
Redefining Self-Similarity in Natural Images for
Denoising Using Graph Signal Gradient

Jiahao Pang∗, Gene Cheung†, Wei Hu∗ and Oscar C. Au∗
∗The Hong Kong University of Science and Technology, Hong Kong, China

E-mail: {jpang, huwei, eeau}@ust.hk Tel: +852 2358-7053
†National Institute of Informatics, Tokyo, Japan

E-mail: cheung@nii.ac.jp Tel: +81-3-4212-2567

Abstract—Image denoising is the most basic inverse imaging
problem. As an under-determined problem, appropriate def-
inition of image priors to regularize the problem is crucial.
Among recent proposed priors for image denoising are: i) graph
Laplacian regularizer where a given pixel patch is assumed to be
smooth in the graph-signal domain; and ii) self-similarity prior
where image patches are assumed to recur throughout a natural
image in non-local spatial regions. In our first contribution, we
demonstrate that the graph Laplacian regularizer converges to
a continuous time functional counterpart, and careful selection
of its features can lead to a discriminant signal prior. In our
second contribution, we redefine patch self-similarity in terms of
patch gradients and argue that the new definition results in a
more accurate estimate of the graph Laplacian matrix, and thus
better image denoising performance. Experiments show that our
designed algorithm based on graph Laplacian regularizer and
gradient-based self-similarity can outperform non-local means
(NLM) denoising by up to 1.4 dB in PSNR.

I. INTRODUCTION

Image denoising [1] is the most basic inverse imaging

problem with a simple image model:

y = x+ e (1)

where y is the observed noise-corrupted image, x is the

desired noiseless image, and e is the additive noise. It is

inherently an under-determined problem, and as such, appro-

priate definition of one or more image priors to regularize the

problem into a well posed one is very important; i.e.,

min
x
‖y − x‖22 + λ prior(x), (2)

where ‖y−x‖22 is a fidelity term requiring the desired signal x
to be close to observation y, and prior(x) expresses a priori
knowledge about the nature or characteristics of sought-after

signal x. Parameter λ trades off the importance of the fidelity

term with prior knowledge of x.

Among proposed image priors in the literature such as total

variation (TV) [2] and auto-regressive prior [3], one recent

popular prior is the graph Laplacian regularizer [4], [5],

[6]. Leveraging on recent advance in graph signal processing

(GSP) [7], a graph Laplacian regularizer states that a natural

image patch x in vector form should induce a small value

SG(x) = xTLx, where L is the graph Laplacian matrix for a

well defined combinatorial graph whose vertices correspond to

pixels in patch x (to be defined rigorously later). Using such

regularization term, the denoising problem (2) becomes:

min
x
‖y − x‖22 + λ xTLx. (3)

Though good experimental results were reported in [4], [5]

for image denoising, there was neither theoretical justification

nor intuitive interpretation why the graph Laplacian regularizer

is a reasonable image prior that would lead to good denoising

performance. In this paper, our first endeavor is to provide this

crucial missing link: we show that, under mild conditions, the

graph Laplacian regularizer converges to a continuous space

functional counterpart, and by suitably selecting features that

define L and subsequently the converged functional, one can

indeed obtain a powerful discriminant signal prior for image

restoration.

In an orthogonal line of attack, it has been shown that nat-

ural images exhibit a self-similiar characteristic: an observed

pixel patch is likely repeated throughout the image in far-

away (non-local) spatial regions. Image denoising schemes

such as the famed non-local means (NLM) [8] that exploit

this characteristic have demonstrated significant performance

gain. Self-similarity is typically defined in the pixel domain;

patches yi and yj are similar if the l2-norm of their pixel
intensity difference ‖yi−yj‖22 is small. In contrast, our second

endeavor is to defy convention and redefine self-similarity in

the gradient domain—two patches are similar if their gradient
difference1 ‖∇yi − αj∇yj‖22 is small for some constant αj .

We argue that this definition leads to a more accurate estimate

of graph Laplacian L, and hence a better graph Laplacian

regularizer for denoising in (3). Our more esoteric definition

of self-similarity is justified by both our theoretically derived

conditions for a discriminant graph Laplacian regularizer and

a well accepted intrinsic image model [9]. We design an image

denoising algorithm based on the graph Laplacian regularizer

and gradient-based self-similarity, and show experimentally

that our proposal outperformed NLM by up to 1.4 dB in PSNR.

The outline of the paper is as follows. We first discuss

our interpretation of graph Laplacian regularizer in the con-

tinuous space and argue for its usefulness in Section II. We

present our image model in Section III, based on which we

1We use here the intuitive notation ∇y to denote the gradient of an image
patch y, even though ∇ is typically used for continuous functions.

formulate our optimization in Section IV. Our gradient-based

image denoising algorithm is discussed in Section V. Finally,

experimentation and conclusion are presented in Section VI

and VII, respectively.

