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Valuing Training Data via Causal Inference for
In-Context Learning

Xiaoling Zhou , Wei Ye , Zhemg Lee , Lei Zou , and Shikun Zhang

Abstract—In-context learning (ICL) empowers large pre-trained
language models (PLMs) to predict outcomes for unseen inputs
without parameter updates. However, the efficacy of ICL heavily
relies on the choice of demonstration examples. Randomly select-
ing from the training set frequently leads to inconsistent perfor-
mance. Addressing this challenge, this study takes a novel approach
by focusing on training data valuation through causal inference.
Specifically, we introduce the concept of average marginal effect
(AME) to quantify the contribution of individual training samples
to ICL performance, encompassing both its generalization and
robustness. Drawing inspiration from multiple treatment effects
and randomized experiments, we initially sample diverse training
subsets to construct prompts and evaluate the ICL performance
based on these prompts. Subsequently, we employ Elastic Net
regression to collectively estimate the AME values for all training
data, considering subset compositions and inference performance.
Ultimately, we prioritize samples with the highest values to prompt
the inference of the test data. Across various tasks and with seven
PLMs ranging in size from 0.8B to 33B, our approach consistently
achieves state-of-the-art performance. Particularly, it outperforms
Vanilla ICL and the best-performing baseline by an average of
14.1% and 5.2% , respectively. Moreover, prioritizing the most
valuable samples for prompting leads to a significant enhancement
in performance stability and robustness across various learning
scenarios. Impressively, the valuable samples exhibit transferabil-
ity across diverse PLMs and generalize well to out-of-distribution
tasks.

Index Terms—In-context learning, data valuation, causal
inference, average marginal effect, elastic net regression.

I. INTRODUCTION

THE remarkable linguistic capabilities and extensive world
knowledge embedded in large pre-trained language mod-

els (PLMs) [1], [2], [3], [4], [5] have recently promoted the
emergence of a novel approach known as in-context learning
(ICL), which represents a new paradigm in natural language
understanding. In this paradigm, as depicted in Fig. 1, a PLM
is presented with a prompt, typically comprising a few training
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Fig. 1. Illustration of ICL for sentiment classification.

examples, along with a test instance, and directly generates the
output for the test instance without any parameter updates. As a
new paradigm, ICL presents compelling advantages, facilitating
natural language interaction with PLMs [6], [7], as well as
reducing computational costs [8], [9].

While ICL holds promise, its effectiveness hinges upon the
quality of the provided demonstration examples. Randomly
sampled in-context examples often display large instability
and result in poor performance [6], [10]. Therefore, data cu-
ration [11], [12], [13], [14] plays a pivotal role in the ICL
process, enabling the utilization of high-quality training samples
as demonstrations, consequently leading to favorable outcomes.
Numerous previous studies have focused on demonstration se-
lection, encompassing metric-based methods (such as similarity
and entropy) [10], [15], [16], training dense retrievers [9], [17],
and active learning-based approaches [18], [19]. However, these
methods can not effectively and accurately capture how each
sample’s presence influences ICL predictions, as well as over-
looking correlations among different demonstration examples—
a challenge widely acknowledged as NP-hard. Additionally,
methods that rely on training dense extractors, as well as those
employing active learning, often entail high computational costs
for training and require additional annotations that may intro-
duce labeling biases during the valuation process.

In this study, we tackle this challenge for the first time from the
perspective of training data valuation through causal inference,
considering the inclusion of each data source as a form of
treatment. Specifically, quantifying the impact of a training point
on ICL inference involves posing a counterfactual question:
“what would happen to the inference performance if this training
point was excluded from the prompt?” Answering this question
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necessitates prompt modifications and utilizing these adjusted
prompts for re-inference. Building on this novel perspective, we
introduce the concept of average marginal effect (AME) [20]
to evaluate the contribution of each training sample, which is
defined as the expected marginal effect contributed by a data
point to the model behavior over randomly selected subsets of
the data and can be utilized to quantify the contribution of each
training data point to the specific behavior of the trained model.
Intuitively, a data point has a large AME when adding it to the
training data impacts the behavior under study, regardless of
the presence of other data points. This approach mitigates the
issue of marginal contributions being near zero, which is com-
monly encountered in traditional methods [21]. Furthermore,
by examining the marginal effects across subsets of varying
sizes, it offers a more comprehensive representation of a data
point’s contribution under different conditions, ensuring that
even subtle influences on the training set are effectively cap-
tured. To ensure a comprehensive evaluation of data values, we
define two types of utilities concerning model generalization and
robustness, respectively. According to our definition, a training
sample with a high value signifies a significant positive influence
on the generalization and robustness performance of PLMs.
In contrast to previous demonstration selection methods, our
approach directly quantifies the impact of each training sample
on ICL performance, while also considering their combined
effects, resulting in a more accurate and reasonable valuation
of the training data. Furthermore, our approach eliminates the
need for additional data annotations, thereby preventing the
introduction of labeling bias.

To collectively calculate the AME values of all training data,
we formulate their estimation as a specific linear regression
problem, considering the composition of training subsets and
the inference performance. However, computing the AME val-
ues exactly remains computationally expensive, as it requires
conducting ICL inference with an infinite number of prompts
constructed from various training subsets. Consequently, we
employ Elastic Net regression, which is well-known for its
efficacy in managing sparse solutions and ensuring parameter
stability [22], [23], to tackle this regression problem. This ap-
proach notably improves computational efficiency by sampling
fewer training subsets. Moreover, only a linear regression model
needs to be trained, thereby improving training efficiency in
comparison to previous training-based demonstration selection
methods. Once the values of all training data, regarding both
model generalization and robustness performance, are obtained,
we select those with the highest combined values to construct
the task-specific prompt for inferring the test data.

Extensive experiments have been conducted across various
classification tasks and with seven PLMs ranging in size from
0.8B to 33B, demonstrating that our proposed AME-ICL1 ap-
proach significantly outperforms previous prompt retrieval ap-
proaches in terms of both effectiveness and efficiency. On aver-
age, AME-ICL surpasses Vanilla ICL, which randomly samples
demonstrations from the training data, by 14.1%. Moreover, it
exceeds the best performance of comparative baselines by 5.2%.

1Our code is available at https://github.com/xiaolingzhou98/AME-ICL.

Additionally, a significant reduction in performance variance
is observed across various learning scenarios, underscoring
AME-ICL’s capability to enhance the stability of ICL perfor-
mance. Notably, the calculated data values have been verified
to be transferable across different PLMs and generalize well to
out-of-distribution (OOD) tasks.

Overall, our main contributions are summarized as follows:
� We conduct a pioneer exploration by introducing AME

to quantify the contribution of each training sample to
ICL inference. The AME value is defined as the expected
marginal effect on ICL performance, considering both the
generalization and robustness performance of PLMs. This
approach, grounded in causal inference, adeptly accounts
for the interdependencies among various training samples,
thus yielding a precise measurement of data values.

