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ABSTRACT

As 3D scanning devices and depth sensors advance, point clouds
have attracted increasing attention as a format for 3D object repre-
sentation, with applications in various fields such as tele-presence,
navigation and heritage reconstruction. However, point clouds usu-
ally exhibit holes of missing data, mainly due to the limitation of
acquisition techniques and complicated structure. Hence, we pro-
pose an efficient point cloud inpainting method, leveraging on graph
signal processing and based on the observation of non-local self-
similarity in point clouds. Specifically, we split a point cloud into
fixed-size cubes as the processing unit, and globally search for the
most similar cube to the target cube with holes inside. The similarity
metric between two cubes is defined based on the direct componen-
t and the proposed anisotropic graph total variation of normals in
each cube. We then formulate the hole-filling step as an optimiza-
tion problem, based on the selected most similar cube and regular-
ized by a graph-signal smoothness prior. Experimental results show
that the proposed approach outperforms three competing methods
significantly, both in objective and subjective quality.

Index Terms— Graph signal processing, point cloud inpainting,
non-local self-similarity, anisotropic graph total variation

1. INTRODUCTION

Point clouds have received increasing attention as a basic form of 3D
formats. It consists of a set of points, each of which corresponds to
a measurement point and contains most original information of the
point, including the 3D coordinates representing the geometric in-
formation and possibly attribute information such as color and nor-
mal. Hence, point cloud is a natural representation of arbitrarily-
shaped objects. With the development of depth sensing and 3D laser
scanning techniques, we can acquire point clouds conveniently, thus
catalyzing its applications in various fields, such as 3D immersive
tele-presence, navigation, and heritage reconstruction [1].

However, point clouds often exhibit several holes of missing da-
ta inevitably, as shown in Fig. 1. This is mainly due to incomplete
scanning views and inherent limitations of the equipments. Besides,
the data may lack some regions in itself (e.g., heritage). Therefore,
it is necessary to inpaint the incomplete point clouds prior to subse-
quent applications.

Inpainting has been studied extensively in the past decades, from
2D images to 3D formats. Regarding 2D images, two major fami-
lies of methods have been proposed based on solving Poisson equa-
tions [2–4] and exemplar-based texture synthesis [5–7] respective-
ly. As to depth maps, which serve as 2.5D reprepresentation, there
are two classes of typical methods: patch-based [8, 9] and edge-
based [10, 11]. When it comes to 3D formats, various approaches
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Fig. 1. Point cloud Phili (a), with two examples of holes generated due to
the inherent limitations of the acquisition equipments. (b) (c) are different
views for one hole and (d) (e) are different views for the other hole.

have been proposed to fill holes in 3D meshes, such as interpolat-
ing to create implicit surfaces which is used in RameshCleaner [12]
and [13–15], and speculating boundary vertices iteratively to shrink
holes such as Meshfix [16], Meshlab [17] and [18–20] .

However, few inpainting methods [21–27] have been proposed
for point clouds so far, and most of them address missing areas from
the object itself such as heritage and sculptures [21–23]. The main
hole-filling data source of these kinds of methods is online databas-
es, due to the large size of the holes. Sahay et al. [22] firstly tries
to fill big damage regions using neighbourhood surface geometry
and geometric prior derived from registered similar examples in a
library. Then they propose another method [23], which projects the
point cloud to a depth map, searches a similar one from an online
depth database using dictionary learning, and then adaptively prop-
agates local 3D surface smoothness. However, the projection pro-
cess inevitably introduces geometry loss. Besides, some works for
point clouds deal with particular point cloud data such as flattened
bar-shaped holes in the human body data in [24], and geometrically
regular point clouds of buildings in [25].

In this paper, we aim to fill holes particularly generated in the
process of acquiring point clouds, whereas we leave inpainting miss-
ing areas in the object itself as the future work. To avoid planar
hole-filling content, our key idea is to take advantage of the non-
local self-similarity in the geometry of point clouds, i.e., finding a
source region which is the most similar to the target region(i.e., the
region containing the hole), and then filling the hole according to the
source region. Due to the irregularity of point clouds, it is difficult to
find similar regions, thus we resort to graph signal processing [28],
which represents point clouds on graphs naturally. Specifically, we
first segment the input point cloud into cubes with the same size.
Then we define the similarity metric between two cubes based on 1)
the direct component (DC) of the normals of points in the cube and



2) the proposed anistropic graph total variation (AGTV) of normal-
s, which is an extension of graph total variation [29–31]. We then
obtain the most similar cube to the target as the final source cube
via this metric. Next, we formulate the hole-filling step as an op-
timization problem, with a graph-signal smoothness prior [32] for
the target cube. Finally, we acquire the closed-form solution of the
optimization problem, leading to the inpainting result of the hole.

