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ABSTRACT

New visual media types like light field images and point clouds are
often irregularly sampled data in 2D or 3D space. While coding of ir-
regularly sampled data has enjoyed recent progress due to the advent
of graph-based coding tools like graph transforms and wavelets, the
absence of efficiently coded side information (SI) limits the adap-
tivity and hence the coding efficiency of these tools. In this paper,
we present a general methodology to code a path through a geomet-
ric planar graph—a generalization of a contour in a 2D image—to
partition irregular samples in 2D / 3D space. The encoded partition
boundary can subsequently be used to assign appropriate weights
of edges connecting samples across the boundary for more efficient
graph-based coding.

Specifically, for the 2D case, we first construct a graph based
on a Voronoi map computed from the irregularly sampled locations.
We show that the Voronoi map boundaries represent the best local
unbiased estimator of edge directions in the original continuous 2D
signal. For the 3D case, we project a local window of 3D points onto
a best-fitted plane, then construct a planar graph based on a Voronoi
map as done in the 2D case. The local window is then shifted for
the next iteration in the direction of the coded path. For a given con-
structed graph, knowing the maximum degree of each node, we de-
sign an alphabet to designate outgoing edges and assign a probability
for each using linear regression of past path segment and Von Mises
distribution with locally optimized parameters. Given assigned prob-
abilities, arithmetic coding is used to encode a sequence of symbols
in the alphabet into a bitstream. Experimental results show that our
proposed method outperforms state-of-the-art contour coding on 2D
grid, and uniform probability assignment in the 3D case.

Index Terms— Path coding, graph cut, image compression

1. INTRODUCTION

The advent of new image capturing devices like light field cameras
and active depth sensors means that the acquired visual data are no
longer restricted to pixels on a regular 2D grid in a traditional image,
but irregularly placed samples in 2D or 3D space. One example is
light field data where the demosaicking step is postponed to the de-
coder to reduce data volume required for compression, so that avail-
able pixels for coding in constructed sub-aperture images are sparse
and irregularly distributed [1]. Another example is color attributes
(RGB components) on a 3D point cloud, which are irregularly placed
samples in 3D space.

With recent advance in graph signal processing (GSP) [2], using
graph-based coding tools like graph Fourier transforms [3–5] and
wavelets [6, 7], the aforementioned irregular samples can now be
coded as sparse coefficients of frequency components in appropri-
ately defined graphs that reflect geometric structure of the irregularly
sample kernels—i.e. Euclidean distances between pairs of samples.

However, with the absence of efficiently coded side information (SI)
that designates the photometric structure [8]—e.g. the boundaries
between foreground and background pixels in an irregularly sam-
pled depth image—the adaptivity and thus coding efficiency of these
graph-based coding tools are still limited.

Towards the goal of efficient SI coding that reflects the underly-
ing photometric structure for improved graph-based compression of
irregularly placed samples in 2D / 3D space, in this paper we pro-
pose a general methodology to encode a path through a geometric
planar graph. Generalizing contour coding in 2D images [9, 10] to
irregular sample kernels, the coded path partitions samples in 2D /
3D space into two disjoint subsets, so that edges connecting sam-
ples across the partition boundaries can be assigned more appropri-
ate edge weights for graph-based compression. Specifically, for the
2D case we first construct a graph based on a Voronoi map computed
from the irregularly placed samples [11]. We show that the Voronoi
map boundaries represent the best local unbiased estimator of edge
directions in the pre-sampled original continuous 2D signal. For the
3D case, we project a local window of 3D points onto a best-fitted
plane, then construct a planar graph based on a Voronoi map as done
in the 2D case. The local window is then shifted for the next iteration
in the direction of the coded path.

For a given graph, knowing the maximum degree of each node,
we design an alphabet to designate outgoing edges, and, using a lin-
ear regression model and Von Mises distribution (with locally opti-
mized parameters), assign probabilities to each edge. Finally, arith-
metic coding [12] is used to encode a sequence of symbols repre-
senting the path into a bitstream. Experimental results show that
our proposed method outperforms state-of-the-art contour coding on
2D grid, and uniform probability assignment in the 3D case. To the
best of our knowledge, we are the first in the literature to efficiently
encode a discrete path through a geometric planar graph.

