
CLUSTER-BASED POINT CLOUD CODING WITH NORMAL WEIGHTED GRAPH
FOURIER TRANSFORM

Yiqun Xu#,Wei Hu?†, Shanshe Wang⊥†, Xinfeng Zhang§, Shiqi Wang∗, Siwei Ma⊥†,Wen Gao⊥†

#Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
?Institute of Computer Science and Technology, Peking University, Beijing, China

⊥Institute of Digital Media, Peking University, Beijing, China
§Viterbi School of Engineering, University of Southern California, USA

∗Department of Computer Science, City University of Hong Kong, Hong Kong, China
#yiqun.xu@vipl.ict.ac.cn, †{forhuwei,sswang,swma,wgao}@pku.edu.cn,

§zhangxinf07@gmail.com, ∗shiqwang@cityu.edu.hk

ABSTRACT

Point cloud has attracted more and more attention in 3D ob-
ject representation, especially in free-view rendering. How-
ever, it is challenging to efficiently deploy the point cloud due
to its huge data amount with multiple attributes including co-
ordinates, normal and color. In order to represent point clouds
more compactly, we propose a novel point cloud compression
method for attributes, based on geometric clustering and Nor-
mal Weighted Graph Fourier Transform (NWGFT). Firstly,
we divide the entire point cloud into different sub-clouds via
K-means based on the geometry to acquire sub-clouds with
more uniform structures, which enables efficient representa-
tion with less cost. Secondly, for the purpose of reducing
the redundancy further, we apply NWGFT to each sub-cloud,
in which graph edge weights are derived from the similarity
in normal. Finally, extensive experimental results show that,
compared with traditional transform based point cloud com-
pression, the proposed approach achieves about 34.34% bit
rate reduction on average for Y components of color.

Index Terms— 3D Point cloud compression, color at-
tribute, clustering, Graph Fourier Transform

1. INTRODUCTION

With the development of 3D graphic technology and compu-
tation hardware, 3D point clouds have attracted intensive at-
tention in the representation for real scenes or 3D objects, due
to its simplicity and accuracy compared with traditional free-
view rendering methods using multi-view plus depth maps.
3D point clouds consist of a set of points, with 3D coordinates
to represent the geometric information. Attribute data can be
added to each point to enrich its functions, e.g., color attribute
for visualization and visual feature attribute for localization.
Point clouds have been widely applied in many fields, such
as 3D immersive tele-presence, 3D broadcasting, cultural and

heritage reconstruction [1]. Since 3D points are acquired by
directly sampling the surfaces of real objects, the point distri-
bution is not as regular as images or videos, which makes
point clouds more difficult to represent compactly. More-
over, multiple attributes on each point significantly increase
the burden for transmission and storage of 3D point clouds.

Many approaches have been proposed to support efficient
storage and transmission of point clouds. In [2], Schnabel and
Klein first introduced the octree structure to compress the ge-
ometric structure by splitting the entire point cloud into small
voxels, which has been proved to be effective in organizing
the 3D point cloud data. The most popular toolbox for 3D
point cloud processing, the Point Cloud Library (PCL) [3], is
composed of a complete set of processing methods for point
clouds. It has been applied as the basic infrastructure for point
cloud compression, which also adopted the octree structure to
organize 3D point clouds representing the object geometric
information.

Besides the geometric information, Huang et al. [4] ex-
plored the color attribute compression and verified that there
is considerable redundancy in color representation. In [5],
Rufeal et al. presented a hybrid framework in MP3DG-PCC
based on PCL. To further improve the compression perfor-
mance for color signals, Xu [6] proposed an adaptive scan-
ning method based on rate-distortion cost to make color sig-
nals in each macro-block contain higher correlation.

In [7, 8], a voxelized point cloud (VPC) is utilized to rep-
resent the unstructured 3D point cloud. It quantizes the 3D
point cloud into regular grids with dimensions 2L× 2L× 2L,
where L is the partition parameter. A voxel is regarded occu-
pied, if it contains at least one point, or else it is unoccupied.
Then, the geometry information of voxels is represented by a
set of triples. The other attribute value, such as color, for each
voxel is denoted as the average value of all the points within
the corresponding voxel. In [8], Ricardo et al. compressed
the color of point clouds via a hierarchical sub-band trans-
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Fig. 1. Graph example for point cloud with 6 points.

form. Based on Graph Fourier Transform (GFT), an adap-
tive transform computed from a graph to reduce signal cor-
relations, Zhang et al. [7] proposed an efficient point cloud
compression approach, which compacts the energy of color
to achieve higher compression ratio. In order to reduce the
computation complexity in matrix decomposition, the origi-
nal point cloud is usually partitioned into multiple sub-clouds,
in each of which a graph is constructed based on point to point
distance so as to design the GFT.

