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Over- and Under-Exposure Reconstruction
of a Single Plenoptic Capture
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Light field images, for example taken with plenoptic cameras, offer interesting post-processing opportunities,
including depth-of-field management, depth estimation, viewpoint selection, and 3D image synthesis. Like most
capture devices, however, plenoptic cameras have a limited dynamic range, so that over- and under-exposed areas
in plenoptic images are commonplace. We therefore present a straightforward and robust plenoptic reconstruction
technique based on the observation that vignetting causes peripheral views to receive less light than central
views. Thus, corresponding pixels in different views can be used to reconstruct illumination, especially in areas
where information missing in one view is present in another. Our algorithm accurately reconstructs under- and
over-exposed regions (known as declipping), additionally affording an increase in peak luminance by up to 2
f-stops, and a comparable lowering of the noise floor. The key advantages of this approach are that no hardware
modifications are necessary to improve the dynamic range, that no multiple exposure techniques are required,
and therefore that no ghosting or other artefacts are introduced.
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1 INTRODUCTION
Conventional cameras record only the total sum of light rays striking each point on the sensor. This
means that light is integrated over all angles of incidence, as well as over the surface area of each pixel.
In comparison, plenoptic cameras, constructed by gluing a sheet of micro-lenses to the sensor, retain
angular information to some extent [2, 20, 44], so that they can be used to directly capture light fields
[18, 30]. While this concept has been known for more than a century [27], practical implementations
have emerged only recently [2, 34, 44]. The additional angular information enables a variety of
post-processing applications such as refocusing [26, 44], depth estimation [4, 53, 59, 66, 69], glare
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Fig. 1. Redundancy as well as vignetting in plenoptic images can be exploited to reconstruct over-
and under-exposed regions (the botton right image shows over-exposed pixels colored red). The
marked pixel rows in the input (top left) and reconstructed central view (top right) are plotted for the
red, green and blue color channels (bottom left), showing that in this example of a car headlamp
the reconstructed image has pixel values more than 3.5 times higher than the input. All input pixels
in this row were over-exposed in all three color channels. For visualisation, all images were jointly
tonemapped to maintain relative pixel values (Photographic operator [51]).

reduction [47], material recognition [64], intrinsic imaging [14], 3D imaging from a single shot [45],
dolly zoom effects [46] and 3D microscopy [31].

Here, more so than in conventional photography, there is a need to maximize the number of sensor
elements [33] to accommodate a reasonable angular resolution without unduly sacrificing spatial
resolution [17]. Although super-resolution techniques may mitigate resolution limitations [5], this
requirement directly competes with the desire to improve a sensor’s dynamic range [50] (p. 687), so
that fewer areas are under- or over-exposed.

One way to mitigate dynamic range limitations is to pursue high dynamic range (HDR) light field
capture, as it would enhance image fidelity, but also opens up the possibility to use light fields as
advanced light sources in rendering applications [40, 61]. Standard multiple exposure techniques
could be employed to generate high dynamic range plenoptic imagery [10, 38, 42, 52], but this
would require a change in photographic practices as a scene would have to be captured multiple
times. In addition, these methods have a tendency to introduce ghosting artefacts as a result of
camera movement or changes in scene composition, requiring specialized and often complicated
ghost removal techniques [13, 19, 28, 56, 67]. Further, ghost removal as well as image alignment
may be more complicated for light field data due to its spatio-angular nature.

Alternatively, to capture HDR light field imagery, hardware-based solutions could be considered,
including the use of a camera add-on [37], adding a neutral density filter array [15, 43], or adding
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Fig. 2. Micro-lenses cause significant signal attenuation near their edges, as shown here using central
and corner sections of a raw plenoptic image of a diffuse white surface (a white image, left). After
view extraction, this causes peripheral views to be darker than central views (right). The red and blue
lines indicate the mapping between sections of the white image and the extracted views. The images
are zoomed in and cropped for the sake of visualization.

apertures of different sizes to each micro-lens [16]. Alternatively, a plenoptic camera may be
constructed by replacing the micro-lens array with a pinhole array, and adding a filter array in the
pupil plane [21]. The pinhole array would reduce design tolerances on the filter array, while the latter
could be designed as neutral density filters such that high dynamic range captures may be realised.
Further variants include taking multiple exposures of a grid of mirrored spheres [61], by using a high
dynamic range omni-directional camera mounted on a sled [60], or by using a high dynamic range
camera in combination with a planar mirror [25].