2. RELATED WORK

The coding of a path through a 2D grid of pixels (image)—also
called a contour—has been well studied in previous works. Most
of the contour coding works [9, 13–15] first map the contour into a
chain code, like the 4-connected Freeman chain code [16], which
uses the alphabet {0, 1, 2, 3} to denote the four possible absolute
directions from current node to the following node. The Differen-
tial Chain Code (DCC) [14] uses a three-symbol alphabet instead
{0, 1, 2} corresponding to direction left, straight and right
relative to the previously coded direction. Then, an entropy encod-
ing engine such as Huffman [17] or arithmetic coding [18] is used
to code the symbols of chain code. In this paper, we extend our pre-
vious contour coding work [9] to irregularly sampled kernels, where
the notion of a contour on a 2D grid is generalized to a path on a
geometric planar graph. To the best of our knowledge, we are the
first in the literature to tackle this problem.



3. GRAPH CONSTRUCTION

We first describe how we construct a graph from irregular samples
in 2D and 3D space in order, so that an appropriately chosen path
through the graph would translate to a partitioning of samples into
two disjoint subsets.

3.1. Graph Construction for 2D Data

For 2D data, we assume that the irregularly sampled locations are
known both at the encoder and decoder, and only the sample val-
ues are unknown and need to be encoded; this is the case for light
field sub-aperture image coding without demosaicking in [1]. Given
irregular sample locations on a 2D plane, we first build a Voronoi
map [11]: partitioning of a finite 2D plane of interest into different
Voronoi cells (one cell for each sample), where points in a cell are
2D points that are closest in Euclidean distance to the cell’s sample
location. See Fig. 1(a) for an illustration of Voronoi cells in 2D.

(a) Voronoi map (b) A contour acroos data

Fig. 1. (a) shows Voronoi cells for five 2D irregularly sampled data
points. (b) shows a path through a graph (constructed using Vonronoi
cell boundaries) that partitions the samples into two disjoint subsets.

We now interpret the Voronoi map as a graph G, where cell
boundaries are edges E and intersections of cell boundaries are nodes
V . Fig. 1(b) shows an example of a constructed graph from Voronoi
cells in Fig. 1(a). The edges constructed from cell boundaries are the
best local unbiased direction estimators given available samples. In
other words, if two neighboring samples belong to two different par-
titions (e.g., foreground and background), the true partition boundary
in continuous space is best estimated as the line with equal distance
to the two samples—the Voronoi cell boundary. Practically, this
means that the geometric locations of the endpoints of constructed
edges provide the most reliable information in predicting the next
edge in a path on the graph.

For each node in the graph with a 2D coordinate, we assign a
label v ∈ {1, . . . , |V|} in a raster scan order: samples are sorted
in ascending order in their x-coordinates, and for samples with the
same x-coordinates, they are sorted in ascending order in their y-
coordinates. The same graph construction procedure can be repli-
cated at the decoder.

Since each edge in E separates two neighboring samples in two
adjacent cells, a path on graph G represents a graph cut that parti-
tions the original 2D data into two disjoint subsets. See Fig. 1(b) for
an illustration.

3.2. Graph Construction for 3D Data

In general, a path in a graph connecting 3D points does not repre-
sent a partition of points into two subsets. Here, we assume more
specifically that the 3D point cloud are samples of a 2D surface in
3D space, e.g., surface of a human body. For a local subset of points

then, we approximate their representation as a planar graph, and a
cut through the approximated planar graph would divide the points
into two disjoint subsets.

Specifically, for a given set of irregularly located samples in
3D space, we first select a subset of points and project them onto
a best-fitted 2D plane. We then compute a Voronoi map and corre-
sponding graph as done previously in the 2D case. We assign labels
v ∈ {1, . . . , |V|} to nodes in a raster scan order similar to the 2D
case: in ascending order in x-, y- and z-coordinates. Like the 2D
case, the same graph construction procedure can be replicated at the
decoder.

3.3. Chain Code Representation of a Path in Graph

We can represent a path in a graph G as a sequence of symbols cho-
sen from a finite alphabet as follows. We first specify a starting node
i in G by encoding its label. Denote the degree of a node i byDi and
the set of neighboring nodes byNi, where |Ni| = Di. Generalizing
previously proposed chain code [16] that specifies absolute direc-
tions, we can specify the first edge stemming from node i as follows:
i) we first sort neighbors Ni in ascending order of their labels, then
ii) encode a symbol ai chosen from alphabet Ai = {1, . . . , Di},
specifying that the ai-th neighbor in the sorted order is the destina-
tion node.

