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Abstract— Piecewise smooth (PWS) images (e.g., depth maps
or animation images) contain unique signal characteristics such
as sharp object boundaries and slowly varying interior surfaces.
Leveraging on recent advances in graph signal processing, in
this paper, we propose to compress the PWS images using
suitable graph Fourier transforms (GFTs) to minimize the
total signal representation cost of each pixel block, considering
both the sparsity of the signal’s transform coefficients and the
compactness of transform description. Unlike fixed transforms,
such as the discrete cosine transform, we can adapt GFT
to a particular class of pixel blocks. In particular, we select
one among a defined search space of GFTs to minimize total
representation cost via our proposed algorithms, leveraging on
graph optimization techniques, such as spectral clustering and
minimum graph cuts. Furthermore, for practical implementation
of GFT, we introduce two techniques to reduce computation
complexity. First, at the encoder, we low-pass filter and
downsample a high-resolution (HR) pixel block to obtain a low-
resolution (LR) one, so that a LR-GFT can be employed. At the
decoder, upsampling and interpolation are performed adaptively
along HR boundaries coded using arithmetic edge coding, so
that sharp object boundaries can be well preserved. Second,
instead of computing GFT from a graph in real-time via eigen-
decomposition, the most popular LR-GFTs are pre-computed
and stored in a table for lookup during encoding and decoding.
Using depth maps and computer-graphics images as examples of
the PWS images, experimental results show that our proposed
multiresolution-GFT scheme outperforms H.264 intra by 6.8 dB
on average in peak signal-to-noise ratio at the same bit rate.

Index Terms— Image compression, graph Fourier transform,
piecewise smooth images.

I. INTRODUCTION

APOPULAR approach to image compression is transform
coding [1]: an image is first divided into non-overlapping

blocks of pixels, with each block projected to a chosen
transform domain, and the resulting transform coefficients
are quantized, entropy-coded and transmitted to the decoder.
While one can apply a transform to an entire image,
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most compression codecs (e.g., JPEG,1 H.264 [2]) employ
transform coding block-by-block. This is because block-based
transforms can adapt to the non-stationary statistics of natural
images and are more amenable to hardware implementation.
We focus on block-based transform coding of images in
this paper.

A key to good compression performance is to select a
transform that promotes sparsity in representation; i.e., upon
signal transformation there remain few non-zero transform
coefficients, resulting in coding gain. For a vector
following a known correlation model (statistically described by
a covariance matrix), the Karhunen-Loève Transform (KLT)
is the optimal transform in terms of decorrelating components
of the vector2 [7]. In order to use the KLT for coding of
non-overlapping pixel blocks in an image, one would first
adaptively classify each block into one of several statistical
classes, then apply the KLT corresponding to the identified
statistical class for decorrelation. However, description of
the identified statistical class for the coded block (and hence
the transformation employed) must be conveyed to the
decoder for correct transform decoding. Given this transform
description overhead, how to suitably select a good set of
statistical classes for KLT transform coding to achieve good
overall performance—in terms of both sparsity of signal
representation and compactness in transform description—is
the challenge.

The Discrete Cosine Transform (DCT), on the other hand,
is a fixed transform with no signal adaptation, thus it requires
no description overhead. It is equivalent to the KLT for the
single statistical class where the correlation between each pair
of adjacent pixels is assumed to be 1. The DCT is widely
used in image compression systems, such as the JPEG and
H.26x codecs [8]. However, the assumption that the pixel
correlation tends to 1 is not always true. In particular, adjacent
pixels across sharp boundaries clearly have correlation much
smaller than one. This means that for blocks that straddle
sharp boundaries, the DCT will lead to non-sparse signal
representation, resulting in poor coding performance.

In order to achieve a balance between signal representation
and transform description, we propose to use graph Fourier
transforms (GFTs) [9] for transform coding of images. GFT is

1Available at http://www.jpeg.org/jpeg/
2Optimality in decorrelating a vector statistically, however, does not nec-

essarily imply optimality in transform coding. It is shown that the KLT is
optimal if the input vector is jointly Gaussian or a mixture of Gaussians, for
variable-rate high-resolution coding [3]–[5]. For other sources, the KLT may
yield sub-optimal performance [6].
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Fig. 1. Examples of PWS images: (a) a depth map of an image sequence
Teddy; (b) a computer-graphics image Dude.

a matrix of eigenvectors of the graph Laplacian matrix of
a constructed graph. For transform coding, the graph nodes
represent pixels in a coding block, and each edge weight rep-
resents correlation between two connected (adjacent) pixels.
Given a defined search space of graphs that connect pixels in
a given block, an “optimal” graph (and hence corresponding
“optimal” GFT) minimizes the total signal representation
cost, evaluating both the sparsity of the signal’s transform
coefficients and the compactness of transform description.

In particular, we propose to use GFTs for transform
coding of a class of images—piecewise smooth (PWS) images.
PWS images consist of sharp boundaries and smooth interior
surfaces. They have recently received renewed attention
in the image processing community, due to advances in
depth sensing technologies, such as Microsoft Kinect, that
capture fairly accurate depth maps in real-time. A depth
image is a per-pixel map that measures the physical distance
between objects in the 3D scene and the capturing camera.
Because textural contents of objects are not captured,
depth images are smooth within an object’s surface, and
hence PWS. Depth maps can be used for advanced image
processing tasks, such as foreground/background segmen-
tation, 3D motion estimation [10], depth-image-based ren-
dering (DIBR) [11], etc. Other examples of PWS images
include animation images, magnetic resonance imaging (MRI)
images, dense motion fields [12], computer-graphics images,
etc. See Fig. 1 for examples of PWS images. Unique
signal characteristics of sharp boundaries and smooth
interior surfaces in PWS images mean that conventional
coding schemes designed for natural images such as JPEG
do not offer good compression performance. We focus on the
compression of PWS images in this paper.

Our proposed GFT-based coding scheme for PWS images,
called multi-resolution GFT (MR-GFT), has three main
contributions. First, we consider a large space of possible
graphs, including unweighted graphs and weighted graphs,
to exploit the generality afforded by GFT. Further, we define
an optimality criterion of GFT for compression that aims to
minimize the total representation cost, including transform
domain representation and transform description. To enable
low GFT description cost, we restrict our feasible space of
GFTs to graphs with simple connectivity and a small discrete
set of edge weights. Discrete edge weights are derived from
a statistical analysis under a model specifically designed to
characterize PWS signals, for which we demonstrate that the
derived GFT approximates the KLT.

Second, given a defined search space of graphs
(or equivalently GFTs), we search for the optimal GFT
for each pixel block with our proposed efficient algorithms.
In particular, for ease of optimization we divide the search
space into two subspaces—GFTs on weighted graphs and
GFTs on unweighted graphs. For GFTs on weighted graphs,
we formulate a separation-deviation (SD) problem and
solve it using a known efficient graph cut algorithm [13].
Meanwhile, we search for good GFTs on unweighted graphs
via a greedy algorithm, leveraging on a graph partitioning
technique based on spectral clustering [14].