� We establish the AME-ICL framework to calculate the val-
ues of all training data and curate the prompt with the most
valuable samples for ICL inference. Within our framework,
the computation of all AME values is formulated as a linear
regression problem, which is addressed using Elastic Net.
Our framework is straightforward, effective, and scalable,
enabling seamless integration with various PLMs.

� We conduct extensive experiments on both classification
and commonsense reasoning tasks across ten large PLMs,
demonstrating that AME-ICL consistently achieves state-
of-the-art (SOTA) performance in terms of both generaliza-
tion and robustness. Moreover, it enhances prediction sta-
bility across various scenarios, encompassing imbalanced
labels in prompts, OOD tasks, and variations in the number,
template, and permutation of demonstrations.

II. RELATED WORK

A. In-Context Learning

Brown et al. [5] showcased the ability of PLMs in ICL,
wherein predictions are formulated solely based on a con-
catenation of training instances for few-shot learning, without
parameter updates. Building upon this foundation, subsequent
studies [24], [25], [26] have extended and refined this approach,
resulting in promising outcomes across a spectrum of tasks. For
example, Wies et al. [24] proposed a PAC-based framework
for in-context learnability and demonstrated that when the pre-
training distribution consists of a mixture of latent tasks, these
tasks can be effectively learned through ICL. Moreover, Qin
et al. [27] proposed an iterative demonstration selection method,
which progressively selects examples that are both diverse and
strongly correlated with the test sample to serve as demon-
strations for ICL. Additionally, Jiang et al. [28] calibrated the
in-context predictive distribution by adjusting the label marginal,
which is estimated via Monte-Carlo sampling over the in-context
model. Recently, significant progress has also been made in the
understanding of ICL. For example, Zhang et al. [29] observed
that with an increasing number of ICL examples, models ini-
tially exhibit increased miscalibration before achieving better
calibration and miscalibration tends to arise in low-shot settings.
Yan et al. [30] explored the elusive mechanism underpinning
ICL and revealed a principle that strengthens the relationship
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between two tokens based on their contextual co-occurrences.
Min et al. [31] demonstrated that the model does not heavily
rely on the ground truth input-label mapping provided in the
demonstrations.

The ICL approach has gained widespread popularity across
various applications. For instance, Qu et al. [32] successfully
leveraged ICL to generate coarse-grained layouts conditioned
on a given textual prompt using large PLMs. Similarly, Wei
et al. [7] employed ICL to enhance performance across a diverse
set of tasks, including arithmetic, commonsense reasoning, and
symbolic reasoning. However, a primary issue for the ICL
approach is its inconsistent performance, which is sensitive to
various factors. For instance, models have exhibited a tendency
to excessively rely on either the most frequent labels (major-
ity bias) [33] or labels appearing later in a prompt (recency
bias) [34]. Moreover, a large performance gap between using
the most negative in-context examples and the most positive
ones has been clearly revealed [35], demonstrating that the se-
lection of demonstrations significantly influences performance.
Furthermore, research [36] has revealed that large PLMs can
override semantic priors when presented with in-context ex-
emplars that contradict priors, despite the stronger semantic
priors that larger models may hold. Additional research has also
revealed that the accuracy of input-label mapping has minimal
impact [37], while the diversity of examples is of greater impor-
tance [19]. Nevertheless, selecting the most effective samples
for prompting and ordering them appropriately is crucial for
enhancing the performance and stability of ICL.

B. Prompt Retrieval

The efficacy of ICL heavily hinges on the selected demon-
stration examples. Previous research on ICL has predominantly
concentrated on retrieving demonstration examples at the in-
stance level. For instance, Qin et al. [27] iteratively selected
examples that are diverse but still strongly correlated with the test
sample as ICL demonstrations. Rubin et al. [9] and Shi et al. [38]
trained the prompt retriever based on feedback from PLMs for
semantic parsing. Moreover, Li et al. [39] cast various tasks’
training signals into a unified list-wise ranking formulation by
PLM’s feedback and proposed a multi-task list-wise ranking
training framework to train a unified demonstration retriever.
Furthermore, Levy et al. [40] posited that diverse demonstrations
would benefit ICL inference. Additionally, Agrawal et al. [41]
demonstrated that both the translation quality and the domain
of in-context examples are crucial for machine translation tasks.
They thus proposed an approach that incorporates similar exam-
ples based on n-gram overlap with the test source.

Another line to retrieve prompts involves active learning [42].
For example, Zhang et al. [18] approached demonstration selec-
tion for ICL by framing it as a sequential decision problem.
They proposed a reinforcement learning algorithm aimed at
identifying generalizable policies for selecting demonstration
examples. Moreover, Margatina et al. [43] addressed the issue
of identifying the most informative demonstrations for few-shot
learning by approaching it as a pool-based active learning prob-
lem over a single iteration. However, these methods consume

significant computational resources and are sensitive to noise.
This study explores a new path for prompt retrieval. Specifically,
we propose a novel method for estimating the AME value of each
training sample to evaluate its contribution to the generalization
and robustness of ICL predictions. Based on these estimates, we
then select the most valuable samples to construct prompts.

Compared to previous approaches for demonstration selec-
tion, our method offers several notable advantages:
� In contrast to approaches focusing on selecting instance-

specific demonstration samples, this study underscores
task-level example selection, with the aim of identifying
valuable examples that broadly and effectively represent
the task. Consequently, the prediction performance for the
entire task can be enhanced with these selected samples.

� Our method leverages the concept of AME, which quanti-
fies the expected marginal impact of each training sample
on ICL performance, to directly assess the contribution of
each training sample while accounting for the correlations
among individual demonstration examples. This approach
leads to a more accurate and meaningful valuation of the
training data.

� Unlike methods that rely on training dense extractors and
active learning techniques, our approach involves only
solving a sparse linear regression, eliminating the need for
additional label annotations, which is more efficient and
straightforward.

C. Data Valuation

The objective of data valuation is to assess the individual
contribution of each data point to model behavior [14], [44].
This study assesses the value of each training example within the
ICL process. Current data valuation methodologies can be cate-
gorized into four main folds: marginal contribution-based meth-
ods [45], [46], gradient-based methods [21], [47], importance
weight-based methods [48], and out-of-bag (OOB) estimation-
based methods [49]. Among these, marginal contribution-based
methods assess data values by measuring the difference in utility
with and without each data point under consideration. A larger
difference indicates a higher value. Notable methods include
leave-one-out [50], Data Banzhaf [51], and a range of Shapley
value-based approaches [52], [53] such as Data Shapley [46],
Beta Shapley [45], and AME [20], [54], [55]. Notably, this
type of method typically entails training different models on
extensive training subsets. Nevertheless, AME significantly im-
proves computational efficiency compared with others by utiliz-
ing a sparse linear estimator to calculate the values associated
with training data, thereby enhancing its potential for practical
applications. Gradient-based methods evaluate data value by
analyzing the change in utility when the weight of the data point
is adjusted. Prominent methods here include the influence func-
tion [21], datamodels [56], and LAVA [47]. However, this kind
of approach may be affected by the noise of gradient estimation.
Moreover, importance weight-based methods assign a weight to
each data point during training, with the weight serving as its
value. These methods are specially tailored for machine learning
applications with high computational complexity. DVRL [48]
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is a notable example, utilizing reinforcement learning to learn
weights. OOB estimation-based methods are also specifically
devised for machine learning tasks, which may be affected by
sample selection bias. A key method is Data-OOB [49], which
computes data point contribution using out-of-bag accuracy.

