size of cand is smaller than the
threshold is it set as the candidate results of the BGP.

Tree transformations, which happens before query exe-
cution, and candidate pruning, which take effect during
execution, are complementary to each other. Prior to exe-
cution, high-selectivity BGPs are targeted by merge or inject
transformations, which breaks up graph patterns with large
overall results that originally cannot be handled by can-
didate pruning. Meanwhile, while tree transformations are
constrained to be performed one BGP at a time due to the
vast plan space, candidate pruning can transmit the pruning
effect of small results across levels during execution. For
example, when processing a query with the group graph
pattern {P1 OPTIONAL {P2 OPTIONAL P3}}, P1 cannot be
injected into P3 by the greedy transformation strategy even
if it is selective, but its results can serve as candidates for P3
via P2. In the special case where there is only a BGP viable
for transforming with a UNION or OPTIONAL, performing
transformations on them is equivalent to candidate pruning.
In this case, tree transformation is skipped to evade the
additional overhead.

VII. EXPERIMENTS

To evaluate the effectiveness of our approach, we em-
ploy the BGP query engines of Jena1, Blazegraph2, and
gStore to implement our BGP-based cost-aware SPARQL-
UO evaluation strategy. All the experiments run on Jena
have enabled the statistics-based optimizations. We forked
a branch from the main branch of gStore and implement our
proposed SPARQL-UO optimizer based on it3. Experiments
are conducted on both synthetic (LUBM [23]) and real
(DBpedia4 [24] and YAGO [25]) RDF datasets, the statistics
of which are listed in Table II. Our implementation and all
the queries used in our experiments can be found in our
GitHub repository5. We conduct experiments on a Linux
server with an Intel Xeon Gold 6126 CPU @ 2.60GHz CPU
and 256GB memory.

A. Verification of Optimizations

In this section, we verify the effectiveness of the proposed
optimizations in Section IV-B and evaluate the following
four approaches:

1https://github.com/apache/jena.
2https://github.com/blazegraph/database.
3Our implementation is available at https://github.com/SoftlySpoken/

gStore-UO-opt.
4The DBpedia data dump that we use is V3.9, which is downloadable

at http://downloads.dbpedia.org/3.9/en/. We use the concatenation of all
the N-Triples files.

5https://github.com/SoftlySpoken/gStore-UO-opt.

https://github.com/apache/jena
https://github.com/blazegraph/database
https://github.com/SoftlySpoken/gStore-UO-opt
https://github.com/SoftlySpoken/gStore-UO-opt
http://downloads.dbpedia.org/3.9/en/
https://github.com/SoftlySpoken/gStore-UO-opt


TABLE II: Datasets Statistics

Datasets triples entities predicates literals
LUBM 534,355,247 86,990,882 18 44,658,530

DBpedia 830,030,460 96,375,582 57,471 59,825,935
YAGO 230,677,128 99,313,763 108 153,988,292

TABLE III: Query Statistics on LUBM

Query Type CountBGP Depth |[[Q]]D |

Group 1

q1.1 U 9 2 645,666
q1.2 O 3 2 44,653,510
q1.3 O 4 4 76
q1.4 O 4 4 5,583
q1.5 UO 6 3 4,348
q1.6 UO 9 3 37

Group 2

q2.1 O 3 1 4,176,432
q2.2 O 4 3 8,698
q2.3 O 4 3 13,124,940
q2.4 O 2 3 10
q2.5 O 2 2 10
q2.6 O 2 2 7

TABLE IV: Query Statistics on DBpedia

Query Type CountBGP Depth |[[Q]]D |

Group 1

q1.1 U 6 2 153,325
q1.2 UO 4 3 610,434
q1.3 O 5 5 1,192
q1.4 UO 7 5 92,041
q1.5 UO 6 3 3,699,995
q1.6 UO 10 4 176

Group 2

q2.1 O 5 3 490,876
q2.2 O 2 2 55,054
q2.3 O 2 2 61,318
q2.4 O 3 2 4,757
q2.5 O 2 2 5,330
q2.6 O 9 2 36

1) The baseline (abbreviated as base),i.e., the base ver-
sions of the systems, which invoke the BGP-based query
evaluation method (Alg. 1);

2) Tree transformation (abbreviated as TT), which trans-
forms the original RA-based plan by Alg. 3 and then
invokes Alg. 1 on it;

3) Candidate pruning (abbreviated as CP), which invokes
Alg. 1 augmented with candidate pruning (Sec. VI) on
the original RA-based plan, using a fixed threshold of
1% of the total number of triples in the database;

4) The full version that coordinates tree transformation
and candidate pruning (abbreviated as full), using
an adaptive threshold on the candidate result size.