Without changing photographic practices or requiring hardware modifications, it is possible to
reduce the occurrence of under- and over-exposed areas by exploiting redundancy present in images.
For example, redundancy in sequences of video frames may be exploited to increase dynamic range
using techniques such as generalized mosaicing [54].

In contrast, we propose to leverage the redundancy available in single standard dynamic range
(SDR) plenoptic captures to minimize exposure problems (see Figure 1 for an example), in a
straightforward post-process that avoids the need for hardware redesigns. It is based on the insight
that a given point in a scene is imaged multiple times, albeit under different amounts of light
attenuation as a consequence of vignetting. A significant portion of vignetting in plenoptic cameras
is due to the micro-lenses (see Figure 2), and is typically removed in a preprocess [3, 6, 9, 12, 53].
We note that our technique is not intended for use with camera designs that do not exhibit vignetting,
including those based on coded apertures [55, 62].

Rather than treating vignetting as undesirable, we exploit it prior to its removal to reconstruct and
enhance light field captures, notably without approximations normally encountered in declipping [1],
inpainting [8], hallucination [63] or other standard data synthesis techniques that could conceivably
be employed. Note that our algorithm could be seen as a declipping algorithm for plenoptic captures.
A key distinction, however, is that declipping algorithms for conventional images synthesize texture
or patterns in over- or under-exposed areas, whereas our algorithm has access to the captured
information in a light field, so that the light field is reconstructed, rather than synthesized.

Demosaicing and view reconstruction are necessary pre-processing steps for many tasks, including
our algorithms. However, they tend to be less reliable for peripheral views [70]. For this reason,
our algorithm includes a signal adaptive filtering step to mitigate their effects. This is achieved
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Fig. 3. The mean luminance of each reconstructed view of a white image (left) shows significant
vignetting in peripheral views. The ratio between the luminance of the central pixel over the luminance
of each peripheral pixel (right) provides the potential ratio of the central pixel enhancement in dynamic
range in the case the corresponding peripheral view is used. Therefore, the dynamic range of the
central view may be increased by factors of up to 6 in this specific example.

by exploiting recent results from graph signal processing [57], notably the use of a graph-signal
smoothness prior [22, 41]. Note that all views may be processed, for both recovering over-exposed
pixels, as well as under-exposed pixels, thus producing a full reconstructed 4D light field. In summary,
our key contributions are as follows:

• To our knowledge, we are the first to exploit vignetting in plenoptic cameras as a feature to
declip a plenoptic light field from a single plenoptic capture.

• We present a novel mathematical formulation for reconstructing poorly exposed pixels in
one view from well-exposed corresponding pixels in other views, leveraging a graph-signal
smoothness prior based on a graph that encodes inter-pixel similarities of the corresponding
pixels. This induces tolerance against noise and propagation of pre-processing artefacts.

• Finally, we developed a computationally efficient algorithm to recover poorly exposed pixels
iteratively until convergence.

2 VIGNETTING
Vignetting in conventional photographs is seen as a radial dimming of the image toward the image
borders. It is caused by various optical phenomena occuring in the main lens and on the sensor, such
as mechanical, optical and pixel vignetting. Specific causes include off-axis illumination fall-off due
to the cos4 law, the change of apparent shape of the lens when viewed from locations further from the
optical axis, and light incident upon photo-wells at oblique angles being transduced less efficiently
[71].

In plenoptic cameras these effects are strongly exacerbated by the presence of a sheet of micro-
lenses (Figure 2, left). The amount of vignetting present determines the level of correction that
any algorithm might accomplish. For a first generation Lytro camera, a representative plenoptic
capture of a diffuse white surface was analysed for this purpose. Individual views were reconstructed
(example views are shown in Figure 2, right) and the resulting mean luminance values for each view
are plotted in Figure 3 (left). For the central view, the maximum dynamic range enhancement that
may be achieved as function of each peripheral view is shown in Figure 3 (right). For this specific
example, the corner views allow a dynamic range increase by a factor of up to 6.3. Further analysis
has shown that this value varies as function of focus distance for the first generation Lytro camera.
Particularly for very long focus distances we found that this value reduces to 2.2. Note that such long
focus distances are uncommon in light-field imaging because the ability to perform meaningful edits
to such light-fields becomes minimal due to the very small disparities associated with such focusing.
Dependent on focus distance and amount of zoom applied, the potential to reconstruct dynamic
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range may vary. The enhancement of dynamic range is an indicator of how effective a reconstruction
algorithm may be in correcting poorly exposed pixels.