Our method falls within the category of marginal contribution-
based approaches considering their direct measurement and
effectiveness. Specifically, we leverage the AME [20] concept
to assess the contribution of each training sample. However, in
contrast to previous AME methods [20], [54], [55], our proposed
approach introduces the following novel extensions:
� For achieving a more comprehensive training data valua-

tion, we propose two utility measures that correspond to
the model generalization and robustness performance of
PLM predictions, respectively. The data values associated
with these two aspects are weighted and summed to select
the most significant training data for prompt construction.

� Our method innovatively focuses on the ICL procedure,
where training examples act as prompts without updating
model parameters. As a result, the need to train multiple
models on diverse training subsets is eliminated.

� To enhance stability and alleviate aggressive coefficient
shrinkage in LASSO, we estimate the AME values for
training data using Elastic Net regression which involves
both L1 and L2 regularizers, selected for its ability to
handle sparse solutions and ensure parameter stability.

III. METHODOLOGY

A. In-Context Learning With PLMs

Assuming the existence of a training set Dtr, a validation
set Ddev , and a held-out test set Dte, our objective is to iden-
tify the most valuable training samples from Dtr based on
the prediction performance observed on Ddev. These identified
valuable samples then serve as prompts for the inference of
PLMs. Consequently, the inference performance on Dte can be
enhanced by leveraging these valuable samples as prompts.

Following previous ICL research [33], [57], [58], [59], this
study focuses on the classification task. Specifically, considering
a PLM G, given an input text x and a candidate answer set
L={y1, y2,. . . ,y|L|} with |L| classes, we aim to predict the
answer ŷ for x based on M selected valuable training exam-
ples: C={e1, e2, . . . , eM}, where each ei represents a training
example (xtr

i , ytri ) andM denotes the number of demonstration
examples. Formally, give a model G, we first compute the
probability of each answer yj :

PG (yj | C,x) . (1)

Subsequently, the ultimate prediction ŷ, characterized by the
highest probability is chosen from the candidate answer set L:

ŷ = argmax
yj∈L

PG (yj | C,x) . (2)

The prediction accuracy for the test set Accte is utilized to
evaluate the performance, which is calculated as

Accte =
1

|Dte|
|Dte|∑

i=1

I(ŷi = yi), (3)

where |Dte| denotes the size of the test set Dte and I(·) is a
indicator function.

During the ICL process, we explore two settings following
those outlined in [10]: one where the training samples are
labeled, and another where they are unlabeled. The first set-
ting assumes access to a labeled training dataset, denoted as
Dtr

L = {(xtr
i , ytri )}Ni=1, along with a smaller labeled validation

set Ddev . The second setting is closer to the true few-shot
learning setup [60], where we only have a labeled validation
set Ddev and an unlabeled training set Dtr = {xtr

i }Ni=1. In this
setup, each input xtr

i is paired with a randomly sampled label
ỹtri ∈ L to create the training setDtr

U = {(xtr
i , ỹtri )}Ni=1. In both

scenarios, our objective is to select the most valuable samples
from either Dtr

L or Dtr
U to construct prompts for ICL inference.

Additionally, the labeled test set Dte is used to evaluate the
effectiveness of our approach.

B. Training Data Valuation

1) Utility Definition: Our objective is to explore the impact
of each training point on the performance of ICL inference.
Therefore, we define QG(S) as the utility of a specific behavior
exhibited by PLMGwhen utilizing samples from training subset
S as demonstrations. We consider two definitions for the utility
QG(S), each pertaining to model generalization and robustness
respectively, thereby ensuring a comprehensive evaluation of the
contribution of each training sample.

First, we define the utility QG as the prediction accuracy
achieved on the validation set Ddev . To mitigate the effect of the
permutation of demonstration samples on the ICL performance,
we consider a total of O permutations for the samples in each
subset S . Let So denote the prompt constructed using samples
in S with a specific order o. The generalization utility Qg

G is
calculated as follows:

Qg
G(S) =

1

O|Ddev|
O∑

o=1

|Ddev |∑

i=1

I(ŷi(So) = yi), (4)

where |Ddev| represents the size of Ddev and ŷi(So) denotes the
predicted label of the ith sample in Ddev when employing the
prompt So for inference:

ŷi(So) = argmax
yj∈L

PG(yj |hx̃o
i
), (5)

where hx̃o
i

represents the hidden state of the last block at the
final position for the contextual input x̃o

i = [So,xi]. Due to the
input length limitations for PLMs, if the size of S is too large,
it will be truncated in applications.
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Moreover, we define the utility QG as the robust accuracy on
the validation set, which is computed as follows:

Qr
G(S) =

1

O|Ddev|
O∑

o=1

|Ddev |∑

i=1

I(yri (So) = yi), (6)

where yri (So) represents the prediction for the perturbed feature
of the ith sample in Ddev using prompt So for inference:

yri (So) = argmax
yj∈L

PG(yj |h̃x̃o
i
), (7)

where h̃x̃o
i

is the perturbed feature of x̃o
i , calculated using

h̃x̃o
i
= hx̃o

i
+ ε

∂�i
∂hx̃o

i

. (8)

Here, �i represents the Cross-Entropy loss of the ith sample in
Ddev and ε denotes the perturbation bound. This utility definition
ensures an assessment of the contribution of each training sample
to the robustness performance of PLMs.

Consequently, when describing our technique, we will need to
calculate the generalization and robustness utilities (i.e., Qg

G(S)
and Qr

G(S)) on various training subsets, where each represents
the utility result when applied to a PLM G with samples from
subset S serving as prompts.

2) AME Estimation: Having established the utility, we now
evaluate the contribution of each training point ei = (xtr

i , ytri )
to the corresponding generalization and robustness utilities.
According to the counterfactual question “what would happen to
the inference performance if the training point ei was excluded
from the prompt?”, we measure this change by computing
QG(S)−QG(S\{ei}), signifying the change in utility when
the data point ei is included and excluded from the prompts.
Drawing inspiration from the assessment of multiple treatment
effects in the causal inference literature [61], we compute the
average marginal contributions of including each data point ei
across training subsets of varying sizes. Consequently, the AME
value of ei (Vi) is defined as its expected marginal effect [54] on
subsets sampled from the training distribution N tr:

Vi = ESei∼N tr [QG(Sei + {ei})−QG(Sei)], (9)

where Sei represents a subset of training data excluding ei,
drawn from N tr. The choice of the sampling distribution N tr

plays a crucial role in determining both the specific aspect
that AME measures and the efficiency with which it can be
estimated. Consequently, we construct subsets from training data
by assigning each data point (excluding the one being measured,
ei) a sampling probability p drawn from a distribution P2.