II. CONTINUOUS DOMAIN INTERPRETATION OF THE

GRAPH LAPLACIAN REGULARIZER

To solve an under-determined inverse imaging problem,

many recent works (e.g., [5], [6], [10]) employed a graph

Laplacian regularizer SG(x) = xTLx during optimization as

shown in (3), where x is a candidate signal and L is the graph

Laplacian matrix. The weight of an edge wij connecting two

vertices in the graph—corresponding to two pixels i and j in

x—is computed using a Gaussian kernel:

wij = exp

(
− [dist(i, j)]2

2ε2

)
(4)

for a weight parameter ε. dist(i, j) computes the “distance”

(for a well defined metric) between pixels i and j. However,

no existing work has yet to provide theoretical justifications

for the regularization term.

In contrast, we demonstrate that by interpreting a graph as

a discrete object composed of random samples on a manifold

[7], [11], SG converges to a continuous functional. Further,

appropriate design of a set of feature functions that determine

L leads to a discriminant regularizer SG for image restoration.

A. Graph Construction from Continuous functions

Denote a bounded region on the 2D plane by Ω ⊂ R
2;

we call Ω the domain in the sequel. Let fn(x, y) : Ω → R,

1 ≤ n ≤ N , be continuous feature functions defined on

domain Ω and can be freely chosen by users. Let Γ = {si =
[xi yi]

T | si ∈ Ω, 1 ≤ i ≤ M} be a set of M random
samples uniformly distributed on Ω. By sampling the feature

functions {fn}Nn=1 at positions in Γ, N vectors of length M
are obtained,

fDn = [fn(x1, y1) fn(x2, y2) . . . fn(xM , yM)]T, (5)

where 1 ≤ n ≤ N , and superscript D means “discrete”. Fig. 1

illustrates the sampling process of an example function fn—

a simple ramp in domain Ω. The red crosses are sampling

positions in Γ. The blue dots are samples of fn and collectively

form vector fDn .

In practice, Ω takes the shape of an image (or image patch)

which is typically a rectangle (e.g., Fig. 1). Feature functions

{fn}Nn=1 can be chosen as continuous images. Since images

are typically sampled uniformly on Ω in a 2D grid, samples

in the set Γ can be construed as pixel coordinates. fDn are the

discretized versions of feature functions fn, 1 ≤ n ≤ N .

For each sample location si ∈ Γ, we construct a length

N +2 vector vi with spatial coordinates xi, yi and previously

defined fDn ,

vi = [xi yi βf
D
1 (i) βfD2 (i) . . . βfDN (i)]T, (6)

where fDn (i) is the i-th entry of fDn , and β is a tunable scaling

factor since the spatial coordinates si and samples fDn (i) are

Fig. 1. Sampling the function fn uniformly in domain Ω. Red crosses are
sampling positions and blue dots are the samples.

inherently different quantities. With vectors {vi}Mi=1, we can

build a weighted neighborhood graph G, where each location

(or pixel) si ∈ Γ is represented by a vertex Vi. The weight

wij between two different vertices Vi and Vj is computed as

wij = (ρiρj)
−γ

ψ(dij), (7)

where the distance d2ij = ‖vi − vj‖22 is also given by

d2ij = ‖si − sj‖22 + β2
∑N

n=1
(fDn (i)− fDn (j))

2
, (8)

the weighting kernel ψ(·) is a truncated Gaussian

ψ(d) =

⎧⎨
⎩

exp

(
− d2

2ε2

)
if |d| ≤ r,

0 otherwise,
(9)

and the degree of Vi before normalization is

ρi =
∑M

j=1
ψ(dij). (10)

Under these settings, G is an r-neighborhood graph; i.e., there

is no edge connecting two vertices with distance greater than

r. Here r = εCr, and Cr is a constant. The parameter ε
controls the sensitivity of the graph weights to the distances,

and γ controls the normalization of the weights. Denote the

adjacency matrix of G by A, where entry (i, j) of A is wij .

The degree matrix of G is a diagonal matrix D with entry (i, i)
computed as

∑M
j=1 wij . The unnormalized graph Laplacian L

is simply L = D−A.

Note that graphs employed in many recent works (e.g., [4],

[5], [10]) are special cases of our more generally defined graph

G. For example, it can be shown that the widely-adopted

4-connected 2D grid graph can be obtained by choosing a

sufficiently small scaling factor β and a proper r.

B. Convergence of Graph Laplacian Regularization

Let h(x, y) : Ω → R be yet another continuous function

defined on domain Ω, which we call the candidate function.

Sampling h at positions in Γ leads to its discretized version,

hD = [h(x1, y1) h(x2, y2) . . . h(xM , yM)]T. The graph

Laplacian L obtained in Section II-A induces a quadratic

functional SG on R
M :

SG(hD) = (hD)TLhD. (11)

SG is the graph Laplacian regularizer we are considering.