Third, for practical implementation, we design two tech-
niques to reduce computation complexity. In the first
technique, we propose a multi-resolution (MR) approach,
where detected object boundaries are encoded in the original
high resolution (HR), and smooth surfaces are low-pass-
filtered and down-sampled to a low-resolution (LR) one,
before performing LR GFT for a sparse transform domain
representation. At the decoder, after recovering the LR block
via inverse GFT, we perform up-sampling and interpolation
adaptively along the encoded HR boundaries, so that sharp
object boundaries are well preserved. The key insight is
that on average PWS signals suffer very little energy loss
during edge-adaptive low-pass filtering, which enables the
low-pass filtering and down-sampling of PWS images. This
MR technique also enables us to perform GFT on large
blocks, resulting in large coding gain. In the second technique,
instead of computing GFT from a graph in real-time via
eigen-decomposition of the graph Laplacian matrix, we
pre-compute and store the most popular LR-GFTs in a table
for simple lookup during actual encoding and decoding.
Further, we exploit graph isomorphism to reduce the number
of GFTs required for storage to a manageable size. Using
depth maps and graphics images as examples of PWS images,
experimental results show that our proposed MR-GFT scheme
outperforms H.264 intra (with intra prediction used) by 6.8 dB
on average in peak signal-to-noise ratio (PSNR). Further, when
applying compressed depth maps to DIBR, we achieve 2.2 dB
gain on average in synthesized view PSNR compared to H.264
intra.

The outline of the paper is as follows. We first discuss
related work in Section II. We then overview our proposed
MR-GFT coding system in Section III and review the
definition of GFT in Section IV. Next, we present a
mathematical analysis of optimal GFTs in Section V. The
problem formulations and algorithms for optimal GFTs on
two types of graph supports are discussed in Section VI.
We then outline the detailed implementation in Section VII.
Finally, experimental results and conclusions are presented
in Section VIII and Section IX, respectively.

II. RELATED WORK

The field of PWS image compression encompasses diverse
source coding schemes, ranging from segmentation-based
techniques to popular transform approaches. In general, they
feature efficient representations of the geometric structures in
PWS images. We discuss them in order as follows.
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Segmentation-based compression schemes segment the
image into homogeneous partitions followed by coding of
each partition. One of the most popular is quadtree-based
compression [15]–[17], which recursively divides the image
into simple geometric regions. [15] designs the quadtree seg-
mentation in an optimal Rate-Distortion (RD) framework and
then approximates each segment using a polynomial model
separated by a linear boundary. The direction of the boundary,
however, is chosen from a given limited discrete set, which
may not be sufficiently descriptive to describe arbitrarily
shaped boundaries. In contrast, our proposed MR-GFT
can represent any boundary accurately and efficiently via
arithmetic edge coding (AEC) of HR edges [18], [19].
In [16] depth maps are modeled by piecewise-linear functions
(called platelets) separated by straight lines, which are
adaptive to each subdivision of the quadtree with variable
sizes in a global RD tradeoff. However, this representation has
non-vanishing approximation error, since depth maps are not
exactly piecewise linear. In contrast, our proposed MR-GFT
can accurately represent PWS images in GFT domain.

Transform approaches are also designed for PWS image
compression. An ensemble of transforms exploit the
geometry of PWS images, such as the wavelet-domain
compression [20], [21], curvelet [22], and contourlet [23].
However, they are all deployed over the entire image, and
so are not easily amenable to block-based processing for
hardware-friendly implementation. In contrast, our proposed
MR-GFT is a block-based transform coding approach.

GFT is first used for depth map coding in [24], which
empirically demonstrated that using GFT for transform coding
of a depth pixel block with sharp boundaries, one can achieve
a sparser transform domain representation than with DCT.
(Sparsity in representation of depth block in GFT domain is
also used as a signal prior in depth image denoising in [25].)
However, [24] has the following shortcomings. First, given
an input pixel block, [24] considers only a single variant of
GFT based on an unweighted graph, while we consider a much
larger space of possible graphs, including both unweighted and
weighted graphs. Second, graphs are deduced directly from
detected boundaries in [24], thus it is not clear if the construc-
tion of graphs is optimal in any sense. In contrast, we formally
define an optimality criterion that reflects representation cost
and propose efficient algorithms to search for graphs that lead
to optimal GFTs. Finally, for each

√
N ×√

N pixel block, [24]
requires real-time eigen-decomposition of an N × N graph
Laplacian matrix to derive basis vectors at both the encoder
and decoder. This large computation burden also means that
GFT cannot be practically performed for larger blocks in PWS
images, which will otherwise result in larger coding gain.
To address this issue, we design two techniques to reduce
computation complexity, namely, the MR scheme and table
lookup. Experimental results show that we achieve 5.9 dB
gain on average in PSNR over [24].

Drawing a connection between GFT and a graphical
statistical model called Gaussian Markov Random
Field (GMRF), [26] provides a theoretical analysis on
the optimality of GFT in terms of decorrelating the input
vector under the GMRF model. Unlike [26], we select a

Fig. 2. MR-GFT coding system for PWS images.

GFT for each coding block by choosing from a set of
candidate GFTs using an optimality criterion that considers
both the sparsity of the GFT domain signal representation
and the compactness of the transform description.

Image compression specifically tailored for depth maps,
a representative class of PWS images, has been studied
extensively in recent years. Beyond the class of techniques
that exploit the piecewise smooth characteristics of depth
signals [16], [17], [21] as previously discussed, another
class of depth coding techniques are tailored specifically
for virtual view rendering via DIBR [27]–[32]. Specifically,
they optimize depth coding by considering the impact
of depth errors due to lossy image compression on the
DIBR-synthesized views. [27] and [28] utilize synthesized
view distortion as metric for depth coding optimization, such
as mode selection. [29] and [30] use synthesized view distor-
tion as objective for transform domain sparsification (TDS).
In [31], view synthesis is incorporated for improved depth
prediction in a RD optimized framework. [32] proposes
down-sampling/up-sampling techniques in an optimized fash-
ion by incorporating the effect of depth re-sampling on view
synthesis quality. In contrast, since we focus on compression
of general PWS images, we do not consider synthesized
view distortion as an optimization metric. Nevertheless, our
proposed method implicitly leads to good synthesized views
via edge-preserving of depth maps, as shown in Section VIII.

III. MULTI-RESOLUTION GRAPH FOURIER

TRANSFORM CODING SYSTEM

We first provide an overview of our proposed MR-GFT
coding system for compression of PWS images, shown
in Fig. 2. Given a PWS image, we discuss the encoding and
decoding procedures as follows.