To calculate AME values more efficiently, we adopt the as-
sumption of sparsity, which posits that the number of data points
with non-zero AMEs is relatively small in comparison to the
total number of instances in the training data. This assumption
is suitable for our scenario as only a limited number of sam-
ples can be selected as demonstrations due to the input length
limitations of PLMs. Then, we reframe the estimation of all V

2Considering the input length limitations of PLMs, we utilize a uniform
distribution with small probabilities P = Uniform{0.1, 0.2, 0.3, 0.4} in our
experiments.

Algorithm 1: Data Valuation.

values as a specific linear regression problem [54], [55], [62].
Inspired by randomized experiments, we initiate by generating
K subsets of the training data, denoted as S1,S2, . . . ,SK . Each
subset Sk is sampled by first selecting a probability p drawn
from the distribution P , then including each training data point
with probability p. In our linear regression, the observation
matrix X is a K ×N matrix, i.e., X ∈ R

K×N , where each
row X[k, :] comprises N dimensions, one for each training
data point, indicating its presence or absence in the sampled
subset Sk. Moreover, when constructing X , it’s essential to
consider the sampling probability p. Therefore, we adjust the
features based on p to counterbalance the variance weighting.
Specifically, for r ∼ Bernoulli(p), we set X[k, i] = r

p − 1−r
1−p .

Additionally, the response vector Y is of size K, i.e., Y ∈ R
K ,

where each element Y [k] represents the utility score measured
for the sampled subset Sk, i.e., Y [k] = QG(Sk). Consequently,
our linear regression problem is constructed as follows:

V ∗ = arg min
V ∈RN

E[(Y − < V ,X >)2], (10)

where V ∗ ∈ R
N represents the optimal linear fit on the (X,Y )

dataset, which contains the estimated AME values of all training
points.

It is anticipated that a reduced number of subsets (smaller
than the total number of training samples N ) will be sampled to
decrease the inference times of PLMs across various prompts.
However, this approach may result in an under-determined
regression problem, as the number of equations is fewer than
the number of variables [63], [64]. Consequently, we leverage
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Algorithm 2: AME-ICL.

sparsity by integrating the L1 norm regularization term into this
regression problem. Moreover, recognizing the strong corre-
lation among different training samples, we further introduce
an L2 norm regularization term to enhance parameter stability
and model resilience against noise. Consequently, our linear
regression problem can be transformed into the following Elastic
Net regression:

V EN =arg min
V ∈RN

(
(Y − < V ,X >)2 + α||V ||1 + β||V ||2

)
.

(11)
The parameter α and β controls the strengths of L1 and L2

regularization terms, respectively. The algorithm for our data
valuation process is outlined in Algorithm 1. Consequently, by
employing Elastic Net regression twice with different values of
Y (i.e.,Qg

G andQr
G), each training sample is associated with two

values, which indicate the sample’s contribution to enhancing
the generalization and robustness of PLM predictions, respec-
tively.

C. Prompt Construction

Once the values of training samples regarding the generaliza-
tion and robustness performance are calculated, each training
point ei will be assigned two values: V g

i and V r
i . Here, V g

i

and V r
i represent the values calculated using Qg

G and Qr
G,

respectively. Then, for each training sample, its total value is
computed as:

V̂i = V g
i + λV V

r
i , (12)

where λV is a hyperparameter, its value adjustable based on
specific needs for generalization and robustness. Typically, λV

can be set to 1, reflecting an equal emphasis on generalization
and robustness.

Subsequently, samples with the highest V̂ values are priori-
tized to construct the prompt for inference. Thus, we opt to select
the top-M/|L| training examples from each class, where |L|

represents the number of classes, and M denotes the number of
demonstration examples in the prompt. This approach ensures
a balanced class distribution within the prompt. Furthermore,
considering insights from previous research [34], [65] that sam-
ples closer to the query carry greater importance, we arrange the
samples in ascending order of their values V̂ . This arrangement
ensures that samples closest to the query are prioritized as the
most valuable ones. Finally, the constructed prompt C is utilized
during the inference phase on the test set Dte. The pipeline of
AME-ICL is depicted in Fig. 2, and the algorithm for AME-ICL
is presented in Algorithm 2.

IV. EXPERIMENTAL CONFIGURATION

Our experimental investigation can be divided into three main
components. In the first part, we compare AME-ICL with previ-
ously advanced demonstration selection methods to validate its
capability to improve ICL performance. The second component
comprises a series of analytical experiments aimed at validating
the effectiveness of AME-ICL in various learning scenarios. In
the third section, we delve into the efficiency of AME-ICL, as
well as conducting ablation and sensitivity studies to gain deeper
insights into each of its components.

A. Datasets and Models

Ten large PLMs, ranging in size from 0.8B to 33B, are
employed to showcase the adaptability of AME-ICL across
different model sizes. The involved PLMs in our study include
GPTJ-6B [66], OPT-13B [67], GPT-2-0.8B, GPT-2-1.5B [68],
GPT-Neo-2.7B [69], OPT-6.7B [67], LLaMA-33B [70],
LLaMA-2-7B [71], LLaMA-2-13B, and LLaMA-3-8B [72].

Following previous research [10], [57], [58], our experiments
are conducted on five classification tasks, including a sentiment
analysis dataset, SST-2 [73], two natural language inference
datasets, BoolQ [74] and Scicite [75], a subjectivity classi-
fication dataset, Subj [76], and a news classification dataset,
AGNews [77]. Table I presents examples and label mappings for
all five datasets. For each task, we utilize class-balanced Dtr,
Ddev, and Dte. We set |Dtr| = 1, 000 to ensure a diverse range
of training examples for subset selection, and |Dte| = 1, 000
to facilitate reliable evaluation. Ddev comprises 50 examples
per class. All three datasets are randomly sampled from the
original training set and are mutually exclusive. Besides the
above tasks, we also involve assessing the performance of our
approach on two commonsense reasoning tasks, including Com-
monSenseQA [78] (CSQA) and OpenBookQA [79] (OBQA).

B. Compared Baselines

Previous studies [6], [27] have demonstrated that both the se-
lection of demonstrations and their ordering significantly affect
ICL performance and have proposed various advanced methods
to enhance ICL performance by optimizing demonstration selec-
tion and ordering strategies [10], [18], [80]. Therefore, besides
Vanilla ICL, we compare AME-ICL with seven demonstration
selection and two demonstration permutation methods. The
compared methods are described as follows. First, following
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Fig. 2. Pipeline of AME-ICL consists of three main steps: training data valuation, prompt construction, and ICL inference. First, we compute the values of all
training data in terms of both the generalization and robustness performance of ICL inference. Subsequently, we select the most valuable samples to construct
a task-specific prompt. Finally, we employ the constructed prompt to infer test data. By utilizing the most valuable training samples as demonstrations, both the
generalization and robustness performance of ICL predictions can be enhanced.