Fig. 2. Relationships among essential defined quantities, where a blue arrow
pointing from A to B means B is derived from A.

The continuous counterpart of regularizer SG is given by a

functional SΩ on domain Ω,

SΩ(h) =

∫∫
Ω

(∇h)
T
G−1(∇h)

(√
detG

)2γ−1

dxdy, (12)

where ∇h = [∂xh ∂yh]
T is the gradient of candidate function

h. G is a 2×2 matrix given by

G = β2

⎡
⎢⎢⎣

N∑
n=1

(∂xfn)
2

N∑
n=1

∂xfn · ∂yfn
N∑

n=1
∂xfn · ∂yfn

N∑
n=1

(∂yfn)
2

⎤
⎥⎥⎦+ I2, (13)

where I2 is a 2×2 identity matrix. G is a function of location

(x, y). For a certain (x, y), G is the sum of I2 and the scaled

structure tensor of gradients {∇fn(x, y)}Nn=1 [12].

We see that the set of feature functions {fn}Nn=1 deter-

mine the graph Laplacian regularizer SG and the continuous

functional SΩ. Relationships among several key quantities

are illustrated in Fig. 2. We can now declare the following

theorem:

Theorem 1 (Convergence of SG). Under mild conditions as
stated in [11] for ε, functions {fn}Nn=1 and h,

lim
M→∞
ε→0

M2γ−1

ε4(1−γ)(M − 1)
SG(hD) ∼ SΩ(h), (14)

where “∼” means there exists a constant depending on Ω, Cr

and γ, such that equality holds.

In other words, as the number of samples (or resolution) M
increases, while the neighborhood size r = εCr shrinks, graph

Laplacian regularizer SG approaches the continuous functional

SΩ. The Appendix proves Theorem 1 by viewing a graph as

a proxy of Riemannian manifold2.

C. Justification of Graph Laplacian Regularizer

The convergence of the graph Laplacian regularizer SG to

the continuous functional SΩ allows us to justify the usage of

SG as a regularization term in inverse imaging problems via

the analysis of SΩ.

In (12), the quadratic term (∇h)
T
G−1(∇h) measures the

length of gradient ∇h in a 2D metric space established by the

matrix G [13]. From (13), G is computed using the set of

2We prove the convergence by applying the result of [11], where uniform
convergence of graph Laplacian regularizer to a functional on Riemannian
manifold is proved. In our work, to facilitate presentation, we weaken such
result to point-wise convergence.

(a) (b)

Fig. 3. At a position (x, y) ∈ Ω, gradients {∇fn(x, y)}Nn=1 establish a
metric space for regularization. (a) A proper metric space has norm balls
stretch towards the target gradient A. (b) The features are wrongly chosen,
resulting in non-discriminant regularization.

gradients {∇fn(x, y)}Nn=1; G’s eigenvectors and eigenvalues

capture the statistics of {∇fn(x, y)}Nn=1. Fig. 3 shows two

example diagrams of such metric spaces at some location

(x, y) ∈ Ω drawn in gradient coordinates. In each diagram,

the red cross marked by A is the gradient of the target signal,

which can be different for different location (x, y). The blue

dots are gradients {∇fn}Nn=1. The eigenvector corresponding

to the largest eigenvalue of G has direction l. Intuitively, the

line l passes through the origin and “aligns” with the cluster

of gradients {∇fn}Nn=1. The ellipses are isolevel lines (norm

balls) of the metric space, and the flatness of their shapes

reflects how concentrated the gradients {∇fn}Nn=1 are.

Consider using the continuous functional SΩ as the regu-

larizer. Ideally, we seek for a discriminant regularizer; i.e.,
∀(x, y) ∈ Ω, a small Euclidean distance from the correspond-

ing ground-truth gradient yields a large value in the metric

space defined by G. To achieve this goal, one should design

features {fn}Nn=1 appropriately, so that: i) l goes through

the ground-truth gradient A; and ii) the ellipses should be

stretched flat along l. Fig. 3(a) shows a reasonable scheme

of choosing good features {fn}Nn=1, where the blue dots are

clustering closely around A; i.e., the gradients {∇fn}Nn=1

are similar to the ground truth A. As a counterexample, in

Fig. 3(b) the blue dots spread out in the space and A does

not lie on l, resulting in a regularizer that is not discriminant.

Therefore to achieve the same effect as Fig. 3(a) and obtain

a discriminant regularizer SΩ, one should let the gradients of

the features {fn}Nn=1 be close to the ground-truth gradient for

all positions (x, y) ∈ Ω.

When operating in discrete domain, the set {fDn }Nn=1 should

have gradients similar to the ground-truth gradients. Specifi-

cally, denote the intensity difference between pixel i and pixel

j of the ground truth discrete image as gij , which is the graph

signal gradient by viewing the ground truth image as a graph

signal. Then for all pixels i and j, {fDn (i)−fDn (j)}Nn=1 should

be close to gij . This means that to obtain a discriminant graph

Laplacian regularizer SG , one should seek for patches similar

to the ground truth patch in terms of gradients.