For each subsequent edge (j, k) along the path following edge
(i, j), generalizing previously proposed differential chain code
(DCC) [14] that specifies relative directions, we can perform a sim-
ilar encoding procedure as above: i) first sort neighbors Nj \ {i} in
ascending order of their labels, then ii) encode a symbol aj chosen
from alphabet Aj = {1, . . . , Dj − 1}, specifying that the aj-th
neighbor in the sorted order is the destination node.

Like our previous work on contour coding on 2D images [9,10],
the coding efficiency of this chain of symbols (assuming arithmetic
coding [12] is used as the entropy coding engine) depends heavily
on how probabilities are assigned to symbols ai in alphabet Ai for
each hop. We discuss our proposed context model for this purpose
next.

4. PATH CODING ON GEOMETRIC GRAPH

To assign probabilities for symbols in alphabetAi for efficient arith-
metic coding [12], we assume that each node in graph G carries use-
ful geometric information (hence the name geometric graph), and a
local neighborhood of nodes reside on a line approximately, so that a
linear regression model built from a local set of samples can be used
to estimate probabilities. We describe our scheme in details below.

4.1. Linear Prediction

For either 2D or 3D case, given a set of K coordinates from K pre-
vious coded nodes on the path, pi, i = 1, . . . ,K, where each coor-
dinate pi ∈ Rr , r ∈ {2, 3}, we seek to derive a best-fitted line:

p = s+ tv (1)

where s is a point on the line, v is a unit vector, t is a scaling param-
eter, −∞ < t < ∞, to construct the line. Because the mean of the
K points must reside on the fitted line, we compute s to be the mean
of the K coordinates pi. See Fig. 2 for illustration.

To find the optimal v, we first compute mean-removed vectors
xi = pi−s, then maximize the sum of inner-products between each



Fig. 2. Linear regression given K nodes. We seek to minimize the
projected distance from each point to the fitted line, which equals to
maximization of the inner-product.

xi and v, resulting in the following objective:

max
v | ‖v‖22=1

K∑
i

(x>i v)2 = max
v | ‖v‖22=1

‖Xv‖22 (2)

where X is a K × r matrix composed of xTi as rows.
Since ‖Xv‖22 = v>X>Xv, given constraint ‖v‖22 = 1, (2)

is the Rayleigh quotient for matrix X>X, and the solution is the
eigenvector corresponding to the largest eigenvalue λmax. Note
that X>X is of dimension r × r, and since r is at most 3, eigen-
decomposition of a small matrix is not computation-expensive.

4.2. Probability Assignment

At a given node i there are Di − 1 outgoing edges for the next hop,
with corresponding designation coordinates qj , j ∈ {1, . . . , Di −
1}. For each candidate coordinate qj , we include coordinates of
the previous K − 1 nodes in the path to construct matrix X, then
compute (2) for a vector uj . We can then compute the angles αj
between uj and v computed from the coordinates of the previous K
nodes in the path.

Intuitively, a smaller angle αj means a higher probability should
be assigned to coordinate qj . For this assignment, we utilize the von
Mises probability distribution, which maps an angle α, −π ≤ α ≤
−π, to a positive real number:

f(α | µ, κ) = eκ cos(α)

2πI0(κ)
(3)

where I0(.) is the modified Bessel function of order 0, and 1
κ

is
the variance of the distribution. A larger κ would induce a sharper
distribution, and thus can be interpreted as a measure of confidence
in the probability estimation.

Eigen-decomposition of data matrix X>X can be interpreted as
principal component analysis (PCA), and thus the smallest eigen-
value λmin of matrix X>X can be interpreted as the variance from
the main component, i.e., the reliability of the fitted line. Thus we
can adaptively define κ as a function of λmin. Specifically, if λmin

is small, then the linear model fits the data xi well and we can be
confident about its estimated direction v. κ should be set large in
this case. Mathematically, we define κ as follows:

κ = c · e−
λmin
σ2 (4)

where c and σ are parameters. In our experiments, we optimize c
and σ using a set of training data.