TABLE I
TEMPLATES AND LABEL MAPPINGS ACROSS DIFFERENT TASKS

Chang and Jia [10], we consider three demonstration selection
methods based on ICL accuracy. ONESHOT initially conducting
ICL with M = 1, utilizing each training example individu-
ally as a prompt. Subsequently, the example’s effectiveness is
evaluated based on its corresponding ICL accuracy on Ddev .
This evaluation scheme aims to assess the extrapolation of
ICL performance from M = 1 to M > 1. TOPPROMPTS-5
and TOPPROMPTS-10 aggregate examples from the top-5,10
prompts with the highest accuracy on the validation set. CON-
DACC [10] scores a training example based on its average ICL
accuracy on the validation set when combined with random
training examples. Another considered demonstration selection
approach is DATAMODELS [10], which trains a datamodel to
approximate an LLM’s outcome for each sample in Ddev. Be-
sides, we compare AME-ICL with three metric-based selection
approaches: K-Center Greedy [81], which assumes that training
samples close in feature space have similar properties, thereby
selecting samples with high similarities; GraNd [82], which
selects the most informative examples based on the gradient
norm expectations of samples; and Max-Entropy [18], which
greedily selects examples to maximize classification entropy.
Additionally, we compare AME-ICL with two demonstration

ordering methods: PDO [80], which orders demonstrations
based on the model’s probability predictions, and GlobalE [6],
which selects the ordering that minimizes the KL-divergence
between the uniform distribution and the predicted label dis-
tribution. Furthermore, two other manners are also involved in
comparison to further demonstrate the efficacy of our approach.
RANDOM randomly selects a balanced training subset consist-
ing of twenty examples and then chooses demonstration exam-
ples from this subset. Calibration (CALIB) [34] mitigates biases
towards specific labels in PLMs. Finally, we extend AME-ICL
and other compared methods that do not require labels to the
unlabeled setup, denoted by the prefix UN.

C. Setups

During ICL inference, the batch size is set to 16, and the
sequence length is configured to 256. For binary classification
tasks, we set M = 4 with balanced class distribution. For mul-
ticlass tasks (i.e., Scicite and AGNews), a training example per
class is sampled to form the prompt. Our ablation studies also
investigate the utilization of different numbers of demonstra-
tions, namely M = {1, 4, 8, 12}. The demonstration samples
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are arranged in ascending order of their total values V̂ . But we
also explore other permutations in the analytical experiments.
For each task, a specific template is utilized for inference.
Additionally, we examine the impact of different templates on
the performance of AME-ICL following those outlined by Zhao
et al. [34], which are listed in Table VIII. Each experiment is
repeated using five random seeds. During data valuation, the
number of subsets K is set to 100; ten random permutations
are considered for each subset. ElasticNetCV is used, with the
l1_ratio set to 0.5 which controls the relative contribution of
the L1 and L2 regularization terms, and α set to 0.01 to control
the strength of both regularization terms. As for the hyperparam-
eters in AME-ICL, the perturbation bound ε is selected from the
set {0.1, 0.2, 0.3}, and the parameter λV is chosen from the set
{0.5, 1.0, 1.5}. We also conduct a sensitivity analysis of these
two hyperparameters in our analytical experiments.

Recall that our objective is to select the most valuable training
samples to create the prompt that enhances the generalization
and robustness of PLMs. To ensure a fair comparison, we
consider two settings in our experimental investigation. Initially,
following the approach of Chang and Jia [10], we select the most
valuable �20/|L|� samples from each class to create a stable
set. Subsequently, we randomly sample 50 prompts from this
selected subset and apply ICL on the test setDte. In this scenario,
we report the average accuracy, standard deviation, and worst
accuracy to ensure a comprehensive evaluation. In the second
setting, we directly select the top-M samples to construct the
prompts for inferring the test dataDte. Both the average accuracy
and standard deviation are reported.

V. EXPERIMENTAL FINDINGS

A. Main Comparison Results

Table II presents the test set accuracy achieved using differ-
ent demonstration selection approaches. AME-ICL consistently
demonstrates the highest average accuracy with low standard
variance, highlighting its ability to enhance the generalization
capability and performance stability of PLMs. Overall, AME-
ICL exhibits a 13.7% improvement over Vanilla ICL, which
randomly selects demonstration examples from training data,
on average. Compared to the best performance of the other
approaches, AME-ICL outperforms them by 5.8%. Notably,
our proposed AME-ICL consistently surpasses the calibration
method, CALIB, underscoring the significance of selecting valu-
able samples as demonstrations to enhance ICL performance.
Among the compared baselines, Vanilla ICL and RANDOM
exhibit similarly lower performance. Moreover, ONESHOT out-
performs Vanilla ICL and RANDOM on SST-2 and BoolQ, and
performs comparably on other tasks, suggesting that selecting
high-quality demonstrations is more important than simply in-
creasing the number of demonstration examples. While applying
prediction calibration enhances the average accuracy on certain
tasks, it is not universally beneficial, particularly on Scicite.
Methods like K-Center Greedy, GraNd, and Max-Entropy fo-
cus solely on one aspect, be it similarity, entropy, or gradient
norm, when selecting demonstration samples. Their narrow

focus generally hinders them from consistently attaining favor-
able outcomes. Additionally, CONDACC and DATAMODELS
emerge as strong baselines for demonstration selection, while
PDO serves as a strong baseline for demonstration ordering.
Nevertheless, AME-ICL notably outperforms these approaches,
suggesting that valuing training data based on the AME concept
is more effective than that based on average accuracy and gra-
dient.

AME-ICL consistently achieves the highest worst accuracy
across various tasks, showcasing its effectiveness in improving
the stability of ICL predictions. From the results in Table II,
AME-ICL’s worst accuracy exceeds that of the best-performing
method among the baselines by 8.0% on average. Furthermore,
compared to Vanilla ICL, AME-ICL exhibits an improvement
of 21.0%. These findings suggest that the samples selected
by our approach are more effective in enhancing ICL per-
formance. Among the baselines, Vanilla ICL and RANDOM
demonstrate comparable levels of instability, highlighting the
pivotal role of demonstration selection in fortifying the stability
of ICL predictions. The incorporation of calibration (CALIB)
generally improves the worst accuracy across various tasks,
emphasizing the role of prediction calibration in enhancing
performance stability. It is worth noting that CONDACC and
DATAMODELS are the most robust baselines for demonstration
selection, while GlobalE and PDO are the most robust baselines
for demonstration ordering. Nevertheless, their worst-case ac-
curacy falls short compared to ours, indicating that our proposed
AME-ICL is more effective in selecting and ordering valuable
demonstration examples to enhance ICL performance. Addi-
tionally, methods relying solely on a single characteristic, such
as similarity, gradient norm, and classification entropy, may not
effectively enhance prediction stability. Therefore, more pre-
cise methods for measuring sample contributions are expected
to be developed. AME-ICL directly estimates the impact of
each sample on ICL performance and considers the correla-
tions among different samples, making it more reasonable and
comprehensive.