III. GRADIENT-BASED SELF-SIMILARITY FOR

NATURAL IMAGES

In the previous section, we show that similar patches in

terms of gradients can lead to a discriminant graph Laplacian

regularizer. However, do patches with similar gradients exist

in natural images? From the perspective of intrinsic image

decomposition, we argue that they do exist, where the gradi-

ents of such patches are similar up to a scaling factor. We

first discuss the intrinsic image model. We then present our

gradient-based image formation model and introduce a noise

model for our intended application. Finally, we discuss the

advantages of gradient-based self-similarity over traditional

notions defined in terms of squared intensity difference.

A. Justification of Gradient-Based Self-Similarity

We argue that patches with similar gradients do exist in

natural images via the intrinsic image model in [9], where a

natural image can be written as the product of two intrinsic

images: a reflectance image and an illumination image. Specif-

ically, a natural image I(x, y) can be decomposed as:

I(x, y) = R(x, y) · L(x, y), (15)

where (x, y) is a given pixel location, and I(x, y), R(x, y) and

L(x, y) denote the natural image, the reflectance image and

the illumination image, respectively. Reflectance R describes

how each pixel responds to light; it contains details of the

scene. Illumination L describes the interaction between the

geometry in the scene and lighting; typically it changes much

slower than R.

Given this intrinsic image model, we assume:

(i) in the reflectance image R, there exist many similar

patches in terms of squared intensity difference;

(ii) most local regions in illumination L are constants.

Given these assumptions and (15), similar patches in R are

multiplied by different scalars from illumination L. This means

that pixel patches in a natural image I with similar gradients
scaled by different factors can be readily observed.

B. Image Formation Based on Signal Gradient

More concretely, for a
√
M × √M image patch p0 in I ,

one can identify a set of K−1 patches {pk}K−1
k=1 similar to p0

in terms of gradients with scaling factors {αk}K−1
k=1 . Together

with p0, the K patches {pk}K−1
k=0 are collectively called a

cluster in the sequel, where each patch in the cluster comes

from a different spatial location in image I .

If we now interpret pk as a signal on a graph, then gijk =
pk(i)−pk(j) is the graph signal gradient, where pk(i) denotes

the value of pk at pixel location i. For simplicity, hereafter

the superscripts ij are neglected. With the notion of gradient-

based self-similarity, we model the graph signal gradient gk
as

gk = αkg + ef,k, 0 ≤ k ≤ K − 1, (16)

where α0 = 1 and ef,0 = 0, g is the unknown ground-truth

graph signal gradient on p0. ef,k is a noise term introduced in

the image formation process, which is an instance of a random

variable ef .

C. Noise Corruption on Graph Signal Gradient

Having defined our notion of gradient-based self-similarity,

we now present our noise model of graph signal gradient. We

assume that the input noisy image is corrupted by independent

and identically distributed (i.i.d.) additive white Gaussian

noise (AWGN) in the pixel domain. Then equivalently in the

gradient domain, {gk}K−1
k=0 from observations {pk}K−1

k=0 are

also corrupted by AWGN3. The graph signal gradient becomes

ĝk = gk + eg,k = αkg + ef,k + eg,k, 0 ≤ k ≤ K − 1, (17)

where eg,k represents the i.i.d. AWGN, which is an instance

of a random variable eg . Note that the image formation noise

ef and the AWGN eg are independent, zero-mean, and have

variances σ2
f and σ2

g , respectively.

D. Advantages of Gradient-Based Self-Similarity

Compared to the squared intensity difference based metric

typically used in the literature [4], [8], self-similarity in terms

of gradients broadens the notion of similarity and leads to

more number of similar patches, since patches that are similar

in terms of squared intensity difference are also similar in

terms of gradients, but not vice versa.

Moreover, self-similarity in terms of gradients turns out

to be more sensitive to edges and textures, which helps to

restore and preserve edges and textures. We demonstrate this

prominent feature through our experiments in Section VI.

Finally, the similarity notion introduced in this section

matches up well with the discussion on discriminant graph

Laplacian regularizer presented in Section II-C, because it

considers self-similarity directly in the gradient domain.

IV. PROBLEM FORMULATION

We now adopt a patch-based recovery framework to denoise

a corrupted image, as done in previous works [4], [6]. Given

the aforementioned noise model on graph signal gradient,

we first estimate graph weights accurately, which translate

to entries in the graph Laplacian matrix. We then formu-

late the patch-based denoising problem as a quadratically

constrained quadratic programming (QCQP) problem with

the graph Laplacian regularizer as objective. Our developed

image denoising method is named graph-based denoising
using gradient-based self-similarity (GDGS).

