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Graph-based Dequantization of Block-Compressed
Piecewise Smooth Images

Wei Hu, Student Member, IEEE, Gene Cheung, Senior Member, IEEE, and Masato Kazui, Member, IEEE

Abstract—Block-based image or video coding standards (e.g.
JPEG) compress an image lossily by quantizing transform coeffi-
cients of non-overlapping pixel blocks. If the chosen quantization
parameters (QP) are large, then hard decoding of a compressed
image—using indexed quantization bin centers as reconstructed
transform coefficients—can lead to unpleasant blocking artifacts.
Leveraging on recent advances in graph signal processing (GSP),
we propose a dequantization scheme specifically for piecewise
smooth (PWS) images: images with sharp object boundaries and
smooth interior surfaces. We first mathematically define a PWS
image as a low-frequency signal with respect to an inter-pixel
similarity graph with edges of weights 1 or 0. Using quantization
bin boundaries as constraints, we then jointly optimize the desired
graph-signal and the similarity graph in a unified framework. A
generalization to consider generalized piecewise smooth (GPWS)
images—where sharp object boundaries are replaced by transition
regions—is also proposed. Experimental results show that our
proposed scheme outperforms a state-of-the-art dequantization
method by 1 dB on average in PSNR.
Index Terms—Graph signal processing, image coding.

I. INTRODUCTION

B LOCK-BASED image or video compression standards
like JPEG1 first divide an image into non-overlapping

pixel blocks, project each block onto basis functions of a chosen
frequency domain such as discrete cosine transform (DCT), and
quantize the resulting transform coefficients for compression
gain. If the chosen quantization parameters (QP) are large, then
hard decoding of a compressed image at the decoder—using
indexed quantization bin centers as reconstructed transform
coefficients—can result in unpleasant blocking artifacts.
In contrast, soft decoding approaches [1]–[5] treat image

dequantization as an under-determined inverse problem: find
the most probable transform coefficients in a code block subject
to indexed quantization bin constraints, given suitably defined
signal priors. [1] assumes band-limitedness in the targeted
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Fig. 1. Examples of piecewise smooth (PWS) and generalized piecewise
smooth (GPWS) pixel patches. (a) PWS patch, (b) GPWS patch.

code block and performs projection on convex sets (POCS)
between quantization bin constraints and a band-limited sub-
space. The band-limited assumption is too strong and results
in over-smoothing, however. [2] assumes a total variation
(TV) prior, which performs well only for piecewise constant
functions. [3]–[5] assume a sparse signal model, where the
targeted block is approximated as a sparse combination of
atoms from an over-complete dictionary. Computing a sparse
code vector from a large unstructured dictionary, however, is
computationally intensive. There are also nonlocal methods
[6] that exploit self-similarity of pixel patches across different
spatial regions to remove blocking artifacts in a hard-decoded
image. The search for similar nonlocal patches is expensive in
computation and buffer space, however.
Leveraging on recent advances in graph signal processing

(GSP) [7], we propose a graph-signal smoothness prior for
soft decoding of JPEG compressed images; retrofitting our
algorithm to dequantize other block-compressed images is
straightforward. In particular, we focus on piecewise smooth
(PWS) images, where smooth textural regions are separated by
sharp discontinuities. See Fig. 1(a) for an example. PWS im-
ages include depth images, graphics images and sub-regions of
video frames overlaid with foreign language captions. Structure
of PWS pixel patches can be modeled using simple graphical
models—4-connected graphs with edge weights either 0 or
1 that reflect inter-pixel similarities [8]. Assuming that the
desired signal contains mostly low frequencies with respect
to a graph, we propose a unified framework that alternately
optimizes the graph (image structure) and the signal on top
of the graph (pixel patch) while satisfying the quantization
bin constraints. In particular, we show that the signal can be
optimized efficiently via quadratic programming, while the
graph can be optimized via a fast max-flow / min-cut algorithm
[9] in polynomial time. Moreover, unlike nonlocal methods
[6] our optimization is performed locally, thus amenable to
buffer-constrained hardware implementation.
Compared to recent graph-based denoising [10]–[13] and

dequantization works [4], we differ in two major ways. First,
unlike [4] that learns an over-complete dictionary for a sparse
signal prior that depends on training patches in natural images,
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Fig. 2. (Left) 4-connectivity graph for block. (Right) Dual graph .

we design an edge weight prior specifically for PWS images,
which does not require offline dictionary training and online
sparse vector search, lowering overall complexity. Second,
we jointly optimize both the graph-signal and the graph that
describes the signal kernel, while [4], [10]–[13] optimize the
signal assuming first that the appropriate graph can be deduced
from noisy observations or updated version of the signal. To
the best of our knowledge, we are the first in the graph-based
inverse imaging literature to explicitly include both the graph
and the graph-signal in the optimization objective.
We next generalize our formulation to consider also gener-

alized piecewise smooth (GPWS) images, where sharp object
boundaries are replaced by a transition region. See Fig. 1(b) for
an illustration. GPWS images include cartoon images, medical
images like X-ray and MRI, and saliency maps. We show that a
similar optimization algorithm can be used for GPWS images.
Experimental results show that our proposed scheme outper-
forms a state-of-the-art dequantization method [6] by 1 dB on
average in PSNR.