AME-ICL proves highly effective in scenarios where labeled
training data is unavailable, even surpassing the performance
of some methods that rely on gold labels. From the results in
Table II, it is apparent that when prompts are randomly sampled
from the unlabeled training set (UN-Vanilla ICL), the perfor-
mance is lower compared to sampling from the original labeled
training set (Vanilla ICL), which is particularly pronounced in
the SST-2 and AGNews datasets. These findings suggest that the
input-label mapping in the prompt is crucial in ICL inference,
contradicting the findings of Min et al. [31]. Encouragingly,
when applying our selection method to the unlabeled training
set (UN-AME-ICL), we observe not only outperformance com-
pared to UN-Vanilla ICL but also surpassing Vanilla ICL and
some other methods utilizing gold labels, such as ONESHOT
and TOPPROMPTS. This suggests that input-label mapping
may not always be the primary factor when valuable examples
are used as demonstrations. Overall, UN-AME-ICL outperforms
the baselines UN-Vanilla ICL and Vanilla ICL by 16.2% and
11.7%, respectively, on average. Moreover, compared to the best
performance, AME-ICL outperforms by 5.0%. Other baselines,
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TABLE II
PERFORMANCE COMPARISON BETWEEN AME-ICL AND OTHER DEMONSTRATION SELECTION APPROACHES

such as UN-TOPPROMPTS, UN-CONDACC, and UN-PDO,
perform better than UN-Vanilla ICL but notably worse than our
approach.

B. Imbalanced Labels in Prompts

Previous studies [34], [57] have revealed that imbalanced
class distributions in demonstrations significantly impair the per-
formance of ICL. This section explores the impact of imbalanced
labels in prompts on model performance. Alongside Vanilla ICL,
we compare two methods renowned for addressing imbalanced
labels: MetaICL [37] and Channel ICL [57]. We utilize the
GPT-2-1.5B model and assess its performance on the SST-2 and
Subj datasets. The number of demonstration examples is fixed
at ten. We vary the ratio of samples in a class (e.g., “negative” in
SST-2 and “objective” in Subj) within the prompts from 0.1 to

0.5. Considering both datasets entail binary classification tasks,
a ratio of 0.5 indicates a balanced class distribution. Fig. 3(a)
and (b) present the comparative results among Vanilla ICL,
MetaICL, Channel ICL, and AME-ICL across various levels
of imbalance on the SST-2 and Subj datasets. From the results,
it is evident that class imbalance in the prompts can negatively
affect ICL performance. Specifically, the performance of Vanilla
ICL is highly susceptible to class imbalance, while MetaICL and
Channel ICL improve the robustness of ICL when confronted
with imbalanced class distributions. Nevertheless, AME-ICL
achieves the highest accuracy among all compared methods
and demonstrates high stability across various degrees of class
imbalance. These results underscore the significant impact of
selecting valuable samples for prompting in enhancing the sta-
bility and robustness of ICL predictions under imbalanced class
distributions in prompts.
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Fig. 3. (a) and (b): Accuracy comparison among Vanilla ICL, MetaICL, Channel ICL, and AME-ICL on the SST-2 and Subj datasets, where the ratios of one
class (e.g., “negative” in SST-2 and “objective” in Subj) in prompts vary from 0.1 to 0.5. The GPT-2-1.5B model is utilized. (c) and (d): Accuracy comparison
between Vanilla ICL and AME-ICL on the SST-2 and AGNews datasets across different numbers of demonstrations (M) on the GPT-Neo-2.7B model.

TABLE III
COMPARISON OF ROBUST ACCURACY ON THE SST-2 AND SCICITE DATASETS

UTILIZING THE GPTJ-6B AND OPT-13B MODELS

C. Adversarial Perturbations

We validate the effectiveness of AME-ICL in enhancing the
model’s resilience to adversarial perturbations. Specifically, we
perturb the deep features of the contextual input using (8), in
which the perturbation bound ε is set to 0.1. Subsequently,
we employ PLMs to classify the perturbed deep features and
calculate the classification accuracy on the test set. The robust
accuracy for the SST-2 and Scicite datasets using the GPTJ-
6B and OPT-13B models is calculated. As demonstrated in
Table III, AME-ICL persistently achieves the highest robust
accuracy across various tasks and PLMs, showcasing its ability
to enhance prediction robustness. However, the performance of
all compared methods demonstrates a remarkable decline when
confronted with adversarial perturbations. While CONDACC
and DATAMODELS serve as strong baselines in Table II, they
can not surpass our approach in terms of robust accuracy, as they
primarily focus on model generalization, neglecting the models’
resilience to adversarial perturbations.

D. Out-of-Distribution Tasks

We evaluate the efficacy of AME-ICL on OOD tasks, where a
shift in distribution exists between the prompts and the test data.
The experimental configurations follow those outlined by Chang
and Jia [10]. Specifically, we employ our selection methods on
a source task by sampling M prompts from the training data,

TABLE IV
ACCURACY COMPARISON ON IMDB AND BOOLQ CONTRAST SET, WHERE THE

PROMPTS ARE COMPOSED OF THE SELECTED SST-2 AND BOOLQ TRAINING

EXAMPLES, RESPECTIVELY

mirroring our main experiments. Subsequently, we assess the
performance on the test data of a distinct target task, ensuring
a clear demarcation between the source and target tasks. For
our experimental setup, we designate SST-2 and BoolQ as the
source tasks, and IMDB [83] and BoolQ Contrast Set [84] as our
target tasks, respectively. The findings presented in Table IV
illustrate that AME-ICL achieves SOTA performance across
all compared baselines on OOD tasks, indicating that rather
than solely overfitting the source tasks, the selected valuable
examples effectively capture patterns that can generalize well to
OOD test data.

E. Cross-Model Generalization

The data values are anticipated to be transferrable across var-
ious PLMs. In such cases, employing a smaller model solely for
estimating sample values becomes feasible, which can then be
applied in other larger PLMs. This section explores the efficacy
of valuable samples selected by a small model (i.e., GPT-2-0.8B)
when utilized in the ICL phase of eight other large PLMs
ranging from 1.5B to 33B (i.e., GPT-2-1.5B, GPT-Neo-2.7B,
GPTJ-6B, OPT-6.7B, OPT-13B, LLaMA-33B, LLaMA-2-13B,
and LLaMA-3-8B). Two datasets, SST-2 and Subj, are employed
for this purpose. The experimental findings, as reported in
Table V, reveal that the performance of various PLMs utilizing
valuable samples selected by the GPT-2-0.8B model consistently
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TABLE V
ACCURACY COMPARISON BETWEEN VANILLA ICL AND AME-ICL ON THE

SST-2 AND SUBJ DATASETS, EMPLOYING NINE LARGE PLMS

TABLE VI
THE FOUR GENERALIZED VALUABLE EXAMPLES CALCULATED BY AME-ICL

SHARED AMONG THE NINE PLMS IN THE SST-2 DATASET

surpasses that of Vanilla ICL, demonstrating the effectiveness
of our approach across various PLMs. Moreover, our findings
suggest that the valuable training samples demonstrate trans-
ferability across various PLMs. Furthermore, we present four
generalized samples in Table VI and encourage future research
to investigate the distinguishing characteristics of these valuable
examples. Additionally, the results manifest that our proposed
AME-ICL method performs well even on gigantic PLMs, such
as LLaMA-33B.