Since there is no benchmark tailored for SPARQL-UO
queries to our knowledge, we construct a mini-benchmark
with realistic semantics and varying complexities, contain-
ing six queries on LUBM, DBpedia, and YAGO, respectively,
denoted as q1.1-1.6 in the following and given in Appendix
A of [26]. Let Q be the outermost group graph pattern
in the query. To measure the complexity of a query, we
define two metrics: (1) the BGP count (CountBGP(Q)), and
(2) the maximum depth of nested group graph patterns
(Depth(Q)).

CountBGP(P) of a graph pattern P is recursively defined:

1) If P is a BGP, CountBGP(P) = 1.
2) If P = {P1}, CountBGP(P) = CountBGP(P1).
3) If P = P1 AND P2 or P1 UNION P2 or P1 OPTIONAL P2,

CountBGP(P) = CountBGP(P1) + CountBGP(P2).

Depth(P) of a graph pattern P is recursively defined as
follows:

1) If P is a BGP, Depth(P) = 0.
2) If P = {P1}, Depth(P) = Depth(P1) + 1.
3) If P = P1 AND P2 or P1 UNION P2 or P1 OPTIONAL P2,

Depth(P) =max(Depth(P1), Depth(P2)).

Suppose P is the outermost group graph pattern of query
Q, we have CountBGP(Q) = CountBGP(P), Depth(Q) =
Depth(P). Group 1 in Tables III and IV summarizes the

statistics and the result sizes of the queries used in this
subsection.

We report the query execution time and the time spent
carrying out the tree transformations for TT and full.
The performance of our approaches on LUBM, DBpedia, and
YAGO is shown in Fig. 10. The absence of a bar indicates
an out-of-memory or timeout error on the query. A query is
considered timed-out if the execution time exceeds 2× 106

milliseconds.
The trends of the results across gStore, Jena, and Blaze-

graph are similar, showing the adaptability of our approach
regardless of the underlying BGP execution engine. Both
of our proposed optimizations are shown to be effective
since TT, CP and full perform better than base on all
queries. TT and CP can be more advantageous on different
queries and datasets than the other. Their optimization
effects are cumulative when combined: full performs best
all queries and datasets (except on q1.2 on gStore where
CP beats full by a small margin, and on q1.3 and q1.6
on Blazegraph, where our optimizations’ performance gains
just do not compensate for their extra overhead), beating
the baseline by up to over an order of magnitude. Our
optimized approaches also consume less memory. While
base runs out of memory on 13 out of 24 queries, full
successfully runs all the queries.

In the following, we try to draw some conclusions about
the applicability of our optimizations to different SPARQL-
UO queries.

When TT is effective. q1.1 on DBpedia (Listing 15, Ap-
pendix A of [26]) is a query on which TT is effective,
but CP is not. In this query, two UNION clauses are given
first (Lines 2-3), whose child BGPs all have low selectivity.
There is no high-selectivity graph pattern before them to
enable CP. However, TT can merge the high-selectivity
BGP in Lines 5-8 with the UNION clause in Line 3 to
accelerate query processing and reduce memory overhead,
as evidenced in Fig. 10. q1.2 on LUBM and q1.2 on DBpedia
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Fig. 10: Verification of optimizations.

also belong to this category. (Note that q1.2 on LUBM
corresponds to the special case mentioned in Section VI,
where there is only a BGP before an OPTIONAL clause,
thus TT and CP have a similar effect.)

When CP is effective. q1.3 on LUBM (Listing 4, Appendix A
of [26]) is a query on which CP is effective, but TT is not. In

this query, the BGP in Line 2 has high selectivity, followed by
nested OPTIONALs with low-selectivity child BGPs. TT can
inject the BGP into the outermost OPTIONAL but cannot
reach the inner OPTIONALs, thus having limited effect.
However, CP can carry the small number of results into
the innermost OPTIONAL and set them as candidates to
accelerate query processing. q1.3-4 on LUBM and q1.3-4 on
DBpedia also belong to this category.

When TT and CP are jointly effective. q1.6 on LUBM
(Listing 7, Appendix A of [26]) is a query on which TT
and CP work complementarily, causing full to perform
much better than TT and CP. In this query, the BGP in
Lines 2-3 has high selectivity, while the BGP in Line 4 has
relatively low selectivity. Upon obtaining their considerably
large results, CP has limited effect on the following UNION
clauses. TT, however, can pick the high-selectivity BGP
to merge with the UNION in Line 5. Having executed
the graph patterns up to Line 6, CP can accelerate the
processing of upcoming OPTIONALs. q1.1 and q1.5 on
LUBM and q1.5 and q1.6 DBpedia also belong to this
category.