For each pixel location x ∈ N2 and view k ∈ N2, we denote the amount of vignetting/attenuation
with wk(x). Values of vignetting may be obtained from a model of vignetting [24, 29, 32], or, as used
in this paper, an appropriately chosen white image W (an image taken of a uniform white surface)
that encapsulates the sum total of all vignetting effects [6, 9, 12]. Alternatively, the reconstructed
views of the input image itself may be analysed to derive vignetting values as well, as outlined in
Section 5.

With Le the irradiance associated with a point in the scene, image irradiance is given by wk(x)Le .
The recorded pixel value Ik(x) relates to the image irradiance, exposure time ∆t as well as the camera
response function f (·):

Ik(x) = f (wk(x)Le ∆t). (1)
By inverting this equation we can solve for the product of luminance and exposure time of the imaged
scene point:

Le ∆t = f −1(Ik(x))/wk(x). (2)
Here, the pixel value Ik(x) may be over- or under-exposed in one view but may be well-exposed in
one or more other views. Assuming that due to disparity the corresponding pixel in view n is located
at position xn, and that this pixel is well exposed, the value of Ik(x) can be reconstructed directly:

Ik(x) = f

(
wk(x)
wn(xn)

f −1 (In(xn))
)
. (3)

Such a reconstruction would rely on disparity estimation algorithms to find pixel correspondences
[4, 53, 66], perhaps in conjunction with additional neighborhood matching techniques [11, 72].
However, by definition the disparity for pixel Ik(x) is unknown, because this pixel was under- or
over-exposed, meaning that evaluation of Equation (3) may not provide meaningful results. As a
consequence, a more advanced algorithm is required to reconstruct under- and over-exposed pixel
values. This motivates our solution, which will be presented in the following sections.

3 ALGORITHM OVERVIEW
The inputs to the algorithm are a plenoptic capture and its corresponding white image (the Lytro
camera, for instance, is supplied with a library of white images taken under different camera settings).
We begin by demosaicing [36], demultiplexing [6] and linearizing both inputs (line 3 in Algorithm 1;
note that numbers in parentheses refer to section numbers). This gives us a matrix of views for both
the image and the white image.

Next, we detect under- and over-exposed pixels by simple thresholding (line 4 in Algorithm 1). In
practice, we find that the thresholds of 0.05 and 0.95 on the normalized image intensity work well.
We explain our algorithm in terms of over-exposed pixels only, noting that under-exposed pixels are
treated similarly (results are shown for both). We maintain a binary mask M indicating which pixels
are over-exposed (and separately, a mask for under-exposed pixels).

For each over-exposed pixel, block matching is performed to find the corresponding blocks in the
more strongly vignetted views (Section 4 and lines 7–8 in Algorithm 1). Block matching is a general
technique based on the assumption that two pixels are similar if their immediate neighborhoods,
defined by blocks centered around these pixels, are similar [72]. In our case, an over-exposed pixel
may have well-exposed neighbors [see Figure 4 (left)]. If another block in a view with more vignetting
has similar neighbors, it is considered matched [Figure 4 (middle)].

Then, the over-exposed pixel, as well as other over-exposed pixels in the same block, may be
reconstructed from the matched block according to the available information in the latter (line 9 in
Algorithm 1; see also Figure 4 (right) and Section 5). In its simplest form, this amounts to transferring
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Fig. 4. A block in a central view containing over-exposed pixels (left), a matched block in a peripheral
view with more vignetting (middle), and reconstructed pixels in the central view, taken from the
well-exposed pixels in the matched block in the peripheral view.

Algorithm 1 Light Field Reconstruction
(sections listed in brackets)

1: Input: a plenoptic capture and a white image
2: Output: a reconstructed plenoptic capture
3: demosaic, demultiplex and linearize (3)
4: record poorly-exposed pixels pxk in mask M (3)
5: repeat
6: for all pixels pxk at position x in view k do
7: form a block bxk centered around pxk (4)
8: find bx

′

n using block matching with bxk (4)
9: reconstruct bxk using bx

′

n (5 or 6)
10: update mask M (3)
11: until all poorly-exposed pixels are reconstructed.

the candidate block into the area surrounding the over-exposed pixel, using Equation (3), possibly
with the aid of some blending.