TABLE VII
ACCURACY COMPARISON ON TWO COMMONSENSE REASONING TASKS USING

THE LLAMA-2-7B AND LLAMA-2-13B MODELS

F. Generalization to More Complex Reasoning Tasks

To validate the applicability of our approach on more complex
reasoning tasks, we conduct experiments on two commonsense
reasoning datasets: CSQA [78] and OBQA [79], which are two
multiple-choice commonsense question-answering tasks. Two
widely used large PLMs, LLaMA-2-7B and LLaMA-2-13B,
are employed in these experiments. Given that methods such as
CONDACC and DATAMODELS have previously demonstrated
strong performance, we consider these approaches as baseline
comparisons. Other experimental settings adhere to those out-
lined in [29]. As shown in the results presented in Table VII, our
approach consistently outperforms the baseline demonstration
selection methods, highlighting its broad applicability across
more complex reasoning tasks. Specifically, compared to the
Vanilla ICL approach, our method achieves a 6.9% improve-
ment. Furthermore, when compared to the best-performing base-
line, our approach surpasses it by 3.7%.

G. Varying Numbers of Demonstrations

This section delves into the performance comparison between
Vanilla ICL and AME-ICL utilizing different numbers of train-
ing samples as prompts. The results for the GPT-Neo-2.7B
model on the SST-2 and AGNews datasets are illustrated in
Fig. 3(c) and (d). As the number of demonstration examples
(M) increases, both Vanilla ICL and AME-ICL demonstrate
improved performance, highlighting the importance of extensive
input knowledge for the ICL inference of PLMs. Particularly
noteworthy is that AME-ICL markedly enhances performance
stability across varying numbers of demonstrations and consis-
tently outperforms Vanilla ICL. This performance improvement
attributed to AME-ICL is especially pronounced when M is
smaller, indicating that the demonstrations selected by our pro-
posed AME-ICL method encapsulate richer and more valuable
knowledge of the task.

H. Varying Templates

Previous studies have highlighted that the ICL performance
is sensitive to the applied templates for demonstration exam-
ples [34], [85]. To assess the performance of AME-ICL across
different templates, we apply ten templates on the SST-2 dataset,
as presented in Table VIII, following those outlined by Zhao
et al. [34]. The OPT-13B model is utilized for this purpose.
The accuracy of Vanilla ICL and AME-ICL across these ten
templates is depicted in Fig. 4(a) and (b). It is observed that
certain templates yield higher average performance than others.
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TABLE VIII
THE TEMPLATES UTILIZED FOR EXAMINING THE INFLUENCE OF FORMATS ON THE ICL PERFORMANCE

Fig. 4. (a) and (b): Accuracy comparison between Vanilla ICL and AME-ICL on the SST-2 dataset using the OPT-13B model across ten templates. (c) and (d):
Accuracy comparison under three different permutation settings on the SST-2 and Subj datasets utilizing the GPT-2-1.5B model.
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Fig. 5. (a) and (b): Data values versus sequence length on the Scicite and Subj datasets. (c) and (d): Data values versus perplexity on the AGNews and BoolQ
datasets. GPT-J-6B model is utilized. Each dot corresponds to a training example and all data values are min-max normalized. High-value examples are not outliers
with abnormally long lengths or high perplexities.

Nonetheless, AME-ICL consistently enhances accuracy com-
pared to Vanilla ICL, all the while decreasing performance
variance across diverse templates.

I. Varying Permutations of Demonstrations

Prior studies have highlighted that the effectiveness of ICL can
be affected by the permutation of demonstration examples [6],
[34]. To investigate how AME-ICL performs under various
demonstration permutations, we examine the performance of
AME-ICL under three permutation settings: Setting I involves
arranging demonstration samples in ascending order of their
total values, Setting II involves arranging them in descending
order, and Setting III involves random arrangement. Subse-
quently, we calculate the test accuracy for each permutation on
the SST-2 and Subj datasets utilizing the GPT-2-1.5B model. The
results, as depicted in Fig. 4(c) and (d), suggest that AME-ICL
demonstrates stability across different permutations of demon-
stration examples and significantly outperforms Vanilla ICL.
Furthermore, optimal performance is generally achieved when
the demonstrations are sorted in ascending order of total values,
as samples closer to the query usually exert a greater impact on
ICL prediction.

J. Analysis of Data Values

We explore the distinguishing features of selected training
examples by examining them across two dimensions, namely
sequence length and perplexity. Through a comparative analysis
of good (i.e., high-value) and bad (i.e., low-value) training ex-
amples, we investigate how these factors influence the selection
of training data. In Fig. 5, we present a scatter plot of data
values against sequence length and perplexity, where each point
represents a training example. The visual results in Fig. 5(a)
and (b) show that low-quality samples exhibit a wide range of
sequence lengths, whereas high-quality samples tend to avoid
extremely long sequences. This finding is consistent with the
results in CONDACC [10], suggesting that samples containing
extremely long sequences during training may negatively impact
ICL performance, as they tend to contain excessive redundant
information.

We also calculate the perplexity of the training sample in-
puts. Fig. 5(c) and (d) show that samples with high values do
not exhibit unusually high perplexity, suggesting that training
samples with extremely high perplexity should not be selected

TABLE IX
COMPARISON OF MSE ERRORS AMONG RIDGE REGRESSION, LASSO

REGRESSION, AND ELASTIC NET

as demonstrations, as they may contain ambiguities. However,
there is no significant correlation between the data values
and perplexity, indicating that perplexity alone is insufficient
for identifying high-quality training samples. Nonetheless, our
comparison results demonstrate that valuing training data based
on the AME concept provides a more rational and accurate
approach. Notably, we have confirmed that the above findings
are also consistent across other tasks and PLMs beyond those
visualized in Fig. 5.

K. Different Linear Regressions

To determine the most suitable form of regression for our
problem, we compared the mean squared error (MSE) of Ridge
regression, Lasso regression, and Elastic Net. The comparison
results are presented in Table IX. The results indicate that
Elastic Net, which combines L1 and L2 regularization, achieves
the lowest MSE. This is because L1 regularization introduces
sparsity, while L2 regularization ensures parameter stability and
robustness to noise. Additionally, Lasso regression outperforms
Ridge regression as it is more suitable for under-determined
regression problems.