The outline of the paper is as follows. We first review graph
signal processing tools in Section 2. Then in Section 3, we intro-
duce the proposed method, including cube matching and problem
formulation. Experimental results and conclusion are presented in
Section 4 and 5, respectively.

2. SPECTRAL GRAPH THEORY

We first provide a review on basic concepts in spectral graph theo-
ry [33], including graph, graph Laplacian and graph-signal smooth-
ness prior, which will be utilized in the proposed point cloud inpaint-
ing.

2.1. Graph and Graph Laplacian

We consider an undirected graph G = {V, E ,W} composed of a
vertex set V of cardinality |V| = N , an edge set E connecting ver-
tices, and a weighted adjacency matrix W. W is a real symmetric
N ×N matrix, where wi,j is the weight assigned to the edge (i, j)
connecting vertices i and j. We assume non-negative weights, i.e.,
wi,j ≥ 0.

The Laplacian matrix, defined from the adjacency matrix, can be
used to uncover many useful properties of a graph. Among different
variants of Laplacian matrices, the combinatorial graph Laplacian
used in [34–36] is defined as L := D −W, where D is the degree
matrix—a diagonal matrix where Di,i =

∑N
j=1 wi,j .

2.2. Graph-Signal Smoothness Prior

Graph signal refers to data residing on the vertices of a graph, such as
social, transportation, sensor, and neuronal networks. For example,
if we construct aK-NN graph on the point cloud, then the normal of
each point can be treated as graph signal defined on theK-NN graph,
as shown in Fig. 2. This will be discussed further in the proposed
cubic matching approach.

A graph signal x defined on a graph G is smooth with respect to
the topology of G if∑

i∼j

wi,j(xi − xj)2 < ε, ∀i, j, (1)

where ε is a small positive scalar, and i ∼ j denotes two vertices i
and j are one-hop neighbors in the graph. In order to satisfy (1), xi
and xj have to be similar for a large edge weight wi,j , and could be
quite different for a small wi,j . Hence, (1) enforces x to adapt to the
topology of G, which is thus coined graph-signal smoothness prior.

As xTLx =
∑
i∼j

wi,j(xi− xj)2 [37], (1) is concisely written as

xTLx < ε in the sequel. This prior will be deployed in our problem
formulation of point cloud inpainting as a regularization term, as
discussed in Section 3.

3. PROPOSED METHOD

We now introduce the proposed point cloud inpainting method based
on the spectral graph theory in Section 2. As shown in Fig. 3, the

Fig. 2. A K-NN graph constructed when K= 4. The connections of bound-
ary vertices are omitted.

input data is a point cloud denoted by P = {p1,p2, ...,pn} with
pi ∈ R3 meaning the coordinates of the i-th point. Firstly, we split
it into fixed-size cubes as units to be processed in the subsequent
steps. Secondly, we choose the target cube artificially. Thirdly, we
search for the most similar cube to the target cube in P, which is
referred to as the source cube, based on the DC and AGTV in the
normals of points. Fourthly, the inpainting problem is formulated
into an optimization problem, which leverages the source cube with
a graph-signal smoothness prior. The closed-form solution of the
optimization problem gives the resulting cube. Finally, we replace
the target cube with the resulting cube as the output.

3.1. Preprocessing

We first split the input point cloud into overlapping cubes {c1, c2, ...,
cz} with ci ∈ RM3×3 (M is the size of the cube), as the processing
unit of the proposed inpainting algorithm. M is empirically set ac-
cording to the coordinate range of P (M = 20 in our experiments).
Then the overlapping step is empirically set as M

4
. This is trade-off

between computational complexity and ensuring enough geometry
information available to search for the most similar cube.

Having obtained the cubes, we choose the cube with missing da-
ta as the target cube ct. Further, in order to save computation com-
plexity and increase the accuracy of the subsequent cube matching,
we choose candidate cubes cc by filtering out cubes with the number
of points less than 80% of that of ct, which will be used in the next
step as follows.