This process is iterated for all over-exposed pixels in the views we wish to reconstruct, as long as
they have enough well-exposed neighboring pixels to enable block matching. This allows regions
of arbitrary size to be reconstructed. The minimum number of pixels that should be well-exposed
in the block containing the over-exposed pixel is a non-critical parameter that trades the number of
reconstructable pixels against the quality of the reconstruction. In practice, we found that requiring
the block to have 50% well-exposed pixels provides a good trade-off.

We find that such a straightforward algorithm performs reasonably well in many cases, albeit that
noise may be amplified, and inaccuracies may be introduced due to non-uniform disparity across
pixels in the candidate patch. Further, neighboring over-exposed pixels may lead to the selection of
candidate blocks that are not fully consistent with each other. Such discrepancies may be resolved by
applying a graph-based reconstruction which includes a smoothness prior on the reconstructed view
(Section 6).

Either of these two reconstruction algorithms yield results for over-exposed pixels that are within
half a block’s width from a set of well-exposed pixels. Within reason, larger over-exposed areas can
be synthesized by repeated application of either reconstruction algorithms (lines 5, 11 in Algorithm 1).
The output of the algorithm is a new matrix of views in which all over-exposed pixels (and under-
exposed pixels) are reconstructed.
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4 CANDIDATE BLOCK SELECTION
Our algorithm relies on neighborhood matching techniques to determine where in the matrix of views
suitable information is available to reconstruct over-exposed pixels. A wide choice of algorithms
is available, such as those used in texture synthesis [11, 68], or techniques inspired by template
matching [58]. However, to account for the presence of vignetting, some modifications are necessary.

An over-exposed pixel may have corresponding pixels that are well-exposed in some other views
as a result of stronger signal attenuation by vignetting. As disparity is limited in plenoptic cameras,
a given over-exposed pixel Ik(x) at location x in a given target view k will have a corresponding
pixel in a different view n within a rectangular neighborhood Nx

k,n centered at position x and of size
(2|n − k| ⊙ d) + 1, where d is a vector of the unsigned maximum horizontal and vertical disparities
of the camera system, and ⊙ denotes the Hadamard product. For a first generation Lytro camera, we
find that the disparity is constrained by d = (2, 2)1.

To determine the corresponding pixel for a given over-exposed pixel, we resort to block matching
[72]. The idea is that at least some neighbors of an over-exposed pixel will be well-exposed, and
these can be matched in other views that have more vignetting. The well-exposed pixels in the
matched blocks are then used to perform the reconstruction. Here, a t × t pixel block represented
in vectorized form by bxk is constructed around the over-exposed pixel at position x in view k. In
our experiments, we set t = 13, a value which balances accuracy against computational costs. The
notation for indexing a single element in such a vector is given by bxk(i).

The block matching algorithm is modified in the following key aspects to account for our specific
use case. First, in each of the views n we only search for matching blocks bx

′

n where x′ ∈ Nx
k,n.

Second, the blocks bxk and bx
′

n are different due to both vignetting and the presence of over-exposed
pixels, requiring an adaptation of the distance metric used to assess the quality of a block match. To
account for vignetting, we subtract the mean pixel luminance of both bxk and bx

′

n to obtain b̂xk and b̂x
′

n .
Third, we apply a weighting operator ω(t) = 1 − (2 t − 1)12 on elements of bxk to reduce the influence
of over-exposed pixels, where the input of ω is assumed to be normalized [49]. Our distance metric
between two blocks thus becomes: ω(bxk) ⊙ (

b̂xk − b̂x
′

n

)2
2
. (4)

Block matching may be carried out in each of the candidate views, selecting the block bx
′

n for which
b̂x

′

n has the smallest distance to block b̂xk. We note that vignetting occurs most strongly in the most
peripheral views, so that in principle the list of candidate views may be limited to those views. In
Section 7 we will show, however, that in practice the search space can be limited even further without
significant loss of quality. The over-exposed pixels in bxk are then recovered using the corresponding
pixels in bx

′

n as discussed in the following section.

5 SIMPLE IMAGE RECONSTRUCTION
The block bxk containing over-exposed pixels and its matched block bx

′

n form the input to our
reconstruction algorithm. Our algorithm consists of two steps, namely correcting the candidate block
for vignetting, followed by reconstruction of over-exposed pixels using the corrected candidate block.