Moreover, we apply these three linear regression methods to
estimate data values and select the samples with the highest
values as demonstrations. The comparison results on the Subj
and Scicite datasets using the GPTJ-6B model are presented in
Table X. As shown, Elastic Net regression, which combines both
L1 and L2 regularization terms, outperforms the other meth-
ods. This advantage stems from Elastic Net’s ability to induce
sparsity while simultaneously improving parameter stability and
enhancing model robustness.

Additionally, we present the cross-validation results on the
SST-2 dataset to further strengthen our argument. Specifically,
using the ElasticNetCV package, there are two key hyperparam-
eters:α, which controls the overall strength of the regularization
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Fig. 6. (a) and (b): Accuracy of the BoolQ and Subj datasets with varying numbers of training subsets (K) and varying sizes of training data (N ) on the OPT-13B
model, with M setting to ten. (c) and (d): Sensitivity analysis for the perturbation bound ε and the modulating factor λV , using the GPTJ-6B and OPT-13B models.
The average accuracy across all tasks is reported.

TABLE X
RESULTS OF ABLATION STUDIES FOR USING DIFFERENT REGRESSIONS TO

CALCULATE DATA VALUES ON THE SUBJ AND BOOLQ DATASETS EMPLOYING

THE GPTJ-6B MODEL

TABLE XI
CROSS-VALIDATION RESULTS ON THE SST-2 DATA USING GPTJ-6B

terms, and l1_ratio, which determines the relative contribution of
the L1 and L2 regularization terms. The value of l1_ratio adopts
the default settings (i.e., 0.5) in the ElasticNetCV package.
Moreover, the results of the five-fold cross-validation experi-
ments for different values of α are summarized in Table XI. As
we can see, the best performance is achieved when α = 0.01.
In this context, the coefficients for the two regularization terms
are 0.005 and 0.01, respectively.

L. Efficiency and Scalability

We explore the efficiency of AME-ICL to highlight its scala-
bility. The additional time consumption of AME-ICL primarily
arises from utilizing prompts generated from diverse training
subsets for inference. Consequently, the time required increases
proportionally with the number of prompts constructed. As de-
picted in Fig. 6(a), with a fixed training size of 1,000, satisfactory
results can be attained with just 0.1 K subsets. Furthermore, an
increase in the number of subsets only leads to minor fluctuations
and improvements in performance. These findings suggest that
AME-ICL can effectively select the most valuable samples with
a small number of prompts, owing to its consideration of sparsity.

Additionally, as shown in Fig. 6(b), when the size of the
training data becomes large (i.e., 15 K and 20 K), there is

TABLE XII
RESULTS OF ABLATION STUDIES FOR DIFFERENT CONFIGURATIONS OF DATA

VALUES ON THE SUBJ AND BOOLQ DATASETS

only a slight decline in ICL performance, which still signifi-
cantly outperforms the baseline. Notably, other demonstration
valuation methods, such as CONDACC and DATAMODELS,
consume hundreds of GPU hours due to the need for infer-
ence with numerous prompts (exceeding 50 K prompts for a
training set size of 1,000). Nevertheless, AME-ICL significantly
enhances efficiency compared to baseline methods such as CON-
DACC and DATAMODELS, while still achieving substantial
performance improvements. Specifically, running the OPT-13B
model on BoolQ takes over 500 GPU hours on an RTXA6000
GPU for CONDACC and DATAMODELS, whereas our method
consumes less than 10 hours. Fig. 6(b) also indicates that as
the size of the training data increases, the number of sampled
subsets is expected to increase accordingly, aiming to estimate
the data values more accurately. Furthermore, having verified the
transferability of data values across different model sizes, we can
directly employ small PLMs for data valuation and subsequently
transfer the valuable samples to large models.

M. Ablation and Sensitivity Studies

Ablation studies and sensitivity tests are conducted on AME-
ICL to gain deeper insights into the impact of each of its compo-
nents. Initially, we scrutinize the performance when considering
individual generalization and robustness values. Specifically, we
conduct three sets of experiments on the Subj and BoolQ datasets
using the GPTJ-6B model: considering only the generalization
value (V g), only the robustness value (V r), and both values
combined. The results, as reported in Table XII, reveal that
simultaneously considering both values yields optimal perfor-
mance, underscoring the significance of both model generaliza-
tion and robustness during ICL inference. Moreover, focusing
solely onV g generally yields superior results compared to solely
focusing on V r.
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TABLE XIII
PERFORMANCE COMPARISON UNDER VARYING SAMPLING DISTRIBUTIONS OF

TRAINING SUBSETS

Moreover, we conduct experiments to examine the ef-
fect of different sampling distributions of training sub-
sets on ICL performance. Three settings are consid-
ered: Setting I: P = Uniform{0.1, 0.2, 0.3, 0.4}, Setting
II: P = Uniform{0.2, 0.4, 0.6, 0.8}, and Setting III: P =
Uniform{0.5, 0.6, 0.7, 0.8}. Using datasets BoolQ and AG-
News, we perform experiments on the GPTJ-6B model. The
results, shown in Table XIII, reveal that Settings I and II yield
favorable outcomes while Setting III performs poorly. This oc-
curs because, when constructing prompts with relatively larger
subsets, compared to smaller subsets, the ability to capture the
performance variations of ICL as each individual data point
is added becomes less effective. As a result, the influence of
individual data points tends to be overshadowed.

Sensitivity tests for the hyperparameters in AME-ICL have
also been conducted. Two key hyperparameters are considered:
the perturbation bound ε used when calculating the robustness
utility, and the modulating factor λV between the two values. The
average accuracy across all tasks on the OPT-13B and GPTJ-6B
models is calculated. As illustrated in Fig. 6(c) and (d), the
performance of AME-ICL remains stable when ε falls within
the set of {0.1, 0.2, 0.3} and λV is selected from {0.5, 1.0, 1.5}.
Therefore, in real-world applications, hyperparameter values
can be selected from these stable sets.

VI. CONCLUSION AND FUTURE WORK

This study introduces a novel method, namely AME-ICL,
to identify valuable training samples for prompting in ICL.
Two types of data values pertaining to model generalization
and robustness are calculated. Subsequently, samples with the
highest combined values are selected and ordered to construct
task-specific prompts. Our AME-ICL method is intuitive and
straightforward to implement, enabling seamless integration
with various PLMs. The extensive experiments demonstrate
that AME-ICL consistently outperforms previous demonstration
selection approaches in terms of both average and worst-case
accuracy. Moreover, it significantly enhances the stability and
robustness of ICL predictions.

Given the promising results of AME-ICL, there are several
avenues that warrant further exploration. First, future research
could conduct a more comprehensive analysis of the charac-
teristics of valuable samples to establish guidelines for select-
ing or creating optimal samples. Moreover, our framework is
highly scalable and easily adaptable to handle other tasks by
substituting the metrics for utilities with alternative indicators.
For instance, in generation tasks, we can utilize BLEU and
ROUGE metrics. Third, considering that the number of available

samples for the ICL process may vary over time, investigating
the incremental or decremental valuation of training data would
be both intriguing and meaningful.
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