A. Graph Weights from Noise-Corrupted Gradients

For a given noisy patch p0, we seek to build an appropriate

graph G with the cluster {pk}K−1
k=0 . According to the analysis

in Section II-C, to obtain a discriminant regularizer SG , one

should let the graph signal gradients of the feature functions

{fDn (i)− fDn (j)}Nn=1 in (8) be similar to the ground-truth

gradient g. However, from (17), the gradients {ĝk}K−1
k=1 on

{pk}K−1
k=1 are similar to g, up to a scaling factor.

Before addressing the scaling issue, for intuition we first

consider the simpler special case where the scalings in (17) are

3For simplicity, we assume the i.i.d. AWGN condition in the pixel domain
carries to the gradient domain.

all ones. Consequently, the noisy gradient observations become

instances of a random variable ĝ, where

ĝ = g + ef + eg. (18)

By interpreting the gradients {fDn (i)− fDn (j)}Nn=1 as observa-

tions of ĝ, and letting N to be sufficiently large, (8) becomes

d2ij = ‖si − sj‖22 +W · E[ĝ2], (19)

where the weight W = Nβ2 is a constant. Recall that N
denotes the number of feature functions and β is the scaling

factor.

E[ĝ2] can be written as:

E[ĝ2] = (E[ĝ])2 +Var[ĝ] = g2 + (σ2
f + σ2

g). (20)

In [4], Hu et al. first averaged all similar patches to compute

the graph weights, which is equivalent to using only (E[ĝ])2,

neglecting Var[ĝ] in (20). However, with our interpretation of

{fDn (i)− fDn (j)}Nn=1, such a simplification is clearly inaccu-

rate in general for Var[ĝ] > 0; equivalently, Jensen’s inequality
states that E[ĝ2] ≥ (E[ĝ])2 always holds.

Unlike [4], we estimate E[ĝ2] to obtain appropriate graph

weights. In order to do so, we generalize back to the noise

model with scalings (17) and perform the estimation via

the following two-step approach. Accounting for the scaling

factors αk, the mean gradient g is first estimated by weighted

averaging {ĝk}K−1
k=0 as

g̃ =
∑K−1

k=0

(
ωk

αk

)
ĝk, (21)

where g̃ denotes an estimate of g, and {ωk}K−1
k=0 are weights of

the gradients. Then we compute {ĝk−αkg̃}K−1
k=0 and evaluate

their sample variance, leading to the estimate of σ2
f + σ2

g in

(20), denoted as σ̃2. Estimate of E[ĝ2] is then given by g̃2+σ̃2.

B. QCQP Formulation of GDGS

Having obtained the graph G and the graph Laplacian L for

the noisy patch p0 ∈ R
M , the following QCQP is formulated:

q� = argmin
q

qTLq s.t. ‖p0 − q‖22 ≤ Ceσ
2
e , (22)

where σ2
e is the variance of the Gaussian noise and Ce < 1

is a constant. The constraint of (22) is the fidelity term which

preserves the closeness between the noisy observation and the

denoised patch. The formulation (22) allows us to control the

difference ‖p0 − q�‖22 directly via Ce.

V. ALGORITHM DEVELOPMENT

We now develop an iterative patch-based image denoising

algorithm to solve the formulated QCQP problem (22) in

Section IV. We describe our algorithm step-by-step in details

next. A summary is shown in Algorithm 1.

Algorithm 1 Image denoising with GDGS

1: Input: One noisy grayscale image I
2: Î(0) = I;

3: for i = 1 to iter do
4: Step A: Clustering of patches with similar gradients

5: Step B: Graph Laplacian from similar patches

6: Step C: Lagrangian optimization for patch denoising

7: Step D: Image update

8: end for
9: Output: The denoised grayscale image Î(iter)

A. Clustering of Patches with Similar Gradients

Given a
√
M ×√M noisy image patch p0, we first search

for similar patches on the image in terms of patch gradients;

let the number of sufficiently similar patches be K − 1.

Specifically, since each pixel in p0 induces a 2D gra-

dient vector containing partial derivatives along horizontal

and vertical directions, by concatenating these M vectors,

a combined column vector of length 2M is obtained. This

vector, denoted as f0, is the gradient field of p0. Given a

candidate patch pc with gradient field fc, to measure the

gradient-based similarity between p0 and pc, we solve the

following scalar minimization problem,

t = min
α

∥∥f0 − α−1fc
∥∥2
2

s.t. αl ≤ α ≤ αu, (23)

where the permissible range of the scaling is specified by αl ≤
1 and αu ≥ 1. Objective value t is the metric reflecting the

gradient similarity between p0 and pc; αf0 is similar to fc. By

solving (23), both the similarity metric t and the estimate of the

scaling factor α are obtained simultaneously. Note that since

the input image is noise-corrupted, we apply the robust 2D

Savitzky-Golay filter [14] to estimate the gradients. Savitzky-

Golay filter fits low-degree 2D polynomials to each image

patch. Then for a particular pixel, its estimated gradient comes

from the gradient of its corresponding 2D polynomial.