1For clarity, note that with this definition of disparity, the total pixel displacement between views is the product of disparity d
and the angular coordinate difference between the corresponding views.
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Denoting the corresponding white image blocks of bxk and bx
′

n in vectorized form wx
k resp. wx′

n ,
vignetting correction can be applied to candidate block bx

′

n as follows:

bx
′

n,corr = bx
′

n

∑
i

wx
k(i)∑

i

wx′
n (i)

. (5)

This function follows Equation (3), albeit that it is applied pixel-wise on blocks. The summations
promote consistency of the results, especially in cases where the white image contains residual noise
or demosaicing artefacts.

In an alternative formulation, it is possible to apply vignetting correction to a block without the use
of white images. This would be useful for devices for which no library of white images is available.
Here, the mean levels of the matched blocks themselves may be analyzed, leading to the following
vignetting correction:

bx
′

n,corr = bx
′

n

∑
i

bxk(i)ω
(
bxk(i)

)
∑
i

bx
′

n (i)ω
(
bxk(i)

) , (6)

with ω similarly defined as in (4). It is applied here to avoid including over- and under-exposed pixels
in the computation of the vigneting correction factor.

Candidate blocks for neighboring over-exposed pixels will partialy overlap, so that multiple
candidates may be obtained for each over-exposed pixel. Blending or averaging candidate blocks
would lead to loss of detail, allowing us to adopt a greedy approach instead whereby an over-exposed
pixel is selected, its entire corresponding patch is pasted into the image, and all pixels that have been
touched are marked using a mask.

We can now reconstruct block bxk,corr, for instance by inserting the block of pixels bx
′

n,corr directly
into the output image, but this may lead to edge artifacts. we therefore use alpha-matting to blend the
well-exposed pixels in bxk with the well-exposed pixels in bx

′

n,corr. The alpha value is derived from the
binary mask M by first dilating the mask and then applying a Gaussian convolution, leading to an
alpha matte. For our 13 × 13 blocks, we use a dilation of 3 pixels and a filter parameter of σ = 1.5.
Representing the neighborhood corresponding to bxk on the alpha matte as m̂x

k, the final pixel values
are then calculated as follows:

bxk,final = (1 − m̂x
k) ⊙ bxk + m̂

x
k ⊙ bx

′

n,corr . (7)

We found this algorithm to work well in practice, although the quality of the final result depends
on the quality of the pre-processing algorithms (notably demosaicing) for the peripheral views. We
therefore introduce a refinement of our algorithm in the next section.

6 GRAPH-BASED IMAGE RECONSTRUCTION
When the captured data is corrupted by noise, e.g. when the ISO value is set high under low light
conditions, the above algorithm will copy or even magnify the noise. Further, light field decoding
(notably view extraction) may introduce artefacts, e.g. stripping effects, which may find its way
into the reconstructed image areas. To address these problems, we introduce a graph-based image
reconstruction method, which essentially provides a signal-adaptive filtering.

In particular, a basic reconstructed vector bxk,corr may be calculated by requiring that (i) the
reconstructed pixels in bxk,corr are multipliers r of corresponding pixels in the selected matched
candidate block bx

′

n , where r = wx
k/w

x′
n [see Equation (5)], and (ii) the values of well-exposed
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pixels in the target block remain unchanged, enforced by using 1 −mx
k similar to the first term in

Equation (7). Here, mx
k represents the neighborhood corresponding to bxk on the mask M.

In addition, we wish to impose a graph-signal smoothness prior, as in other applications this
has shown to help regularize the results, leading to better reconstruction and less noise than the
reconstruction technique presented in the preceding section. In our case, we impose an undirected
8-connected graph on the candidate block bx

′

n , represented by adjacency matrix A of size t × t , with
non negative elements ai, j computed as follows [23, 35]:

ai, j = exp

(
−
∥bx

′

n (i) − bx
′

n (j)∥
2
2

2σ 2
a

)
. (8)

where the parameter σa controls the sensitivity of the similarity measure to the range of the luminance
differences. This parameter is empirically set to a scalar multiplied by the maximum luminance
difference between neighboring pixels in the block, i.e. σa = smax

i, j
∥bx

′

n (i) − bx
′

n (j)∥2, where s ∈

[0.1, 0.2]. Note that ai, j ≈ 1 if the connecting pixels i and j have similar values.
The previously mentioned requirements can be combined to lead to the following objective

function:

argmin
bxk,corr

∥mx
k ⊙ (bxk,corr − r bx

′

n )∥
2
2

+∥(1 −mx
k) ⊙ (bxk,corr − bxk)∥

2
2

+β bx T
k,corr L b

x
k,corr, (9)