A. Encoder

At the encoder, we first detect prominent boundaries
(large inter-pixel intensity difference) in the HR image via
hard thresholding of image gradients. The threshold is set
based on the mean and variance of the image, so that
the boundary detection is adaptive to the image statistics.
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We encode HR boundaries losslessly for the adaptive intra
prediction and interpolation at the decoder (discussed later),
using AEC [18], [19]. We apply AEC for the entire image,
which avoids initialization for each block and efficiently
encodes long continuous boundaries in the image. Then for
each K

√
N × K

√
N target pixel block considering a down-

sampling factor K = 2, we execute the following three steps.
First, we perform edge-aware intra prediction as proposed

in [33]. Different from the intra prediction in H.264 [2],
edge-aware intra prediction efficiently reduces the energy
of the prediction error by predicting within the confine of
detected HR boundaries, thus reducing bits required for coding
of the residual signal.

Second, we try two types of transforms for transform
coding of the residual block: i) fixed DCT on the original HR
residual block (HR-DCT), ii) a pre-computed set of LR GFT
(LR-GFT) on the down-sampled LR residual block (including
LR weighted GFT and LR unweighted GFT, as discussed
in Section V). We then choose the one transform with the best
RD performance. Before transform coding using LR-GFT,
however, we first adaptively low-pass-filter and down-sample
the K

√
N × K

√
N block uniformly to a

√
N × √

N block.
Low-pass filtering is first used to avoid aliasing caused by
down-sampling. We propose an edge-adaptive low-pass filter
in the pixel domain for the preservation of sharp boundaries.
Specifically, a pixel is low-pass-filtered by taking average of
its neighbors on the same side of HR boundaries within a
(2K − 1) × (2K − 1) window centering at the to-be-filtered
pixel. The advantage of this edge-adaptive low-pass filtering
is that filtering across arbitrary-shape boundaries will not
occur, so pixels across boundaries will not contaminate each
other through filtering.

For the implementation of the HR-DCT and LR-GFT, we
pre-compute the optimal transforms (discussed in Section VI)
and store them in a lookup table (discussed in Section VII)
a priori. During coding, we try each one and choose the one
with the best RD performance. The two types of transforms,
HR-DCT and LR-GFT, are employed to adapt to different
block characteristics. HR-DCT is suitable for blocks where
edge-adaptive low-pass filtering would result in non-negligible
energy loss. If very little energy is lost during low-pass
filtering, LR-GFT would result in a larger coding gain. Note
that if a given block is smooth, the LR-GFT will default to
the DCT in LR, and would generally result in a larger gain
than HR-DCT due to down-sampling (the rates of transform
indices for both, i.e., the transform description overhead, are
the same in this case).

Third, after the RD-optimal transform is chosen from the
two transform candidates, we quantize and entropy-encode the
resulting transform coefficients for transmission to the decoder.
The transform index identifying the chosen transform is also
encoded, so that proper inverse transform can be performed at
the decoder.

B. Decoder

At the decoder, we first perform inverse quantization and
inverse transform for the reconstruction of the residual block.

The transform index is used to identify the transform chosen
at the encoder for transform coding.

Secondly, if LR-GFT is employed, we up-sample the recon-
structed

√
N×√

N LR residual block to the original resolution
K

√
N×K

√
N , and then fill in missing pixels via our proposed

image-based edge-adaptive interpolation [34], where a pixel x
is interpolated by taking average of its neighboring pixels on
the same side of boundaries within a (2K − 1) × (2K − 1)
window centering at pixel x .

Finally, the K
√

N ×K
√

N block is reconstructed by adding
the intra predictor to the residual block.

IV. GRAPH FOURIER TRANSFORM FOR IMAGES

Before we proceed to problem formulation and algorithms
for optimal GFTs, we first review the basics of GFT.

A graph G = {V, E,W} consists of a finite set of vertices V
with cardinality |V| = N , a set of edges E connecting vertices,
and a weighted adjacency matrix W. W is a real N×N matrix,
where Wi, j is the weight assigned to the edge (i, j) connecting
vertices i and j . We consider here only undirected graphs,
which correspond to symmetric weighted adjacency matrices,
i.e., Wi, j = W j,i . We also assume weights are non-negative,
i.e., Wi, j ≥ 0.

While there exist different variants of Laplacian matrices,
we are interested in the unnormalized combinatorial graph
Laplacian in this work, which is defined as L := D − W,
where D is the degree matrix—a diagonal matrix whose i th
diagonal element is the sum of all elements in the i th row
of W, i.e., Di,i = ∑N

j=1 Wi, j . Since the Laplacian matrix is
a real symmetric matrix, it admits a set of real eigenvalues
{λl}l=0,1,...,N−1 with a complete set of orthonormal eigenvec-
tors {ψl}l=0,1,...,N−1, i.e., Lψl = λlψl , for l = 0, 1, . . . , N −1.
We employ this Laplacian matrix for two reasons.

First, because elements in each row of L sum to zero
by construction, 0 is guaranteed to be an eigenvalue with
[1 . . .1]T as the corresponding eigenvector. This means a
frequency interpretation of GFT, where the eigenvalues λl ’s
are the graph frequencies, will always have a DC component,
which is beneficial for the compression of PWS images where
most regions are smooth.

Second, GFT defaults to the well known DCT when
defined for a line graph (corresponding to the 1D DCT) or a
4-connectivity graph (2D DCT) with all edge weights equal
to 1 [26]. That means GFT is at least as good as the DCT in
sparse signal representation if the weights are chosen in this
way. Due to the above two desirable properties, we use the
unnormalized Laplacian matrix in our definition of GFT.

We note that the graph Laplacian can be used to describe
the total variation of the signal with respect to the graph; i.e.,
for any signal x ∈ R

N residing on the vertices of a graph with
the graph Laplacian L, we can write [35]

xTLx = 1

2

N∑

i=1

N∑

j=1

Wi, j (xi − x j )
2. (1)

xTLx is small when x has similar values at each pair of
vertices i and j connected by an edge, or when the weight
Wi, j is small for an edge connecting i and j with dissimilar
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Fig. 3. An example of constructing GFT from a 2 × 2 pixel block.
The vertical contour separates pixel 1 and 2 from pixel 3 and 4, and a
graph is constructed by connecting pixels on each side of the contour. The
corresponding adjacency matrix W, degree matrix D, Laplacian matrix L as
well as the computed GFT U are shown on the right.

values. Thus, a signal is smooth (mostly low-frequency com-
ponents) with respect to a graph if the edge weights capture
the similarity of connected pixels in the signal. Since xTLx
is small if a signal is smooth on the graph (thus a sparse
representation in the GFT domain), we will use xTLx to select
graphs that lead to good compression results in later sections.
In particular, we will discuss how we use (1) as the rate proxy
of transform coefficients during the search for optimal GFTs
in Section VI.

The eigenvectors {ψl}l=0,1,...,N−1 of the Laplacian matrix
are then used to define the GFT. Formally, for any signal
x ∈ R

N residing on the vertices of G, its GFT x̂ ∈ R
N is

defined in [9] as

x̂(l) =<ψl , x>=
N∑

n=1

ψ∗
l (n)x(n), l = 0, 1, . . . , N − 1.