3.2. Cube Matching

In order to search for the most similar cube to the target, we first
define the geometric similarity metric δ(ct, cc) between the target
cube ct and candidate cubes cc as

δ(ct, cc) = exp{−[δD(ct, cc) + δV (ct, cc)]}, (2)

where δD(ct, cc) and δV (ct, cc) are the difference in DC and
AGTV between ct and cc respectively. Specifically, they are defined
as

δD(ct, cc) = | < d(ct), d(cc) > |, (3)

δV (ct, cc) = |v(ct)− v(cc)|, (4)

where d(ct) and d(cc) are the DC of cube ct and cc, while v(ct)
and v(cc) are the AGTV of ct and cc. We explain δD(ct, cc) and
δV (ct, cc) in detail as follows.

Direct Component This is a function of the normals of points
in the cube, which presents the prominent geometry direction of the



Fig. 3. The framework of the proposed point cloud inpainting method.

cube. A cube ci consists of a set of points {ci,1, ci,2, ..., ci,m} (m
is the number of the points), each of which corresponds to a normal
computed via Meshlab [17], denoted as {ni,1,ni,2, ...,ni,m}. We
compute DC of the cube ci as

d(ci) =

∑m
k=1 ni,k

‖
∑m

k=1 ni,k‖22
. (5)

Anisotropic Graph Total Variation Unlike traditional total
variation used in image denoising [38], graph total variation gener-
alizes to describe the smoothness of a graph signal with respect to
the graph structure. Further, in order to describe the geometry fea-
ture of point clouds more accurately, we propose AGTV based on the
normals in a cube instead of the conventional graph total variation.
The mathematical definition of the proposed AGTV for ci is

v(ci) =

∑
k

∑
l

| < ni,k,ni,l > |wk,l

K(K − 1)
. (6)

Here wk,l denotes the weight of the edge between k and l in a
graph we construct over ci. Specifically, we choose to build aK-NN
graph mentioned in Section 2.2, based on the affinity of geometric
distance among points in ci. Also, we consider unweighted graphs
for simplicity, which means wk,l is assigned as

wk,l =

{
1, k ∼ l
0, otherwise (7)

Note that the proposed AGTV is the l1 norm of the overall dif-
ference in normals in the graph. Hence, this favors the sparsity of the
overall graph gradient in normals, which is able to describe abrupt
signal changes efficiently.

Having computed the similarity metric in (2) between the tar-
get cube and candidate cubes, we choose the candidate cube with
the largest similarity as the source cube cs. However, cs cannot be
directly adopted for inpainting, because it is just the most similar
to ct in geometry structure, but not in the relative location in the
cube. Hence, we further translate cs by the difference in location
between cs and ct. The difference in each dimension, denoted as
h = (hx, hy, hz), is computed as

hx =
∑

(∂Ωct − ∂Ωcs)x (8)

where ∂Ω is a M3 ×M3 diagonal matrix, extracting the boundary
within one hop of the missing region in the cube. hy and hy are
defined in the same way as (8).

The h-translated cube, denoted as c′s, will be adopted in the
hole-filling step as discussed next.

3.3. Problem Formulation

Next, we cast the inpainting problem as an optimization problem,
which is regularized with a graph-signal smoothness prior as men-
tioned in Section 2.2. This problem is formulated as

min
cr
‖Ωcr − Ωct‖22 + α‖Ωcr − Ωc′s‖22 + βcTr Lcr, (9)

where cr ∈ RM3×3 is the desired cube. Ω is a M3 ×M3 diago-
nal matrix, extracting the missing region in ct and c′s, while Ω is a
M3 ×M3 diagonal matrix, extracting the known region. α and β
are two weighting parameters (empirically α = 0.1 and β = 10 in
our experiments). Besides, L is the graph Laplacian matrix of c′s,
which is computed from a K-NN graph we construct in c′s in the
same way as in (7).

The first term in (9) is a fidelity term, which ensures the desired
cube to be close to ct in the known region. The second term con-
straints the unknown region of cr to be similar to that of c′s. Further,
the third term is the graph-signal smoothness prior, as introduced in
Section 2, which enforces the structure of cr to be smooth with re-
spect to the graph constructed over c′s. In other words, the third term
aims to make the structure of the missing area in cr mimic that in
c′s.

(9) is a quadratic programming problem. Taking derivative of
(9) with respect to cr , we have the closed-form solution:

ĉr = (Ω
T

Ω + αΩT Ω + βL)−1(Ω
T

Ωct + αΩT Ωc′s). (10)

(9) is thus solved optimally and efficiently. Finally, we replace
the target cube with the resulting cube, which serves as the output.