II. PROBLEM FORMULATION FOR PWS IMAGES

We first define the prior probability for edgeweights in a simi-
larity graph for a PWS pixel patch. We then define a smoothness
prior for graph-signals with respect to a given graph. We formu-
late a maximum a posteriori (MAP) estimation problem for the
desired PWS pixel patch. Finally, we describe a fast algorithm
to solve the formulated problem.

A. Graph Construction for PWS Pixel Patch
A graph is composed of a vertex set , an

edge set connecting vertices, and a weighted adjacency ma-
trix , where is the weight assigned to the edge connecting
vertices and . We build on a PWS pixel patch,

, as follows. We represent each pixel , ,
as a vertex in , and connect two vertices and with an
edge in iff the corresponding pixels and are adjacent
neighbors in the horizontal or vertical direction on the 2D grid.
This results in a 4-connectivity graph as shown in Fig. 2 (left).
Each edge weight reflects the similarity between the two con-
necting pixels (e.g., setting [10],
[11], [14] yields if the connecting pixels and have
similar intensities and ); we call the similarity graph.
Specifically for PWS images, adjacent pixels in smooth regions
are similar and we set the corresponding edge weights ,
and adjacent pixels across sharp boundaries are dissimilar and
we set .
We now define the prior probability of edge weights of a

similarity graph for a PWS pixel patch. We stack all edge

2For a 4-connectivity graph, there are edges.

weights2 in into a vector . We treat as another
graph-signal, and define it on a dual graph , where edges in
become nodes3 in , as shown in Fig. 2 (right). We then draw
links to connect nodes in that represent neighboring edges in
. Specifically, we draw a link of weight 1 between two nodes in
iff the two corresponding edges in share one same vertex

as an endpoint, or two endpoints of the corresponding edge of
one node are both one-hop neighbors of the endpoints of the
corresponding edge of the other node.
On , we define priors for both the AC and DC4 components

of to characterize piecewise smoothness. First, boundaries of
objects in a PWS image are typically contiguous, which means
that neighboring edge weights in original (nodes in dual )
are likely similar. We thus define the AC prior as the total vari-
ation (TV) of :

(1)

where is a difference matrix— being the number
of links in —that computes the difference in values between
each pair of connected nodes in . is a normalization factor
and is a parameter.
Second, since most regions are smooth in PWS images, most

edge weights are 1. Hence, we define the DC prior as

(2)

where is an all-one vector, is a normalization factor
and is a parameter.
The prior for is the product of AC and DC priors:

(3)

where is a normalization factor, and we constrain the feasible
space of each element to be (0 for sharp discontinu-
ities, and 1 for smooth regions).

B. Graph-Signal Smoothness Prior for PWS Images
We declare a pixel patch is PWS iff is smooth with respect

to a similarity graph with edge weights of probability
in (3). Mathematically, is smooth iff

(4)

where is a threshold of a small positive value, and means
two vertices and are one-hop neighbors in . In order to
satisfy (4), and must be similar for a large , but could
be dissimilar for a small .
We define the combinatorial graph Laplacian as

[15], where is the degree matrix—a diagonal matrix where
. As [16], (4)

can be concisely written as .
The prior distribution for given can now be written as

(5)

where is a normalization factor and is a parameter. We
refer to (5) as the conditional graph-signal smoothness prior of

3As a convention, we use terminologies “vertices” and “edges” for the orig-
inal graph , and “nodes” and “links” for the dual graph .

4“DC” (direct current) means the 0-frequency component of a signal , and
“AC” (alternating current) means the higher-frequency components.
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Fig. 3. A patch encloses a coding block in JPEG. The current patch
overlaps with previously optimized patches, and consistency of the overlapped
regions among these patches is enforced during optimization.

. Combining (3) and (5), we write the graph-signal smoothness
prior using the law of total probability:

(6)

C. MAP Estimation of PWS Images
As shown in Fig. 3, we operate on a processing

unit —a patch that encompasses a smaller (
) coding block ( block in JPEG) that was transformed

by the DCT matrix and quantized at the encoder. This is done
to remove blocking artifacts (inconsistent reconstructed signals
across block boundaries), as done in [4]. The DCT coefficients
of is written as , where is a matrix that
extracts from .
At the decoder, the received quantization bin centers and

quantization parameters together define the indexed quanti-
zation bins for coefficients . We
then pose a MAP estimation problem: given indexed quantiza-
tion bins , find the most probable signal ,

(7)

where is the likelihood term, and is the signal
prior (6) derived previously. In dequantization, likelihood takes
a simple form; it is 1 iff the block coefficients are inside the
indexed quantization bins, and 0 otherwise:

(8)

We can thus rewrite (7) as a sum of exponentials, where:

(9)

1) Problem Formulation: Solving (9) requires a summation
over multiple weight vectors each with edge weight prior

. Instead, we make the following approximation:

(10)

This approximation is good if the distribution is
concentrated around a single peak [14]. In our case, de-
cays quickly from the peak, as becomes large when
the structure of is inconsistent with in (5). Thus the approx-
imation is reasonable in our case.
Given the approximation in (10), we take the negative
—turning maximization to minimization—resulting in the

following problem formulation:

(11)

The last constraint is added to enforce local consistency in over-
lapped regions between and its neighboring patches

optimized in previous iterations, as shown in Fig. 3.
is a matrix that extracts the region of overlapped with , and

extracts the region of overlapped with . is a small
threshold.