B. Graph Laplacian from Similar Patches

Having found K − 1 similar patches in terms of patch gra-

dients, we construct a weighted neighborhood graph using the

methodology described in Section IV-A. The corresponding

graph Laplacian L is then obtained.

C. Lagrangian Optimization for Patch-Based Denoising

Up to a convex hull approximation [15], the QCQP in

(22) is equivalent to the following unconstrained quadratic

programming (QP) problem,

q� = argmin
q

qTLq+ λ ‖p0 − q‖22 , (24)

where λ is a Lagrange multiplier chosen such that ‖p0 − q�‖22
is as close to Ceσ

2
e as possible, while ‖p0 − q�‖22 ≤ Ceσ

2
e .

Because (24) has a closed-form solution that can be easily

solved, we solve (22) by solving (24) multiple times while

adjusting λ appropriately, e.g., via a bisection search [16].

TABLE I
NATURAL IMAGE DENOISING WITH GDGS: PERFORMANCE COMPARISON

IN PSNR (DB) WITH FOUR COMPETING METHODS

Image Method
Standard Deviation σe

10 15 20 25 30

Lena

GDGS 35.24 33.47 32.35 31.39 30.61
GDSS 35.21 33.41 32.28 31.32 30.54

NLGBT 34.98 33.22 31.90 30.97 30.19
NLM 34.26 32.03 31.51 30.38 29.45
BF 29.48 27.00 24.80 23.00 21.52

Barbara

GDGS 33.69 31.71 30.33 29.24 28.33
GDSS 33.53 31.48 30.13 29.05 28.14

NLGBT 33.20 31.22 29.62 28.57 27.67
NLM 33.13 30.76 30.15 28.94 27.91
BF 28.16 25.78 23.86 22.32 21.03

Boats

GDGS 33.40 31.59 30.30 29.34 28.55
GDSS 33.38 31.55 30.27 29.28 28.45

NLGBT 32.89 31.05 29.56 28.60 27.77
NLM 32.88 30.69 29.74 28.62 27.68
BF 27.91 26.42 24.89 23.47 22.19

Peppers

GDGS 34.78 33.30 32.38 31.54 30.83
GDSS 34.79 33.31 32.38 31.53 30.83

NLGBT 34.62 33.18 32.09 31.24 30.49
NLM 33.97 31.96 31.48 30.42 29.50
BF 28.96 26.70 24.67 22.95 21.49

We choose Ce so that Ceσ
2
e is smaller than the variance of

p0; otherwise a constant patch q with values as the mean of

p0 makes qTLq becomes zero and minimizes (22).

D. Image Update

We denoise a given image iteratively to gradually enhance

its quality. At the end of the i-th iteration, all the denoised

patches are aggregated to form an intermediate denoised image

Î(i). To do so, we estimate each pixel with the weighted

average of the values from different overlapping patches. In

general, if a patch p0 corresponds to a cluster {pk}K−1
k=0 with

better agreement with p0, then it should be recovered with

higher quality. As a result, we empirically set the weight of a

denoised p0 to be inversely proportional to
∑K−1

k=0 tk.

VI. EXPERIMENTATION

We now evaluate the denoising performance of our proposed

GDGS and compare it against several competing denoising

algorithms.

A. Experimental Setup

The test image set was composed of four 512×512 gray-

scale images: Lena, Barbara, Boats, and Peppers. In the

experiments, the images were corrupted by i.i.d. AWGN, with

standard deviation σe ranging from 10 to 30.

We first compared GDGS with two competing methods:

bilateral filtering (BF) [8] and non-local means denoising

(NLM) [17]. Then we swapped the patch similarity metric in

our method to one based on squared intensity difference, which

we call graph-based denoising using squared-difference-based

self-similarity (GDSS). Performance of GDGS and GDSS

were compared to validate the notion of self-similarity in terms

of gradients.

(a) GDGS (b) GDGS

(c) NLM (d) NLM

(e) BF (f) BF

Fig. 4. Fragments of different denoised versions of the images Lena and Boats.
The original images are corrupted by AWGN with σe = 25.

We also modified GDSS and estimated E[ĝ2] using only

(E[ĝ])2 in (20). For convenience, we call the obtained method

non-local GBT (NLGBT), given that it bears the same ra-

tionale as the NLGBT method proposed in [4] (though the

formulation in [4] exploits the sparsity prior in graph transform

domain). Comparing NLGBT with GDGS and GDSS validates

the superiority of our graph weight estimation.

In our implementation, the patch size
√
M was set as 25.

To compute g̃ in (21), we empirically assigned the weights of

the 40% most similar patches to be three times heavier than

the rest. We set the threshold r in (9) such that each vertex

had at least eight edges, the normalization factor in (7) was

chosen as γ = 0.4. For a reasonable scaling of the gradients,

αl and αu in (23) were set to be 0.5 and 2, respectively. We let

iter = 3 for a reasonable tradeoff between denoising quality

and complexity.