where the last term contributes to the enforcement of the graph-signal smoothness prior, and β is a
parameter that strikes a balance between data fidelity and the graph-signal smoothness prior (β = 5
in our experiments). In particular, L represents the unnormalized combinatorial graph Laplacian
L = D − A [7], with D being a diagonal matrix where each element di,i is given by the row sum∑m

j=1 ai, j . The mentioned graph-signal smoothness prior ensures that bxk,corr is smooth with respect
to the constructed graph Laplacian L of the well-exposed block, so as to recover the underlying
structure even in the presence of noise in both bxk and bx

′

n .
As Equation (9) is a quadratic problem, it admits the optimal and closed-form solution, leading to

(see the supplemenary material for detail):

bxk,corr = (diag (1) + β L)−1(
rmx

k ⊙ bx
′

n + (1 −mx
k) ⊙ bxk

)
. (10)

In the final step, the vector bxk,corr is merged into the target view by replacing bx
′

n,corr in Equation (7).

7 RESULTS
In the following, we first demonstrate the effect of some of the decisions that went into the design of
our algorithm. Second, we compare our algorithm against other techniques that might conceivably
be employed to reconstruct poorly exposed areas. Unless noted otherwise, all images used in our
experiments were taken with a first generation Lytro camera. All measurements were carried out
on linear data, but images included in this paper are tonemapped with Reinhard and Devlin’s
operator [48], unless otherwise indicated. Note that input and result images were composited first
into one larger image before tonemapping, to preserve relative pixel values and therefore enable a
meaningful comparison.

Our algorithm is implemented in Matlab, and for the images presented in this paper the processing
time varies between around 20 to 200 seconds on a laptop with an Intel Core i5 processor running
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Fig. 5. Histogram of the number of matched blocks as function of location in the matrix of views. Only
views located in the extreme periphery are included. Of 21 images tested, the view toward the right
was picked 15 times by our block matching algorithm.

at 2.6 GHz, dependent on the size of the reconstructed areas. Compared to typical times for other
preprocessing steps such as view reconstruction and disparity estimation, this constitutes only a small
overhead. We suggest the reader to investigate the results on the soft copy of the paper.

7.1 Algorithmic Variants
Some interesting observations were made during the development of our algorithm, which we
would like to report here. First, Figure 3 shows that we might expect the strongest dynamic range
enhancement for views located near the edges, and especially the corners. Figure 2 (bottom right), on
the other hand, shows that peripheral views may be reconstructed with low fidelity, which may be
expressed as demosaicing artefacts and/or noise. Block-matching would be able to naturally find a
good trade-off between dynamic range enhancement and artefact-suppression.

To demonstrate this, we have limited the block matching search space to the views that are in
the extreme periphery. We counted across a set of images whose views contained the matches that
were used in the reconstructions. Figure 5 shows a histogram of matches per view. It is clear that
some views are strongly favored over others independent of the scene content. The highest peak
in the histogram for our Lytro camera corresponds to a view right of the central view, along the
edge. Corner views are not chosen due to artefacts and view reconstruction errors. As a consequence,
we can limit the search space of block matching to a single view at the middle of the right edge
(k = (9, 5)), without losing significant loss of visual quality. Figure 6 shows additional analysis for
views closer to the central view, confirming the results shown in Figure 5.

It is thought that both the hardware construction of the specific camera used (a first generation
Lytro camera for the examples in this paper) as well as the pre-processing software may contribute to
the behavior observed in Figures 5 and 6. The placement of the sheet of lenslets relative to the sensor,
for example, may exhibit a slight offset and/or rotation, which may cause certain sensor locations to
be imaged with higher accuracy. The pre-processing software, which notably includes demosaicing,
tends to produce artefacts that are more significant toward the corners of the sensor array. This means
that vignetting occurs most in those areas where artefacts are also likely to be most prevalent. As
shown in Figures 5 and 6, our algorithm automatically accounts for this by finding the views with the
best trade-off between reconstruction capability and presence of artefacts.
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Fig. 6. Histograms of the number of matched blocks as function of views located at different distances
to the central view.