Fig. 3. Example depth map for sequence Dancer (1280×720). The
white and gray blocks are pixels with different gray levels, and the
black component means there are no observed pixels.

Fig. 4. Subset of point cloud data Andrew. We use a sliding window
to traverse the point cloud; for each window, we project the points to
a 2D plane and construct a Voronoi map. The red line is the path on
the Voronoi map which corresponds to a boundary on the 2D surface
in 3D space.

5. EXPERIMENTATION

5.1. Experimental Setup

For the 2D visual data simulation, we use an irregularly sampled
depth map. The original depth map is from a color-plus-depth video
sequence from the MCL-3D database [19]. Then we randomly sam-
ple it to generate a sparsely distributed depth map, as shown in
Fig. 3.

For 3D visual data simulation, we use a point cloud data pro-
vided by MPEG [20]. In our implementation, we select a subset
(4000 points) of the original point cloud as shown in Fig. 4. We use
a shifting window with size of 4× 4× 4 to traverse the point cloud.
Notice that a larger window size means more 3D points would be
mapped to a 2D plane, resulting in a worse planar approximation.
For each iteration, we set the center of next window to the end point
of coded path in current window. Thus we ensure some overlap be-
tween consecutive windows, which guarantee that we have a suffi-
ciently long coded path segment for linear regression.

For the coding parameters, we use 5 previous coded nodes for
linear prediction, and set c = 0.5, σ = 0.05 in equation (4).

5.2. Experimental Results

To the best of our knowledge, there is no existing work on path cod-
ing in planar graphs. Hence for the 2D case, we compare our method
with one previous work employing AEC [9] and DCC utilized in
MPEG-4 standard [21], where the path is expanded to a full 2D grid
contour representation. We also compare with a uniform probability
distribution—where the same probability is assigned to each outgo-
ing edge—to demonstrate how important proper probability assign-
ment is to coding efficiency. The coding results are shown in Tab. 1.



Table 1. Symbol count and bit consumption of different methods for
2D case

Total Num. of Total Bits per
Symb. Bits Symb.

DCC [21] 1608 1929 1.20
AEC [9] 1608 951 0.59
Uniform 989 1507 1.52
Proposal 989 896 0.91

Table 2. Symbol count and bit consumption of different methods for
3D case

Total Num. of Total Bits per
Symb. Bits Symb.

Uniform 195 203 1.04
Proposal 195 171 0.87

DGU 292 301 1.03
DGP 292 285 0.98

We observe that our proposed method outperforms [21], [9] and
uniform distribution in terms of total bit count, although our method
has a higher bits / symbol than [9]. This is because Voronoi map
is built from an irregularly sampled kernel, thus a path through it is
harder to predict. Using this graph, however, we can represent the
same contour using fewer symbols than a full 2D grid, resulting in a
smaller total bit consumption.

For the 3D case, we add another comparison besides uniform
distribution. We first build a triangular mesh for the point cloud
data by ball-pivoting algorithm [22], then draw a dual graph from
the mesh, similarly done in previous mesh segmentation works [23,
24]. The results are shown in Tab. 2, where DGU and DGP mean
dual graph with uniform probability distribution and linear predic-
tion model, respectively.

We observe that for the 3D case, our method outperforms the
uniform distribution case. For the path on dual graph, the result with
prediction is close to the uniform distribution. This is because the
mesh is quite irregular in triangle construction, resulting in elongated
triangles, and edges in the dual graph are not representative of the
directions of the segmented signal. This experimentally validates our
claim that the boundaries of Voronoi cells are the best local unbiased
direction estimators, leading to better path coding performance.

6. CONCLUSION

We proposed an efficient method to code a path through a geometric
planar graph, which is a generalization of contour coding on a 2D
full grid image. The path can be used to partition irregularly sam-
pled data in both 2D and 3D case. The key idea is to build a Voronoi
map based on the irregularly sampled kernel, whose boundaries rep-
resent the best local unbiased estimators of the directions of the seg-
mented signal. A path prediction scheme based on linear regression
and Von Mises distribution with locally optimized parameters is pro-
posed. Experimental results show that our proposed scheme outper-
forms state-of-the-art contour coding schemes on 2D grid, and naı̈ve
schemes in 3D point clouds.
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