B. Objective Evaluation

Objective performance of the competing denoising methods

(measured in PSNR) are tabulated in Table I. We see that

(a) GDGS (b) NLGBT

(c) GDGS (d) NLGBT

Fig. 5. Fragments of different denoised version of image Barbara corrupted
by AWGN (σe = 25). The fragments of the two rows come from different
positions on the denoised images.

GDGS provided superior denoising performance, achieving up

to 1.4 dB gain over NLM (Lena, σe = 15) and 9.3 dB gain

over BF (Peppers, σe = 30). Note that for image Barbara
that contains plenty of textures and edges, GDGS performed

consistently better than GDSS by about 0.2 dB. GDGS also

produced consistently better results than NLGBT, ranging

from about 0.1 dB (Peppers, σe = 15) to 0.8 dB (Boats,

σe = 30).

C. Subjective Evaluation

We now present visual comparisons of different denoising

methods. We neglect GDSS here since visually it gives results

similar to GDGS.

Comparison of GDGS with NLM and BF is shown in Fig. 4,

which shows segments from different denoised versions of the

images Lena and Boats corrupted by AWGN (σe = 25). We

see that results of GDGS exhibit natural and clear appearances,

while NLM smears details and BF fails to clean up the noise.

To compare GDGS against NLGBT, Fig. 5 shows segments

from the denoised version of image Barbara corrupted by

AWGN (σe = 25). Note that NLGBT smoothed out some fine

details from the image; while GDGS provided well-preserved

textures and edges. The faithful results of GDGS are credited

to the gradient-based self-similarity and our modeling on graph

weights.

VII. CONCLUSION

Image denoising is an under-determined problem and re-

quires good signal priors to regularize the problem appropri-

ately. In this paper, we first provide theoretical justification

of why and under what conditions a recently proposed graph

Laplacian regularizer can be discriminant. We then redefine

the notion of patch self-similarity in a natural image in terms

of gradients. We design an image denoising algorithm using

a graph Laplacian regularizer as objective, where the graph

Laplacian matrix is computed from non-local patches with

similar gradients. Experiments show that our proposal can

outperform non-local means (NLM) by up to 1.4 dB in PSNR.

APPENDIX

PROOF OF THEOREM 1

Proof: Let M be a 2D Riemannian manifold embedded

in (N+2)-dimensional ambient space through the embedding

Φ :M→ R
N+2. Specifically,

Φ : (σ1, σ2)→ (σ1, σ2, βf1(σ1, σ2), . . . , βfN (σ1, σ2)),
(25)

where (σ1, σ2) is the global coordinate of M. Under embed-

ding Φ, the induced metric of M in R
N+2 can be pulled back

[18],[19], which is given by the matrix G (13).

Then we link the sampling positions in Γ to a probability

density function (PDF) defined on manifold M. Let the one-

to-one mapping Ψ :M→ Ω be

Ψ : (σ1, σ2)→ (x = σ1, y = σ2). (26)

Then let the function p(x, y) : Ω→ R be

p(x, y) = 1/(|Ω|
√
detG), (27)

where |Ω| denotes the area of Ω. Through mapping Ψ,

a function pM(σ1, σ2) : M → R, is obtained, where

pM(σ1, σ2) = p(Ψ(σ1, σ2)). Because of Ψ, pM and p have

same functional form though they are defined in different

domains. Moreover, pM is a PDF on M since∫
M

pM(σ1, σ2)dV =

∫∫
Ω

p(x, y)
√
detGdxdy = 1, (28)

where dV=
√
detGdxdy is the natural volume element of M.

For any sub-domain M′ ⊆ M, its counterpart on Ω is

Ω′ = {Ψ(σ1, σ2)|(σ1, σ2) ∈ M′} ⊆ Ω. Suppose the tuple

(σ̂1, σ̂2) is a 2D random variable on M with density function

pM, then (x̂, ŷ) = Ψ(σ̂1, σ̂2) is a 2D random variable on Ω.

And

Pr((x̂, ŷ) ∈ Ω′) = Pr((σ̂1, σ̂2) ∈M′)

=

∫
M′

pM(σ1, σ2)dV

=

∫∫
Ω′

p(x, y)
√
detGdxdy =

|Ω′|
|Ω| ,

(29)

so (x̂, ŷ) follows uniform distribution on Ω. As a result, the

set of uniform sampling positions in Γ is obtained as follows:

M points on manifold M are drawn independently according

to pM, then are mapped onto Ω through Ψ.

With the above settings, from (6)(7)(25), graph G is built

upon M samples from manifoldM. Under the mapping Ψ, the

sampling positions are uniformly distributed on Ω. As noticed

in [11],[20],[21],[22], the graph G, which is a discrete object,

is an approximation of the corresponding manifold M.