(2)

The inverse GFT follows as

x(n) =
N−1∑

l=0

x̂(l)ψl (n), n = 1, 2, . . . , N. (3)

Having defined the GFT, we give an example of how to
construct a GFT given an unweighted graph defined for a pixel
block. Given a

√
N ×√

N pixel block, we first treat each pixel
in the block as a vertex in a graph G and connect it to its
four immediate neighbors, resulting in a 4-connectivity graph.
See Fig. 3 for an illustration. Second, if there is a large
discrepancy in values between two neighboring pixels, we
eliminate their connection. Given the connectivity graph, we
can define the adjacency matrix W, where Wi, j = W j,i = 1
if pixel positions i and j are connected, and 0 otherwise.
The degree matrix D can then be computed. In the third step,
using computed W and D, we compute the graph Laplacian
matrix L = D − W. We then stack pixels in the

√
N × √

N
patch into a length-N vector x and compute the GFT
according to (2).

V. OPTIMAL GRAPH FOURIER TRANSFORMS

FOR PIECEWISE SMOOTH IMAGES

We now define a notion of optimality of GFT for
compression of PWS images. Towards a formal definition of
an optimization problem, we then define the search space for

GFT as a discrete set of graph supports with edge weights
drawn from a small discrete set. The weights are later derived
assuming a specific statistical model for PWS images, where
we demonstrate that the derived GFT approximates the KLT
under this model.

A. Optimality Definition for Graph Fourier Transforms

In lossy image compression, different coding systems are
compared based on their RD performance, which describes
the trade-off between the coding rate and total induced
distortion. Specifically, a typical system design seeks to
minimize a weighted sum of rate and distortion for chosen
weighting parameters. However, assuming high bit rate, [36]
shows that a uniform quantizer yields the following expected
distortion:

D = Nq2

12
, (4)

where q is the quantization step size employed for each
coefficient, and N is the toal number of coefficients, which
is the same for different orthogonal transforms. This indicates
that the expected distortion does not change when considering
different transforms under the same assumptions.

Hence, we only need to consider the total coding rate. Given
a pixel block x ∈ R

N, the GFT representation derived from the
graph G = {V, E,W} constructed on x has two representation
costs: i) the cost of transform coefficient vector α denoted
by Rα(x,W), and ii) the cost of transform description T
denoted by RT (W). We thus arrive at the following definition
of optimality for GFTs:

Definition: For a given image block x ∈ R
N under fixed

uniform quantization at high bit rate, an optimal GFT is the
one that minimizes the total rate, i.e.:

min
W

Rα(x,W)+ RT (W)

s.t. Wi, j ∈ C ∀ i, j ∈ V (5)

where C is the feasible set of edge weights.
Note that while an edge weight could in general take on any

non-negative real value, we restrict weights to a small discrete
set C in order to enable low description cost RT for GFT. This
is further discussed next.

B. Definition of Search Space for GFTs

To lower the description cost RT for GFT in optimiza-
tion (5), instead of a full graph we assume a simpler
4-connectivity graph, where each vertex is only connected
to its four adjacent neighbors. Further, we view pixels that
are neighbors in the 4-connectivity graph as random vari-
ables, and consider a discrete set of possible weights to be
chosen for each edge connecting two pixels. These weights
correspond to three representative classes of the correlation
between two pixels: 1) strong correlation between the pixels,
which models pixel pairs occurring in smooth regions of the
foreground/background; 2) zero correlation between the two
pixels, occurring when they straddle sharp boundaries between
the foreground and background; and 3) weak correlation
between the pixels that correspond to distinctly different parts
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Fig. 4. An intuitive illustration of how different transforms adapt to pixel
blocks with different pixel correlations in the depth map of Ballet.

of the same foreground/background object. See Fig. 4 for
an illustration. Correspondingly, the weights are assigned to
be C = {1, 0, c}, where c is a carefully chosen real value
between 0 and 1 (to be formally derived next).

Having defined the edge weight set, for ease of computation
we further divide the optimization problem (5) into two
sub-problems with two corresponding non-overlapping GFT
search spaces:

• Unweighted GFT (UGFT), with C = {1, 0} for blocks
that can be well described by pixel pairs with strong and
zero correlations only; and

• Weighted GFT (WGFT), with C = {1, c} for blocks that
can be well described by pixel pairs with strong and weak
correlations only.

If a block can be well described by pixel pairs with strong
correlation only (i.e., a smooth block), then the GFT defaults
to the DCT. See Fig. 4 for an illustration. In a nutshell, the
WGFT considers only graphs that describe a single connected
component (i.e., only one DC coefficient in any WGFT
representation of the signal). The UGFT considers graphs of
multiple connected components, where each component is
connected by edges with weight 1. (A connected component
with a pair of disconnected neighboring pixels appears
rarely in practice, and thus is not considered in the UGFT
optimization.) Both search spaces are searched for a given
input coding block for the best possible signal representation.
The rationale for this division is twofold. First, if the coding
block is sufficiently small, then the likelihood of a block
containing pixel pairs with all the three classes of correlations
is very small. Second, division into two independent searches
for the UGFT and WGFT leads to efficient search algorithms,
which will be presented in Section VI.

The key question now is: what is the most suitable value
of c, one that correctly models weak correlation in the third
class of pixel pairs, so that an optimal GFT in the WGFT
search space has the best possible performance? We next
derive the optimal c from statistical analysis under a model
designed for PWS signals, where we demonstrate that the
derived GFT approximates the KLT for the corresponding
class of signals.

C. Derivation of Optimal Edge Weights for Weak Correlation

For simplicity, we consider the derivation of the optimal
edge weight c in one dimension. We note, however, that
the optimality of our derived edge weight c—by extension
the optimality of the corresponding GFT—carries over to the
more general 2D setting where the locations of smooth and
weak transition regions S and P are known deterministically,
and the statistics of the random variables involved in the model
are known probabilistically.

Given the unique characteristics of PWS images, we
assume a piecewise first-order autoregressive process
x = [x1, . . . , xN ]T with independent and identically
distributed (i.i.d.) standard normal noise ek ∼ N (0, 1),
k = 1, . . . , N [37]:

xk =

⎧
⎪⎨

⎪⎩

η, k = 1

xk−1 + ek, 1 < k ≤ N, [k − 1, k] ∈ S
xk−1 + g + ek, 1 < k ≤ N, [k − 1, k] ∈ P

(6)

where we assume the first variable x1 to be η ∼ N (0, σ 2
1 ).

In the given smooth region S, xk is assumed to be the sum
of xk−1 and a standard normal noise, while across the known
weak transition region P (e.g., from one smooth region of
the foreground to another, as shown in Fig. 4), xk is modeled
as the sum of xk−1, a random gap g ∼ N (mg, σ

2
g ), and a

standard normal noise.
Further, we assume there exists only one weak transition

in a code block. Since experimentally we use a sufficiently
small block size, it is very likely to have at most one weak
transition in a block in each dimension. Assuming the only
weak transition exists between xk−1 and xk , then (6) can be
expanded as:

x1 = η

x2 − x1 = e2

· · ·
xk − xk−1 = g + ek

· · ·
xN − xN−1 = eN (7)

and further written into the matrix form:

Fx = b, (8)

where

F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
−1 1 0 0 0 0

0
. . .