Although the GFT has achieved better performance com-
pared with traditional transforms, e.g., DCT, there remains
two prominent problems. First, the current edge weight allo-
cation for graphs is inefficient since it ignores the character-
istics of neighboring points and cannot reflect the correlation
among points efficiently. Second, the point cloud is divided
into sub-clouds based on the regular space partition strategy,
which may lead to too many isolated sub-clouds and may not
exploit regional smoothness efficiently.

In order to address the aforementioned two problems, we
propose adaptive geometric partition and NWGFT to further
improve the color attribute compression. Compared with
the uniform partition of space in [7], we propose to cluster
the point cloud according to the point coordinate distribu-
tion, which makes each sub-cloud more correlated within.
Then, we propose a novel edge weight allocation method
for GFT by exploiting the similarity of two normal vectors
in relative local space to further remove the correlation of
each sub-cloud. Experimental results show that the proposed
method significantly outperforms state-of-the-art transform
based point cloud compression algorithms.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the GFT. In Section 3, we elaborate on the
proposed adaptive 3D space partition and NWGFT. Experi-
mental results and conclusion are presented in Section 4 and
Section 5, respectively.

2. GRAPH FOURIER TRANSFORM

Graph is able to efficiently represent relationships in the
data, which is particularly suitable for irregular and high-
dimensional data structures. A graph is defined as G =
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Fig. 2. The framework of the proposal.

(V,W ), where V = {v0, v1, · · · , vN−1} denotes the set of
nodes with cardinality N ∈ N∗ and W is the weighted adja-
cency matrix of the graph, in which wi,j refers to the weight
allocated for the edge connecting nodes i and j. Accordingly,
a graph signal is a function defined on the graph: G → f ,
where f = [f (1) , f (2) , · · · , f (N)]

T ∈ RN . For example,
we define points in the point cloud as nodes in the graph, and
the color attribute of each point as the corresponding graph
signal. Fig. 1 shows a simple example for a graph composed
of six nodes built within a point cloud. Then, the degree
matrix is defined as a diagonal matrix D, whose diagonal
elements di =

∑
j wi,j . The combinatorial Laplacian matrix

is then defined as,
L = D −W . (1)

The Laplacian matrix is symmetric and positive semi-definite,
which means it admits a complete set of orthonormal eigen-
vectors. The GFT basis Φ is then the eigenvector set of the
Laplacian matrix. The GFT defined on a graph signal is thus
defined as

f̂ = ΦT f . (2)

The inverse GFT follows as

f ′ = Φf̂ . (3)

GFT is a content-adaptive linear transform and has been
shown to be very useful in compressing certain types of sig-
nals, e.g. mesh geometry [9], depth maps [10][11], and other
images/videos [12, 13, 14].

3. THE PROPOSED ALGORITHM

We propose to compress attributes on 3D point clouds, such
as color and normal, based on geometric clustering and N-
WGFT. Without loss of generality, we focus on the widely
utilized color attribute to show the efficiency of the proposed
method. Specifically, as shown in Fig. 2, for a given point
cloud, firstly, we organize it into a voxelized structure with



Fig. 3. Boy is partition into 16 clusters (left) and 48 clusters
(right).
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a certain level L [15]. A voxel is occupied if it contains at
least a point. Occupied voxels closely approximate points in
the original cloud [16]. Secondly, The voxelized point cloud
(VPC) is divided into K sub-clouds based on the geometry
information via K-means. Thirdly, NWGFT is employed to
transform the color information in each sub-cloud. Finally,
the resulting transform coefficients are processed via uniform
quantization and Arithmetic Encoder.

3.1. Geometry Based Clustering

It will cost huge computation resource and time for the de-
composition of the Laplacian matrix. Therefore in [7], in or-
der to decrease the computation complexity, sub-clouds are
further divided into voxels. However, uniform spatial parti-
tion ignores the characteristics of the point cloud, so it would
create too many isolated sub-clouds if the point cloud is not
very dense, as pointed out in [7]. Also, discontinuous sub-
clouds would be yielded.

We address the problem viaK-means clustering [17]. The
geometry information is selected as the feature for clustering.
The VPC is divided into K clusters and each cluster contains
n points of VPC on average, so we have

K =
N

n
. (4)

In our experiments, n is set to 500, empirically. Moreover,
as illustrated in Fig. 3, more clusters contribute to better clas-
sification, such as in the leg part of Boy. Note that, K-means
clustering keeps the continuity of sub-clouds in each cluster.