Figure 6 allows one further observation, which is that there is benefit in selecting a target view for
drawing patches from, instead of relying on 4D patches which would include the angular component.
Such 4D patches would essentially cover multiple neighboring views in this figure. For such patches
to be reliable, our current view selection method would have to show little variability in the number of
times each view is selected. Given that Figure 6 shows that with increasing eccentricity neighboring
views start to show significant differences in how often they are selected, we may infer that 4D
patches selected toward the edges of the sensor will be less reliable. In some sense this may be
expected as artefacts are more prevalent in more eccentric views. Additionally, searching in multiple
neighboring views, perhaps in a 3×3 block of views, would incur a significantly higher computational
cost.

Figure 7 shows reconstruction results using candidate views (6,5), (7,5), (8,5) and (9,5), demon-
strating that the ability to reconstruct over-exposed pixels depends strongly on how far the candidate
view is removed from the central view.

Second, we have presented two reconstruction algorithms, one straightforward block copying
approach, described in Section 5 which gives us a baseline quality to compare our more advanced
solution of Section 6 against. Example results are shown in Figure 8. Note that the graph-based
method is able to create softer-looking results due to its ability to adapt to the signal.
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Fig. 7. Reconstruction of the central view from different peripheral views. From left to right: input
central view (k = (5, 5)), reconstructed views from views (6,5), (7,5), (8,5) and (9,5). Significant
differences are encircled.A Circle is drawn on each image to mark one modified region.

Fig. 8. The input image (left) was processed with our simple reconstruction method (middle) and our
graph-based solution (right). Note that our graph-based solution adapts the copied pixels better, lead-
ing to higher visual quality than our simple method. The zoom shows an area where the improvement
is especially significant.A Circle is drawn on each image to mark one modified region.

Third, vignetting correction may be applied on the basis of white images [Equation (5)], or the
input plenoptic capture may be analysed directly [Equation 6]. The latter case turns out to be a less
robust method, which is confirmed by the example shown in Figure 9. As such, we would recommend
using white images, especially if they are supplied by the camera manufacturer, resorting only to
analysis of vignetting factors using the input image if no white image is available.

Finally, we demonstrate the correction of dark areas in peripheral views using well-exposed pixels
in the central view in Figure 10. This figure shows that noise may be effectively suppressed by our
method.

7.2 Comparisons
To our knowledge, reconstruction of missing data in plenoptic captures was not attempted before.
However, it would conceivably be possible to apply declipping methods to the individual views
after view reconstruction. Declipping methods are in essence inpainting algorithms for over-exposed
areas, and therefore synthesize data where no image information is available. We compare against
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Fig. 9. The input images (left) were corrected using the images themselves to calculate the vignetting
correction (middle). The images corrected using a corresponding white image are shown on the right.
Note especially the marked regions.A Circle is drawn on each image to mark one modified region.

the methods by Masood et. al. [39] and Abebe et. al. [1] in Figure 11. Our algorithm has the benefit
of being able to use redundancy in plenoptic captures, which standard declipping methods do not.
For this reason, we expect our reconstruction results to be of higher fidelity than synthesis methods.
This is confirmed by comparing the results against the ground truth images in Figure 11, where our
method reconstructs details and increases the dynamic range, whereas the two methods we compare
with do not reach the same level of reconstruction, both in terms of dynamic range enhancement and
color fidelity. Note that the ground truth images are normalized to allow a meaningful comparison
of the reconstruction quality of over-exposed details, even if this means that the absolute dynamic
range cannot be compared directly in this image. MoreDynamic range comparisons are available
in Figures 12- 13. For each of the images in Figure 12, the peak output value generated by our
reconstruction algorithm was determined, and a horizontal pixel row centered around this point was
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Fig. 10. The darks in peripheral views (left) are reconstructed (right). Note the strong reduction in
noise. The images are gamma corrected for display using γ = 2.2. Significant differences can be seen
in the marked regions.A Circle is drawn on each image to mark one modified region.

selected for analysis, as shown in Figure 13. This figure shows that data synthesis techniques such
as Masood et. al. [39] and Abebe et. al. [1] do not create significant dynamic range, whereas our
reconstruction techniques are able to create a plausible signal in over-exposed areas.

Additionally, we have assessed the relative merit of our algorithm and the two declipping methods
by calculating the SSIM metric [65]. To this end we have taken 7 plenoptic captures with a first
generation Lytro camera, and for each of these captures we have taken an additional capture with
an exposure time 2 f -stops shorter which serves as ground truth because these images have no
over-exposed pixels. While we could also have created ground truth images by recording an exposure
sequence to construct an HDR light-field, this would involve image alignment, calculation of
the camera response and possibly deghosting methods [49]. Each of these techniques introduces
uncertainties that may affect the ability to draw conclusions. Instead, all that is required of a ground
truth image is that the lightest pixels are not over-exposed. This can be achieved by simply stopping
down a sufficient number of f -stops, and then scaling up the recorded image by the same amount.