. . . 0 0 0
0 0 −1 1 0 0

0 0 0
. . .

. . . 0
0 0 0 0 −1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

b =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
e2
...

ek
...

eN

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

η
0
...
g
...
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(9)
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Since F is invertible with

F−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0

1 1 0 · · · 0

1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (10)

we have

x = F−1b. (11)

In order to approximate the optimal decorrelation property
of the KLT for a particular ensemble of 1D signals as x under
our specific model, we first compute the covariance matrix
of x. Assuming μ = E[x], we have

C = E[(x − μ)(x − μ)T ]
= E[xxT ] − μμT

= E[F−1bbT (FT )−1] − μμT

= F−1 E[bbT ](FT )−1 − μμT, (12)

where μ takes the form

μi =
{

0, 1 ≤ i < k

mg, k ≤ i ≤ N
(13)

Further computation gives

E[bbT ]

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ 2
1 0 · · · 0 · · · 0
0 1 · · · 0 · · · 0

. . .

0 0 · · · 1 0 · · · 0
0 0 · · · 0 σ 2

g + m2
g + 1 0 · · · 0

0 0 · · · 0 0 1 · · · 0
. . .

0 0 · · · 0 0 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)

Finally C is computed to be (15), as shown at the botton
of this page.

In order to relate the KLT to GFT, we consider the
corresponding precision matrix Q, i.e., the inverse of C.

Fig. 5. A 1D graph model.

Q computes to a tridiagonal matrix:

Q = C−1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 + 1
σ 2

1
−1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

σ 2
g +1

+ 1 − 1
σ 2

g +1

− 1
σ 2

g +1
1

σ 2
g +1

+ 1 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(16)

The first element 1+ 1
σ 2

1
is close to 1, since the variance σ 2

1

of the first pixel (in the absence of any other information)
tends to be very large. Then for the 2-connectivity graph
in Fig. 5, if we assign Wk−1,k = 1

σ 2
g +1

and all the other edge

weights 1, Q is approximately equivalent to the combinatorial
Laplacian matrix L from its definition in Section IV. Since
Q shares the same set of eigenvectors with C [26], i.e., the
basis vectors of the KLT, the derived GFT is approximately
the KLT for the class of signals with the covariance matrix C
defined as in (15).

Hence, the optimal edge weight for weak correlation that
leads to the decorrelation GFT is

c = Wk−1,k = 1

σ 2
g + 1

. (17)

In practice, we estimate σ 2
g from collected pixel pairs of weak

correlation from training images. Specifically, we classify pixel
pairs with similar weak correlation based on the discontinuity
magnitude, and then compute the sample variance of each class
of pixel pairs as the estimation of σ 2

g .
To summarize, an optimal graph—one that leads to a GFT

that approximates the KLT—is one with edge weights 1 except

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

σ 2
1 σ 2

1 σ 2
1 · · · σ 2

1 σ 2
1 · · · σ 2

1
...

...
...

...
...

...

σ 2
1 σ 2

1 + 1 σ 2
1 + 2 · · · σ 2

1 + k − 2 σ 2
1 + k − 2 · · · σ 2

1 + k − 2

σ 2
1 σ 2

1 + 1 σ 2
1 + 2 · · · σ 2

1 + σ 2
g + k − 1 σ 2

1 + σ 2
g + k − 1 · · · σ 2

1 + σ 2
g + k − 1

σ 2
1 σ 2

1 + 1 σ 2
1 + 2 · · · σ 2

1 + σ 2
g + k − 1 σ 2

1 + σ 2
g + k · · · σ 2

1 + σ 2
g + k

...
...

...
...

...
...

σ 2
1 σ 2

1 + 1 σ 2
1 + 2 · · · σ 2

1 + σ 2
g + k − 1 σ 2

1 + σ 2
g + k · · · σ 2

1 + σ 2
g + N − 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)
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the weight (17) of the edge that connects two pixels in the
transition region P .

VI. ADAPTIVE SELECTION OF GRAPH

FOURIER TRANSFORMS

Having derived the optimal edge weight c for weakly
correlated pixel pair in a coding block—and by extension
the optimal WGFT for decorrelation, ideally one can simply
use that optimal WGFT for transform coding. However, this
does not account for the cost of transform description RT

in (5). To account for both the signal representation cost in
the GFT domain and the desription cost of the chosen GFT,
as discussed in Section V, we search for the optimal GFT
that minimizes (5), and further divide the search space into
two subspaces: 1) WGFT on weighted and connected graphs,
and 2) UGFT on unweighted and disconnected graphs. In this
section we present the respective problem formulations and
algorithms in the two subspaces in detail.

A. Weighted Graph Fourier Transform

The WGFT is derived from a weighted and connected graph
G = {V, E,W}, where the feasible weight set is C = {1, c}. For
ease of optimization, we first propose plausible proxies for the
two rate terms in (5), i.e., the rates for transform coefficients
and transform description. Then we cast the optimization
problem of WGFT as a separation-deviation (SD) problem,
in order to leverage on the well known and efficient algorithm
developed for the SD problem in [13].

1) Rate Proxy of Transform Coefficients: Transform coef-
ficients consist of DC and AC coefficients. Since the WGFT
is constructed on a connected graph (i.e., only one connected
component in the graph), the zero eigenvalue is of multiplicity
one, and each WGFT produces only one DC coefficient for
a given block x. The cost of DC coefficients of the WGFT
is thus the same. We then approximate the cost of quantized
AC coefficients (corresponding to non-zero eigenvalues), for
a given quantization step size q and without consideration of
rounding for simplicity, as follows:

xTLx/q2 = xT (

N−1∑

l=0

λlψlψl
T )x/q2

=
N−1∑

l=0

λl(xTψl )(ψl
T x)/q2

=
N−1∑

l=0

λl(αl/q)
2, (18)

where αl , l = 1, . . . , N − 1, is the l-th transform coefficient.
In words, xTLx/q2 is an eigenvalue-weighted sum of squared
quantized transform coefficients. This also means that the DC
coefficient is not reflected in (18). By minimizing (18), we
suppress high-frequency coefficients. Recall that xTLx can
also be written in the form in (1) in terms of edge weights
and adjacent pixel differences. We thus propose the following

Fig. 6. An illustration for converting edges in original graph to vertices in
the dual graph for SD formulation.

proxy for the cost of quantized AC coefficients:

Rα(x,W) = 1

2

N∑

i=1

N∑

j=1

Wi, j (xi − x j )
2/q2

= 1

2
ρ

N∑

i=1

N∑

j=1

Wi, j (xi − x j )
2, (19)

where ρ = 1/q2. We note that [38] proposed to use (19) as the
cost function for all GFT coefficients, even for disconnected
graphs. As discussed, (19) excludes the cost of DC coeffi-
cients, which means that (19) fails to capture the variable cost
of DC coefficients in cases where the graph contains a variable
number of connected components. In our WGFT search space,
we avoid this problem since our search space contains only
graphs that have a single connected component, because 0 is
excluded as a possible choice for an edge weight. Note that
without this restriction, the all zero connection graph would
be chosen as the optimal choice, which obviously does not
lead to an optimal GFT in general.