3.2. Normal Weighted Graph Fourier Transform

After generating K clusters of sub-clouds, we construct
graphs independently within each sub-cloud. While previous
works usually define edge weights based on the similarity in
distances between coordinates, we propose to compute edge
weights from normals of points, which describes the geomet-
ric similarity more accurately. Specifically, we first set d as
a radius for a point i. If the distance between point i and j
is less than d, they are regarded as neighbors. Secondly, as
shown in Fig. 4, in terms of neighboring points i and j, a
local space is constructed via k nearest neighbors method for
each of them. We then compute the normal vector of each lo-
cal space by decomposing the dimension covariance matrix,
which serves as a local feature. Finally, the edge weight wi,j

between point i and j is defined as

wi,j = e
−
(

sin θi,j
σ

)2

, (5)

where θi,j is the angle between two normal vectors on point i
and j respectively, and σ is a weighting parameter. In our ex-
periments, d2, k and σ2 are set to 300, 15 and 0.4, respective-
ly. Note that, the edge weight defined in (5) is more robust,
by combining the features of points and their neighborhoods
via normals.

Next, we compute the graph Laplacian L from the edge
weights as in (1), and perform the eigen-decomposition of L
to acquire the eigenvector matrix Φ, which serves as the basis
of the proposed NWGFT.

For each sub-cloud, We take the Y component as an ex-
ample. First, we stack the color attribute Y of VPC into
a n × 1 column vector. Then Y is projected into the N-
WGFT domain as T = ΦTY . Next, T is quantized by
Tq = round(T /Q), in which Q denotes the quantization
step. Finally, the quantization coefficients are encoded using
Arithmetic Encoder and transmitted to the decoder. U and V
components are encoded in the same way, separately.

4. EXPERIMENTAL RESULTS

We conducted experiments based on frames extracted from
dynamic point clouds, including Andrew, David, Phil,
Ricardo and Sarah representing half of human bodies
used in MPEG standard [18], and Dimitris [19] and Boy1

representing full human bodies. We further partition each
point cloud into a 4096 × 4096 × 4096 grid space [15], thus
making the number of VPC almost the same as that of the
original point cloud.

To verify the performance of the proposed algorithm,
we compare with 3 state-of-the-art point cloud compression
methods for color, i.e., RAHT [8], DCT based compres-
sion and MP3DG-PCC2. Herein, RAHT is a wavelet-based

1http://www.kscan3d.com/gallery/
2http://wg11.sc29.org/svn/repos/MPEG-04/Part16-

Animation Framework eXtension (AFX)/trunk/3Dgraphics/



Fig. 5. RD curves for the proposed method, RAHT, DCT and MP3DG-PCC.
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Fig. 6. Rendering results for point clouds compressed with the similar rate. (a) Original point cloud. (b) MP3DG-PCC. (c)
DCT. (d) RAHT. (e) proposal.

method. We take the 1D DCT method as a baseline, since
1D DCT is a special case of GFT, as analyzed in [12]. The
MP3DG-PCC is a widely adopted open-source point cloud
compression API introduced by 3D Graphics (3DG) group of
MPEG.

Table 1. Performance of the proposed scheme (compared
with RAHT) at quantization step {10, 20, 30, 40}.

Point Cloud BD-BR (Y) BD-BR (U) BD-BR (V)
Andrew -1.72% -1.09% 0.18%
Boy -27.78% -41.12% -52.53%
David -6.72% -4.54% -0.78%

Dimitris -29.96% -41.67% -52.43%
Phil -1.36% 0.99% 0.21%

Richado -20.05% -18.94% -16.66%
Sarah -20.50% -22.17% -17.04%

Average -15.44% -18.36% -19.86%

Fig. 5 shows the RD curves for different point cloud
compression methods. Specifically, we reduce bit rate by
15.44% compared with RAHT, 41.81% compared with DC-
T, and 45.76% compared with MP3DG-PCC. The numbers
are calculated using the BD-BR [20], which quantifies the

difference between two RD curves. As RAHT has the best
performance in the competing methods, we further list the bit
rate saving over RAHT in Table 1.

Besides, we demonstrate the subjective results of the re-
constructed point clouds under similar rates in Fig. 6. We can
see that the proposed algorithm preserves more details in the
data, and avoids artifacts in smooth regions.

5. CONCLUSION

We proposed adaptive geometric partition and NWGFT to
compress the attributes of 3D point clouds. Firstly, we adopt
clustering by the K-means method to reduce the computation
complexity while making sub-clouds more uniform and com-
pact. Then, we designed an adaptive edge weight allocation
strategy by combining each point and its local normal features
to make full use of the spatial correlation. Experimental re-
sults verified that our proposal reduced the correlation among
points more efficiently, showing significant improvement over
state-of-the-art point cloud compression methods.
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