For a quantitative perspective on the optimization effects,
we define the join space of a graph pattern JS(P) as follows:

1) If P is a BGP, JS(P) = |[[P]]D|.
2) If P = {P1}, JS(P) = JS(P1).
3) If P = P1 AND P2 or P1 OPTIONAL P2, JS(P) =

JS(P1)× JS(P2).
4) If P = P1 UNION P2, JS(P) = JS(P1) + JS(P2).
The join space of a query estimates the largest interme-

diate result size that is materialized during the execution
of this query. Therefore, it is indicative of both the query’s
execution time and memory overhead. We plot the execu-
tion time of all the queries on gStore and Jena (the y-
axis on the left) with their respective join spaces (the y-
axis on the right) in Fig. 11. Across the tested approaches,
these three metrics show a similar trend. On all the queries,
the join spaces of TT and CP are smaller than those of
base, and full has the smallest join space overall, which
corroborates the qualitative analysis above.

B. Comparison with State-of-the-Art

The only work that considers SPARQL with OPTIONAL
query optimization is LBR [3], with which we compare our
full approach. We implement LBR in C++ and experi-
ment on the queries provided in LBR [3] on LUBM and
DBpedia, listed as q2.1-2.6 (Appendix A, [26]). The statistics
of these queries are given in the second group in Tables III
and IV. q2.1-2.3 are complex with multiple nested group
graph patterns, each containing a low-selectivity BGP fol-
lowed by an OPTIONAL with a single low-selectivity child
BGP. Meanwhile, q2.4-2.6 are simple without nested group
graph patterns, and their outermost group graph pattern
has a high-selectivity BGP followed by an OPTIONAL.

The total response time of full and LBR are shown in
Fig. 13. full is significantly faster than LBR on all queries,
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Fig. 13: Comparison with state-of-the-art on LUBM.

and the improvement on q2.4-2.6 is more significant than
on q2.1-2.3. This is because candidate pruning can take
advantage of the high-selectivity BGPs in q2.4-2.6, while
q2.1-2.3 does not contain high-selectivity BGPs. (Note that
since all the group graph patterns in q2.1-2.6 contain a
BGP followed by an OPTIONAL clause, they correspond to
the special case mentioned in Sec. VI where tree transfor-
mation and candidate pruning are equivalent, hence only
candidate pruning is performed.) The results show that
when candidate pruning takes effect, it is more efficient
than LBR’s heavy-weight pruning strategies. On q2.1-2.3,
full is still faster than LBR since its BGP-based evaluation
scheme is more efficient than LBR’s separate treatment of
triple patterns.

In summary, our approach outperforms LBR on
OPTIONAL queries, despite LBR being specially optimized
for OPTIONAL.

C. Scalability Study

Lastly, we evaluate how well our approach scales to
larger datasets. By setting the scaling factor of LUBM, i.e.,
the number of universities, we generate three more LUBM
datasets with 1, 1.5 and 2 billion triples, respectively. We
run the full approach on q1.1-q1.6 on these datasets and
plot how the execution time changes with the dataset size
on each query in Fig. 12.

Our approach scales almost linearly to the number of
triples in the datasets. The growth rate of the query ex-
ecution time correlates with each query’s result sizes: the
execution time of queries with larger result sizes grows
faster with the dataset size. (The result sizes of q1.3-1.6 on
larger LUBM datasets are equal to those shown in Tab. III,
while those of q1.1-1.2 grow linearly.)

VIII. CONCLUSION

The proliferation of knowledge graph applications has
generated increasing RDF data management problems. In
this paper, we focus on how to optimize SPARQL queries
with UNION and OPTIONAL clauses (SPARQL-UO for
short). Making use of existing BGP query evaluation mod-
ules in SPARQL engines, we propose a series of cost-
driven transformations on the BGP-based evaluation tree
(BE-tree). These optimizations can significantly reduce the
search space and intermediate result sizes, and thus improve
both the time and space efficiency of SPARQL-UO query
evaluation. We experimentally validate the effectiveness of
our optimizations, and compare the performance of the
optimized method with the state-of-the-art on large-scale
synthetic and real RDF datasets containing billions of triples.
These experiments confirm that our SPARQL-UO query eval-
uation method is orders of magnitude more efficient than
existing work.
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