Further, for ease of later algorithm development, we convert
edges in the graph G to nodes in a dual graph3 Gd, and define
the AC coefficient cost (19) on Gd instead. More specifically,
we map each edge e that connects vertices v1(e) and v2(e)
in G to a node4 vd

e in Gd, and assign node vd
e with the value

We = Wv1(e),v2(e). A link is drawn between two nodes in
the dual graph if the two corresponding edges in the original
graph share the same vertex as an endpoint, or traverse the
same contour in the coding block. See Fig. 6 for an example
of the conversion.

Given the node set Vd in the dual graph, (19) can now be
rewritten as

Rα(x,W) = ρ
∑

e∈Vd

We (xv1(e) − xv2(e))
2, (20)

where a label We assigned to node e in the dual graph Gd is
the edge weight Wv1(e),v2(e) in the original graph G. A label
assignment W to a node e in a graph inducing difference cost
is typically called a deviation cost in an SD problem [13].

2) Rate Proxy of Transform Description: Weighted graphs
for a pixel block are defined by edges assigned weak corre-
lation c; the rest of the edges are assigned weight 1. Further,
edges of weak correlation tend to collectively outline an
object’s contour, i.e., fractional weight edges tend to appear
consecutively. Hence, a rare WGFT—one selected with low

3The dual graph is also termed the line graph in the mathematical discipline
of graph theory.

4To avoid confusion, we use the terminology of vertex and edge in the
original graph, and node and link in the dual graph.
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probability p or high entropy cost −p log p—will have weak
correlation edges scattered throughout the block. We thus
propose a rate proxy to penalize these rare GFTs. Specifically,
we use the label differential cost of nodes connected by
links Ed in the dual graph Gd as the rate proxy of WGFT,
i.e.,

∑
(e,s)∈Ed |We − Ws |. Assigning different labels to nodes

connected by a link will induce a separation cost in an SD
problem [13].

Further, since pixels in a PWS image are more likely to be
strongly correlated, we penalize a block with larger number
of weak correlation edges by adding another term to the rate
proxy:

RT (W) =
∑

(e,s)∈Ed

|We − Ws | +
∑

e∈Vd

γρ(1 − We), (21)

where ρ is the same one as in (19), and γ is used to assign the
importance of the second term relative to the first term. While
the first term specifies the cost of encoding a given distribution
of edges (consecutive fractional weight edges consume fewer
bits as discussed earlier), the second term essentially counts
the number of fractional weight edges in the block to encode.
The actual relative importance between these two terms, i.e.,
the assignment of γ, depends on the particular edge encoding
scheme.

3) Problem Formulation for WGFT: Collecting the two
proposed rate proxies together, we can now formulate the
optimal WGFT problem in the dual graph as an SD problem
as follows:

min
W
ρ

∑

e∈Vd

[We (xv1(e) − xv2(e))
2 + γ (1 − We)]

+
∑

(e,s)∈Ed

|We − Ws |

s.t. We ∈ {1, c} ∀ e ∈ Vd. (22)

The problem is an SD problem, because the first and
second term can be interpreted as a deviation cost, while the
third term can be interpreted as a separation cost. We thus
employ the algorithm in [13] to efficiently solve the SD
problem in (22). Since the defined deviation term is linear
and the separation term is bi-linear in (22), it is solvable in
strongly polynomial time5 using the algorithm in [13] based
on minimum graph cuts. Specifically, the running time of this
algorithm for a 4 × 4 block (adopted in our coding system) is
on the order of 10−2 seconds on an Intel Core(TM) i5-4570
CPU 3.20GHz machine (around 2.7 minutes for a 512 × 512
image).

B. Unweighted Graph Fourier Transform

Unlike WGFT, in the UGFT case we do not have closed
form expressions for Rα(x,W) and RT (W) in terms of W.
The reason is that it is difficult to approximate the first
term in (5)—the rate of UGFT coefficients—using a simple
proxy as done in WGFT. As discussed earlier, the rate proxy

5“Strongly polynomial time” means that the computation complexity of an
algorithm in question is polynomial in the size of the input bits that describe
the instance of the optimization problem. See [39] for details.

in (19) captures only the cost of AC coefficients, ignoring
the cost of DC coefficients, which could be variable for
UGFTs corresponding to graphs with several disconnected
components. Due to this combinatorial nature, we develop a
greedy algorithm based on spectral clustering for the UGFT
search sub-problem, which computes the actual rate via a
divide-and-conquer strategy. We first formulate the UGFT
search problem, and then elaborate on the proposed greedy
algorithm.

1) Problem Reformulation: Since UGFTs are defined on
disconnected and unweighted graphs with the feasible weight
set C = {1, 0}, we modify the constraint in (5) for the UGFT
search problem as follows:

min
W

Rα(x,W)+ RT (W)

s.t. Wi, j ∈ {1, 0} ∀ i, j ∈ V . (23)

2) A Greedy Algorithm for UGFT: Instead of exhaustive
search, we develop a greedy algorithm combined with spec-
tral clustering in order to efficiently solve (23). Spectral
clustering [35], identification of clusters of similar data, takes
advantage of the eigenvectors of the graph Laplacian derived
from a similarity graph of the data. Among the family of
spectral clustering algorithms, normalized cuts [14] is a very
popular one. We hence employ normalized cuts to identify
clusters of similar pixels for UGFT.

For a given pixel block x, the normalized cuts algorithm
consists of four steps: i) construct a similarity graph
Gs = {Vs, Es ,Ws} on x, which measures the similarity
between pixels i and j using W s

i, j ; ii) acquire the generalized
eigenvectors ψ of the graph Laplacian by solving
(Ds − Ws)ψ = λDsψ; iii) bipartition x using the eigenvector
with the smallest non-zero eigenvalue; iv) recursively
repartition the segmented clusters if necessary.

Leveraging on normalized cuts, we develop a greedy
algorithm to search for a locally optimal UGFT. The key idea
is to recursively partition the pixel block using normalized
cuts until the resulting representation cost increases. For each
iteration, we perform the following three steps on each pixel
block x.

First, we construct a similarity graph Gs = {Vs, Es ,Ws}
on x. Each weight W s

i, j is defined as in [35]:

W s
i, j = exp

{−|xi − x j |2
σ 2
w

}

, (24)

which describes the similarity in pixel intensities.6 σw controls
the sensitivity of the similarity measure to the range of
intensity differences. From this graph, we use normalized cuts
to partition the block into two clusters.

Second, we build a graph Gu where pixels in the same
cluster are connected with weight 1 while those in different
clusters are disconnected. The UGFT is then derived from Gu .