The SSIM metric is calculated with respect to these ground truth images after multiplying them
by a factor of 4. The average SSIM for the input image relative to the ground truth image is 0.70.
Our graph-based solution averages to 0.81, while both Masood’s and Abebe’s algorithms produce an
average value of 0.72. The gain of our algorithm is therefore just over 17%, whereas the other two
algorithm improve the input by on average 2%.
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Fig. 11. Comparisons with state-of-the-art declipping methods. Shown here are from left to right:
ground truth images, our results, the method of Masood et. al. [39], and the method of Abebe et. al.
[1]. Salient differences are visible in the marked regions.A Circle is drawn on each image to mark one
modified region.

Finally, we compare our results against ground truth data, which we obtain by taking one well-
exposed plenoptic capture, and one plenoptic capture that was under-exposed by 2 f -stop. Its pixel
values are therefore a factor of 4 lower. By scaling this ground truth image by a factor of 4, it is
therefore possible to assess the quality of reconstruction, as shown in Figure 14. While the ground
truth image is scaled, and therefore contains significantly more noise, the bright parts in our image
are reconstructed with high fidelity.

Finally, note that plenoptic captures may simultaneously benefit from under- and over-exposure
correction in the same capture. Compare, for instance the results presented in Figures 1 and 10.

7.3 Limitations
Our algorithm generally finds good matching blocks, and with the aid of our graph-signal processing
approach, they help reconstruct pixels well. However, dependent on the dynamic range in the scene,
it may happen that the over-exposed pixels in the central view are also over-exposed in peripheral
views. In this case, our algorithm is not able to reconstruct over-exposed pixels, because the required
information is not present in any of the views. This is shown in the handle of the milk can in Figure 15,
although note that a large area of the milk can was successfully recovered. In such cases, standard
declipping methods or inpainting methods may be employed after our reconstruction algorithm is
applied.

Further, the method in its current form assumes that a Type 1 light field image is used with
near-zero aliasing in the views. In the presence of aliasing in the views, however, this approach might
somewhat limit the achievable resolution of refocused images in some refocusing planes. Although
left for future work, such cases could be caught by finding the corresponding patches using pattern
matching considering all the views to be reconstructed and by including the relative pixel disparities
in one integrated cost function.
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Fig. 12. Further results showing from left to right: the input image, our simple reconstruction, our
graph-based reconstruction, as well as the methods by Masood et. al. [39] and Abebe et. al. [1]. Note,
the horizontal lines indicate the pixel rows plotted in Figure 13.
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Fig. 13. Enhancement plots for each of the results shown in Figure 12. From left to right: our simple
reconstruction, our graph-based reconstruction, as well as the methods by Masood et. al. [39] and
Abebe et. al. [1]. On the horizontal axis is the pixel location along a scanline. The vertical axis shows
normalized pixel value. The values for the input images are shown as solid lines (one line for each
color channel) and never exceed a value of 1.0. The pixel values for the result images are plotted in
dashed lines (also one line for each color channel).
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Fig. 14. Comparison of our reconstructed center views (middle) against ground truth images (right).
The input images are shown on the left. Salient differences are encircled.A Circle is drawn on each
image to mark one modified region.

Fig. 15. Reconstruction of an input view (left) may fail if pixels in the peripheral views remain over-
exposed, as shown in the handle of the milk can (right).

8 CONCLUSIONS
We exploit the redundancy of plenoptic captures as well as the occurrence of vignetting to reconstruct
over- and under-exposed areas, without having to resort to heuristics. All reconstructed views may be
enhanced, producing less noise in dark areas and increasing the peak luminance. In bright areas, an
increase in dynamic range by a factor of around 4 is demonstrated, dependent on the camera settings.
This approaches the maximum achievable for our camera, which was measured to be a factor of
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around 6. This translates to a number of reconstructed pixels that is highly dependent on the scene
and its illumination, as evidenced in the Figures, albeit that on average a significant number of pixels
can be recovered.

Our method applies to all lenslet-based plenoptic cameras (including Lytro and Raytrix), and
comes only at the cost of a lightly increased pre-processing time.
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