4. EXPERIMENTAL RESULTS

4.1. Experimental Setup

We evaluate the proposed method by testing on several point cloud
datasets from Microsoft, including Andrew, David, Phili, Ricardo,
Sarah, and House [39]. We test on two types of holes: 1) real holes
generated during the capturing process, which have no ground truth;
2) synthetic holes on point clouds so as to compare with the ground
truth. In particular, the number of nearest neighbors K is consid-
ered to be related to m, the number of existing points in the cube.
Empirically, K =

√
m in our experiments.

Further, we compare our method with three competing al-
gorithms for 3D geometry inpainting, including RameshCleaner,
Meshfix and Meshlab, which are based on meshes. When testing
these algorithms, we convert the point clouds to meshes first, per-
form the algorithms, and then convert the inpainted meshes back to
point clouds as the final output.



(a) (b) (c) (d) (e)

Fig. 4. Inpainting for Phili with real holes marked in red circles, with one representative cube magnified. (a) Original point cloud with holes. (b) Results
obtained using Meshfix. (c) Results obtained using RameshCleaner. (d) Results obtained using Meshlab. (e) Results obtained using the proposed method.

(a) (b) (c) (d) (e) (f)

Fig. 5. Inpainting for House with synthetic holes marked in red circles, with one representative cube magnified. (a) Point cloud with holes. (b) Results
obtained using Meshfix. (c) Results obtained using RameshCleaner. (d) Results obtained using Meshlab. (e) Results obtained using the proposed method. (f)
The ground truth.

4.2. Experimental Results

It is nontrivial to measure the geometry difference of point cloud-
s objectively. We apply the geometric distortion metrics in [40],
referred to as GPSNR, as the metric for evaluation. Note that G-
PSNR could be negative, depending on the assignment of the peak
value [40].

Table 1 shows the objective results for synthetic holes. We see
that our scheme outperforms all the competing methods in GPSNR
significantly. Specifically, we achieve 50.46 dB gain in GPSNR on
average over Meshfix, 35.98 dB over RameshCleaner, and 27.71 dB
over Meshlab. Note that, holes are synthesized so that we have the
ground truth for the objective comparison.

Table 1. Performance Comparison in GPSNR

Meshfix RameshCleaner Meshlab Proposed
Andrew 3.5201 20.0588 25.5331 53.7969
David -10.7156 10.3991 13.7398 39.5313
Phili 0.9130 15.4113 25.3133 55.7231

Ricardo -1.4875 7.7447 15.1558 41.8501
Sarah -3.1453 6.0946 21.3919 43.1411
House -5.2012 11.0806 19.2414 52.6091

Further, Fig. 4 and Fig. 5 demonstrate subjective inpainting re-
sults for real holes and synthetic holes respectively. The result-
s of Meshfix and RameshCleaner exhibit non-uniform density, be-
cause they generate redundant mesh faces to fill wrong holes select-
ed by their automatic hole detection algorithms. For the real holes
in Fig. 4(a), which are fragmentary, Meshfix and Meshlab can fill s-
mall holes with planar geometry structure, but it cannot fully inpaint
big missing regions, while RameshCleaner fills most of the holes by
generating more redundant mesh faces. Our result shown in Fig. 4(e)
demonstrates that our method is able to inpaint both small holes and

big holes with appropriate geometry structure, even for holes with
complicated geometry. In Fig. 5, we synthesize two holes in House,
with simple and complex geometry structure respectively. We ob-
serve that Meshlab cannot fill the holes completely, while Meshfix
and RameshCleaner introduce wrong geometry around the holes s-
ince they try to connect the boundary of the hole region using simple
planes. In comparison, our result shown in Fig. 5(e) fills the hole
from a nonlocal cube with the most similar structure, which is al-
most the same as the ground truth in Fig. 5(f).

5. CONCLUSION

Leveraging on graph signal processing, we propose an efficient 3D
point cloud inpainting approach. The key observation is that point
clouds exhibit non-local self-similarity in geometry. We thus pro-
pose to fill the holes in a point cloud from similar geometry. Specif-
ically, we adopt fixed-sized cubes as the processing unit, and search
for the most similar cube to the target cube which contains holes.
The similarity metric is based on the direct component and the pro-
posed anisotropic graph total variation of normals in the cubes. We
then cast the hole-filling problem as a quadratic programming prob-
lem, based on the selected most similar cube and regularized by a
graph-signal smoothness prior. Experimental results show that our
algorithm outperforms three competing methods significantly. Fu-
ture works include automatic hole detection and extension to inpaint-
ing the color attribute of point clouds.
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