Thirdly, we compute the total representation cost as defined
in the objective of (23). We encode transform coefficients
via entropy coding to compute the coding rate, and encode

6Note that the similarity graph Gs used for normalized cuts is a different
graph than the ones used to define GFTs, and thus the edge weights are not
restricted to be in a small discrete set C.
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Fig. 7. An illustration of UGFT and WGFT. (a) An example block containing
pixel pairs with strong and zero correlations, and its signal representation in
the UGFT domain. (b) An example block containing pixel pairs with strong
and weak correlations, and its signal representation in the WGFT domain.

disconnected edges in the graph via AEC to compute the
transform description cost. Note that, instead of using a proxy
as in the search for WGFT, we compute the actual cost of
transform description, since it is more accurate while only
inducing moderate complexity to the greedy algorithm. If the
current representation cost is smaller than that of the previous
iteration, then further repartition is performed.

In practice, few iterations are required due to the small
size of the coding block, and hence this greedy algorithm is
computation-efficient.

C. Illustrative Examples: Optimal GFTs for Different
Blocks & at Different Rates

Having elaborated on the problem formulations and algo-
rithms of WGFT and UGFT, we provide examples to illustrate
optimal GFTs for different classes of blocks and at different
rates.

We first provide an example in Fig. 7 to show how we
employ the two flavors of GFTs to capture various correlations
in pixel blocks. Fig. 7(a) shows an example block contain-
ing pixel pairs with strong and zero correlations. UGFT is
chosen during mode decision based on RD costs, where the
block is divided into two separate partitions and a connected
graph is constructed in each partition. The resulting transform
representation is one DC coefficient for the description of
each partition, as shown at the bottom of Fig. 7(a). Fig. 7(b)
shows an example block containing pixel pairs with strong
and weak correlations. Accordingly WGFT is chosen from
mode decision, where a graph containing edge weights c
(here c = 0.13) is constructed on the block. The resulting
transform coefficients consist of one large DC term and one
small AC term, shown at the bottom of Fig. 7(b).

Next, we provide an illustrative example of optimal UGFTs
for the same pixel block but at different target bit rates.
Given a pixel block with three smooth regions as shown
in Fig. 8, the minimal representation cost at high bit rates is
achieved when it is divided into three connected components
corresponding to the three smooth regions. This is because this
derived UGFT results in only three DC coefficients, leading
to the minimal and significantly smaller cost of quantized

Fig. 8. An illustration of optimal UGFTs at different rates. For a given
pixel block, the figure shows the optimal graph construction (all the edges
connecting pixels are assigned weight 1) and resulting transform coefficients
at (a) high bit rate, (b) medium bit rate and (c) low bit rate.

transform coefficients (compared to other UGFTs resulting
in many high frequency coefficients) at high bit rates, which
together with the description cost results in the minimal
representation cost. At medium rates, the larger quantization
parameter (QP) quantizes more coefficients to zero, and a
simpler UGFT with similar quantized transform coefficient
cost but smaller transform description cost would be more
attractive, resulting in the graph in Fig. 8(b). Finally, at low
rates, the large QP quantizes most coefficients to zero, and the
simplest UGFT is best, as shown in Fig. 8(c).

VII. FAST IMPLEMENTATION OF GRAPH

FOURIER TRANSFORMS

In this section we propose a fast implementation of GFT
for practical deployment. As stated earlier, the online eigen-
decomposition for the construction of GFT is a hurdle to real-
time implementation. We avoid this by pre-computing and
storing most popular GFTs in a table for simple lookups.
Graph isomorphism is further exploited to optimize the table.
We first detail the construction of GFT lookup table, and then
compare the complexity of table lookup against that of online
eigen-decomposition.

The table size could be very large if we simply store all the
used GFTs. A large table would lead to high requirement in
storage and expensive lookup. Hence, we propose to construct
a GFT lookup table of relatively small size. Specifically, we
have three strategies:

1) We perform GFT on a LR block (4 × 4), which admits
a smaller space of GFT variants to begin with.

2) Only the most frequently used LR-GFTs are stored.
3) Exploiting graph isomorphism, only one LR-GFT is

stored for all isomorphic graphs.

Due to self-similarity in images, the same or similar struc-
tures are likely to recur throughout. Hence, the underlying
LR-GFTs with respect to those structures are frequently
used. We thus store only the most popular LR-GFTs in our
lookup table, while covering a large fraction of the total
used LR-GFTs.

We store one GFT for all isomorphic graphs. Two graphs
G and H are isomorphic if there exists such a function mapping
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Fig. 9. An illustration of the 8 underlying isomorphic graphs with respect
to the same graph structure, i.e., the same GFT after appropriate permutation
of vertex labels.

vertices of G to vertices of H:

f : V(G) → V(H), (25)

that any two vertices i and j of G are adjacent in G if and only
if f (i) and f ( j) are adjacent in H. Intuitively, the structures
of isomorphic graphs are the same.

For 4-connected graphs constructed on a pixel block, we can
construct 8 isomorphic graphs with respect to the same graph
structure, thus resulting in the same GFT after appropriate
permutation of vertex labels. See Fig. 9 for an illustration.
The corresponding mapping functions f include reflection and
rotation of graph vertices. Specifically, a graph can be mapped
to four of its isomorphic graphs by reflection with respect to
the central horizontal, vertical, diagonal and anti-diagonal axes
respectively, and three of its isomorphic graphs by different
degrees of rotation. Hence, we can reduce the table size by up
to a factor of 8 via graph isomorphism. During the encoding
and decoding, the actual GFT, if not directly stored, is retrieved
by mapping from the stored GFT.

With all the above factors considered, the lookup table can
be reduced to a manageable size. Experimentally, we collect
LR-GFTs from ten PWS images with diverse structures to
build the lookup table. Note that, the training images are
different from the testing images in the final experimentation.
Statistical results show that 126 most popular LR-GFTs out of
a total 3749 LR-GFTs cover 88% of actual computed optimal
LR-GFTs. We thus set the table size L to 126 to store the most
popular LR-GFTs. Further, we encode the table indices by
Huffman Coding [40] based on the used frequency estimated
from test images, which is known at both the encoder and
decoder.

Having constructed the lookup table, during encoding we
search for the GFT (including UGFT and WGFT) for a
given block by finding out the one that gives the best RD
performance. Different from previous optimization (5), we
consider the resulting distortion for a given GFT during table
lookup. Recall that the expected distortion remains the same
in a statistical sense when we design GFTs for particular
classes of statistical signals. In contrast, during run-time when
the designed GFTs are fixed in the table, we can consider the
distortion of each block deterministically. We then transmit the
table index losslessly to indicate which LR-GFT is employed
for the given block, so that the decoder is able to identify the
correct inverse transform.

Fig. 10. The selection of transform modes for a portion of Teddy. Blocks
in red choose WGFT and blocks in blue choose UGFT. (a) The original.
(b) Transform modes.

We now compare the complexity of using eigen-
decomposition for the derivation of GFT and that of table
lookup. The computational complexity of eigen-decomposition
at both the encoder and decoder for a

√
N × √

N (N = 16 in
our case) coding block is O(N3). In contrast, the complexity
of table lookup is O(L) (L = 126 in our setting) at the
encoder and O(1) at the decoder. Hence, table lookup leads to
significant reduction in complexity compared against on-line
eigen-decomposition at both the encoder and decoder.