For a continuous image h on Ω, its counterpart on M is

hM(σ1, σ2) = h(Ψ(σ1, σ2)), and its discrete sampling is hD.

With mild conditions on ε, manifold M and function h, from

the convergence result of [11],

lim
M→∞
ε→0

M2γ−1

ε4(1−γ)(M − 1)
SG(hD) ∼ SΔ(h

M), (30)

where “∼” means there exist a constant only depends on Cr

such that equality holds. And the functional SΔ is induced

by the 2(1 − γ)-th weighted Laplace-Beltrami operator on

manifold M with PDF pM. It can be written as

SΔ(h
M) =

∫
M

〈∇hM,∇hM〉
(pM)2(1−γ)dV. (31)

With (27), SΔ(h
M) becomes

SΔ(h
M) =

∫∫
Ω

(G−1∇h)
T
G(G−1∇h)p2(1−γ)

√
detGdxdy

= |Ω|−2(1−γ)
∫∫

Ω

(∇h)
T
G−1(∇h)

(√
detG

)2γ−1

dxdy,

(32)

which equals |Ω|−2(1−γ)
SΩ(h) therefore (14) holds.

REFERENCES

[1] P. Milanfar, “A tour of modern image filtering,” IEEE Signal Processing
Magazine, vol. 30, no. 1, pp. 106–128, January 2013.

[2] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D: Nonlinear Phenomena, vol. 60,
no. 1, pp. 259–268, 1992.

[3] X. Wu and X. Zhang, “Model-based non-linear estimation for adaptive
image restoration,” in IEEE Int’l Conf. Acoustics, Speech and Signal
Processing, April 2009, pp. 1185–1188.

[4] W. Hu, X. Li, G. Cheung, and O. Au, “Depth map denoising using
graph-based transform and group sparsity,” in IEEE Int’l Workshop on
Multimedia Signal Processing, 2013.

[5] A. Kheradmand and P. Milanfar, “A general framework for kernel
similarity-based image denoising,” in IEEE Global Conf. Sig. Info.
Process., 2013, pp. 415–418.

[6] P. Wan, G. Cheung, D. Florencio, C. Zhang, and O. Au, “Image bit-
depth enhancement via maximum-a-posterior estimation of graph ac
component,” in IEEE Int’l Conf. Imag. Process. (to appear), 2014.

[7] D. Shuman, S. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98, 2013.

[8] A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for
image denoising,” in IEEE Int’l Conf. Computer Vision and Pattern
Recognition, vol. 2, 2005, pp. 60–65.

[9] H. G. Barrow and J. M. Tenenbaum, “Recovering intrinsic scene
characteristics from images,” Computer Vision Systems, pp. 3–26, 1978.

[10] X. Liu, D. Zhai, D. Zhao, G. Zhai, and W. Gao, “Progressive image
denoising through hybrid graph laplacian regularization: a unified frame-
work.” IEEE Trans. Imag. Process., vol. 23, no. 4, pp. 1491–1503, 2014.

[11] M. Hein, “Uniform convergence of adaptive graph-based regularization,”
in Learning Theory. Springer, 2006, pp. 50–64.

[12] H. Knutsson, C.-F. Westin, and M. Andersson, “Representing local
structure using tensors ii,” in Image Analysis. Springer, 2011, vol.
6688, pp. 545–556.

[13] R. De Maesschalck, D. Jouan-Rimbaud, and D. L. Massart, “The ma-
halanobis distance,” Chemometrics and intelligent laboratory systems,
vol. 50, no. 1, pp. 1–18, 2000.

[14] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.” Analytical Chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[15] Y. Shoham and A. Gersho, “Efficient bit allocation for an arbitrary set
of quantizers,” IEEE Trans. Acoustics, Speech, and Signal Processing,
vol. 36, no. 9, pp. 1445–1453, September 1988.

[16] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2009.

[17] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color
images,” in IEEE Int’l Conf. Computer Vision, 1998, pp. 839–846.

[18] N. Sochen, R. Kimmel, and R. Malladi, “A general framework for low
level vision,” IEEE Trans. Imag. Process., vol. 7, no. 3, pp. 310–318,
1998.

[19] G. Rosman, X.-C. Tai, L. Dascal, and R. Kimmel, “Polyakov action
minimization for efficient color image processing,” Trends and Topics
in Computer Vision, pp. 50–61, 2012.

[20] M. Hein, J.-Y. Audibert, and U. von Luxburg, “Graph laplacians and
their convergence on random neighborhood graphs,” Journal of Machine
Learning Research, vol. 8, no. 6, 2007.

[21] M. Hein and M. Maier, “Manifold denoising,” in Advances in Neural
Information Processing Systems, 2006, pp. 561–568.

[22] D. Ting, L. Huang, and M. I. Jordan, “An analysis of the convergence
of graph laplacians,” in Int’l Conf. Machine Learning, 2010, pp. 1079–
1086.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