D. Alternating Minimizing Algorithm
In order to solve (11) with two variables and representing

the signal and the graph respectively, we propose an alternating
minimizing algorithm to optimize one variable at a time while
the other is fixed. We first initialize using spectral clustering
[17]. Specifically, we divide a pre-processed into two seg-
ments via spectral clustering, and then assign weight 1 to edges
in each segment, and assign weight 0 to edges across the two
segments. Note that though the optimization is carried out on a

patch , we perform spectral clustering on a larger
patch that encloses , as better clustering results can be achieved
on a larger patch of larger variance.
We substitute the initialized into (11). Then the objective

with respect to is quadratic, and there remain one linear con-
straint and one quadratic constraint—this is a quadratic pro-
gramming problem that can be solved efficiently. Next, we fix
the optimized in (11) and update . The resulting objective is
convex with respect to and only the first discrete constraint
remains—this is a standard separation-deviation (SD) problem
and can be solved optimally using an efficient algorithm in [9]
in polynomial time. and are optimized alternately until
converges.

III. EXTENSION TO GENERALIZED PWS IMAGES

We extend the above problem formulation for PWS images to
GPWS images. As shown in Fig. 1, GPWS images differ from
PWS images in regions that separate two smooth regions: in-
stead of ideal sharp discontinuities in PWS images, GPWS im-
ages contain gradual transitions from one smooth region to an-
other. We thus change the AC prior probability of in ac-
cordingly: in the transition region weights may deviate from 1,
and neighboring weights are similar in a -norm sense. Neigh-
boring weights are connected nodes in as in Fig. 2(b). We
then define for GPWS images as

(12)
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TABLE I
PERFORMANCE COMPARISON IN PSNR (DB) AT

TABLE II
PERFORMANCE COMPARISON IN PSNR (DB) AT

where denotes nodes in a connected component in to
specify a transition region in a GPWS patch. Nodes not in are
in smooth regions with weight 1. computes the difference
between neighboring weights in . is a normalization factor
and is a parameter. We denote , and
formulate the dequantization problem for a GPWS patch as:

(13)

We optimize one variable at a time. When initializing , we di-
vide into segments via spectral clustering. The third seg-
ment is themost probable transition region . Then edge weights
in are not assigned 1 but exponential functions of the corre-
sponding inter-pixel intensity differences, while edge weights in
smooth segments are assigned 1. When and are fixed, is
optimized via quadratic programming. When and are fixed,
is optimized via convex programming. is then re-computed

via spectral clustering for this patch only. The procedure repeats
until convergence.

IV. EXPERIMENTATION

We first test our algorithm on five depth images: of size
, of size , of size ,
of size and of size .

The parameters are empirically assigned as , ,
, and . We compare against five methods:

1) hard decoding; 2) [2], the TV-based JPEG decom-
pression method; 3) [18], a recent sparsity-based restora-
tion algorithm for decompression, combining the TV prior with
sparsity; 4) [19], JPEG decompression with Total Gener-
alized Variation (TGV); and 5) algorithm [6], which is a
state-of-the-art algorithm for compression artifact reduction.
Table I and II list PSNR results of these approaches using

test images coded by a JPEG encoder with quality factor (QF)
15 and 35, respectively. Larger QF value means smaller quanti-

Fig. 4. Visual comparison among different dequantization methods. First row:
at ; Second row: at .

Fig. 5. The subjective quality comparison among different dequantization
methods for a GPWS image at .

TABLE III
PERFORMANCE COMPARISON IN PSNR (DB) AT

zation bins and thus better image quality. The bold numbers are
the best PSNR among competing schemes.
We observe that our method results in the best PSNR in most

cases. On average, we achieve 2.36 dB gain over , 1.12 dB
gain over , 1.62 dB gain over , 1.40 dB gain over
and 1.40 dB gain over . Note that , , and our
method are local methods while and are non-local
methods. Though non-local methods generally lead to better re-
sults than local methods, our algorithm still outperforms one
state-of-the-art nonlocal method .
Fig. 4 shows dequantized image regions. Unlike other

methods, our results reconstruct sharp edges noticeably well.
This is due to the effectiveness of our proposed graph-signal
smoothness prior.
We also test our extended method on GPWS images:

(printed text) of size , (animation)
of size and (foreign language caption) of size

. Table III lists PSNR results of different approaches
at . On average we achieve 2.59 dB gain over ,
0.31 dB gain over , 1.54 dB gain over , 1.40 dB gain
over , and 2.71 dB gain over our proposed method for
PWS images. Fig. 5 shows our proposed method well preserves
the transition regions in .
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