VIII. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate our proposed MR-GFT coding system for PWS
signals, we use four test image sequences: 448 × 368 depth
maps of Teddy and Cones,7 and graphics images of Dude
(800 × 480) and Tsukuba8 (640 × 480).

For the three transform candidates in the proposed coding
system, the block size of HR-DCT is 8 × 8, and that of
LR-WGFT and LR-UGFT is 4 × 4. The weighting parameter
γ in (22) is empirically assigned 3 in all the experiments.
We note that our experimental results are not very sensitive to
the specific choice of γ . For the calculation of the fractional
edge weight c, we collect pixel pairs of weak correlation from
the training images, and compute c to be 0.13 via (17).

We compare coding performance of our proposed scheme
against four compression schemes: H.264 intra (HR-DCT) [2],
the GFT coding (HR-UGFT) in [24], the shape-adaptive
wavelet (SAW) in [21], and our previous work MR-UGFT
in [34]. Note that intra prediction is used for all schemes.

B. Selection of Transform Modes

We first investigate the selection of transform modes for test
images. Fig. 10 shows an example of the mode decision in
Teddy. It can be observed that blocks containing pixel pairs
with weak correlation (weak boundaries) in red, generally
choose LR-WGFT, while blocks containing pixel pairs with
zero correlation (strong boundaries) in blue, generally choose
LR-UGFT. This verifies our design of WGFT and UGFT
for the representation of blocks containing pixels pairs with
different correlations. Note that some blocks with strong/weak
boundaries do not choose LR-WGFT/LR-UGFT, e.g., the
blocks containing black holes. This is because those blocks
lose much energy during the low-pass filtering if LR-WGFT

7Available at http://vision.middlebury.edu/stereo/data/scenes2003/
8Available at http://www.cvlab.cs.tsukuba.ac.jp/dataset/tsukubastereo.php
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Fig. 11. RD performance comparison among different compression schemes
for PWS images.

or LR-UGFT is selected, which greatly degrades the recon-
struction quality. In these cases, HR-DCT will be chosen for
better preservation of details.

Further, we observe that GFTs corresponding to contigu-
ous boundaries are used more frequently, which verifies our
assumption for the proxy of transform description in (21).

C. Objective Comparison in RD Performance

We now compare the performance of the proposed MR-GFT
scheme against SAW, HR-UGFT, HR-DCT and MR-UGFT for
PWS images. Fig. 11 presents the RD performance of these
schemes for four test images with a typical PSNR range. The
proposed MR-GFT achieves significant gain in PSNR over a
wide range of bit rate. On average we have 6.8 dB gain over
HR-DCT, 5.9 dB gain over HR-UGFT, 2.5 dB gain over SAW,
and 1.2 dB gain over MR-UGFT.

The gain comes from three improvements: 1) the added edge
weight c, which leads to sparser GFT-domain representation
via proper characterization of weak correlation; 2) minimiza-
tion of the total representation cost, which results in minimal
rate; and 3) the MR scheme, which down-samples each HR
block to LR and thus reducing coding bits.

D. Subjective Comparison

Fig. 12 demonstrates images reconstructed from different
schemes for Teddy, Cones and Dude. We observe that
our MR-GFT produces the cleanest images with the sharpest
boundaries among all methods, which validates the effective-
ness of the edge-preserving MR-GFT approach. In the images
reconstructed by HR-DCT, boundaries are severely corrupted
since the assumption of the near unity inter-pixel correlation in
the DCT is not valid along strong boundaries in PWS images.
Though GFT is employed in HR-UGFT, some boundaries in
the restored images by HR-UGFT are still corrupted. This is
because the DCT is chosen in those regions as GFT consumes

Fig. 12. The subjective quality comparison among different compression
schemes. (a)∼(d) Teddy at 0.10 bpp; (e)∼(h) Cones at 0.13 bpp;
(i)∼(l) Dude at 0.13 bpp.

more bits due to the boundary coding. Images compressed by
SAW remain sharp along strong boundaries. However, weak
boundaries are often blurred. In contrast, MR-GFT preserves
both strong and weak boundaries, since we properly model
weak correlation using the fractional weight c.

E. Application to Depth-Image-Based Rendering

We conduct further experiments on depth maps, which
is an important class of PWS images. Instead of being
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Fig. 13. RD performance comparison among different compression schemes
for depth maps tailored for DIBR.

Fig. 14. Subjective quality comparison of DIBR-synthesized images among
different compression schemes. (a) (b) Teddy; (c) (d) Cones.

observed directly, depth maps generally facilitate various
end applications, such as virtual view synthesis via
depth-image-based rendering (DIBR). Note that in this case,
one can replace the depth map distortion metric in (4) with
a synthesized view distortion metric. The synthesized view
distortion still does not change using different transforms,
because the position error in the synthesized view is a linear
function of the distortion in the depth map under some
assumptions [41]. Hence, the GFT training remains the same
for depth map coding for DIBR. During run-time, one can
replace the depth map distortion with a synthesized view
distortion metric during table lookup.

We use a simple implementation of 3D warping [11] to
perform DIBR. Fig. 13 presents the RD curves for Teddy and
Cones, where the PSNR of synthesized views is evaluated
at various total rates of stereo depth maps. On average we
achieve 2.2dB gain over HR-DCT, 1.8dB gain over HR-UGFT,
1.2dB gain over SAW, and 1.0dB gain over MR-UGFT.
Further, in Fig. 14 we show the virtual views of Teddy
and Cones synthesized from stereo depth maps compressed
using HR-DCT and MR-GFT at the same bit rate. MR-GFT
is observed to produce more pleasant synthesized images,
with fewer ringing artifacts and corrupted boundaries. The
good performance is mostly due to the well-preserved depth
map boundaries by MR-GFT, which plays a critical role
in DIBR.

IX. CONCLUSION

We propose a multi-resolution (MR) graph Fourier trans-
form (GFT) coding scheme for compression of piecewise
smooth (PWS) images. Unlike fixed transforms such as the
DCT, the defined optimal GFT is adaptive to each local block
by minimizing the total representation cost, considering both
the sparsity of the signal’s transform coefficients and the
compactness of transform description. We develop efficient
algorithms to search for optimal GFTs in a defined search
space, based on graph optimization techniques such as spectral
clustering and minimum graph cuts. Further, we introduce
two techniques for practical implementation of GFT. One
is the MR scheme where GFT is deployed over a low-
pass filtered and down-sampled version of a high-resolution
block. The other is the pre-computation of the most popular
GFTs in a stored table for simple lookup instead of real-
time eigen-decomposition. Experimental results show that the
proposed scheme outperforms H.264 intra by 6.8dB in PSNR
on average at the same bit rate. By extension, while we tailor
our proposed approach for PWS image compression, it is
possible to implement our proposal as a coding mode during
compression of general images, so that when a code block is
deemed PWS, our coding scheme can be deployed.
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