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ABSTRACT

3D technologies such like three-dimensional television and free
viewpoint television have caught enormous attentions in the con-
sumer market recently. However, because of the inaccurate camera
configuration and environmental constraint, there are errors in the
assumed equally-spaced camera intervals. In this paper, we propose
a novel camera spacing correction algorithm to detect the spacing
errors among the multiple cameras by making the corresponding
points co-linear in the epipolar plane images. Experimental results
show that the proposed algorithms are robust and can achieve good
performance even if the corresponding pixels are not well detected.
Meanwhile, our algorithm can be solved by convex optimization
with an extremely low complexity.

Index Terms— multi-view images, ray space interpolation,
camera spacing correction, epipolar plane image

1. INTRODUCTION

Multi-view technologies are becoming more and more popular in re-
cent years. It has many applications such like three-dimensional tele-
vision (3DTV) [1] and free viewpoint television (FTV) [2], which
provide people the opportunity to get the 3D perception from differ-
ent viewpoints. The multi-view images are captured by the camera
array which usually contains several or dozens of cameras. Since
cameras cannot be placed continuously in space because of its bulky
size, only a finite number of views (called real views) can be cap-
tured. Many free viewpoint generating algorithms are proposed to
synthesize the virtual views inbetween the real views. And they can
be classified into image domain based algorithms[3][4], ray-space
based algorithms[5], surface light field based algorithms[6], etc.

Most of those algorithms take the multiple real views captured
by the camera array as input images. And the most common used
camera configuration is the linear arrangement, in which the cameras
are placed along a straight line in parallel and equally spaced. The
focal length and other intrinsic parameters are the same for all of the
cameras under the assumption of pinhole camera model. In this idea
case, the view captured are parallel with the corresponding epipolar
line along the same horizontal line [7]. For the same object, it only
has horizontal movement (disparity) among different views.

However, in the real case, both of the intrinsic and extrinsic pa-
rameters contain some errors due to the imperfect camera model and
environmental constraint. Therefore pre-processing is needed to cor-
rect those errors. Existing pre-processing algorithms include camera
calibration [8], radial distortion correction [9], image rectification
[10], and color correction [11]. The former two are related with the
intrinsic parameters of each single camera while the latter two are
about the “relationship” between different cameras. The real cam-
eras are not exactly within the assumption of pinhole camera model.

In this case, camera calibration is performed to find the exact intrin-
sic camera parameters while radial distortion correction is applied to
compensate the geometric distortion from the lens. As for the ex-
trinsic parameters, the cameras are not exactly in parallel in the real
world because of the small rotations and displacement existed. Im-
age rectification is then utilized to rectify the multiple view images
such that there is only horizontal motion in adjacent views. And the
color difference for the same object in the multi-view images are
corrected by color correction algorithms.

All of those pre-processing algorithms make the assumption that
the cameras are equally spaced, which can simplify the problems
of multi-view processing, such like ray-spaced interpolations [5],
multi-view depth estimation [12], etc. However, in the real situation,
the cameras may not be equally spaced due to the inaccurate cam-
era configuration or the environmental constraint. Inaccurate camera
spacing can further affect the depth estimation and view interpola-
tion. To solve this problem, we propose an algorithm named camera
spacing correction, which can derive the exact camera intervals by
finding the corresponding pixels within different views. The pro-
posed camera spacing correction is implemented in the ray-space
of the epipolar plane images to make the corresponding pixels co-
linear while keeping a small displacement from the initial camera
positions. The rest of the paper is organized as follows: in Section
2, we review some basic properties of camera model and ray-space
representation for multi-view images. Proposed camera spacing cor-
rection algorithm will be presented in Section 3 and experimental
results are shown in Section 4, followed by conclusion in Section 5.

2. REVIEW OF RAY-SPACE REPRESENTATION

In ray-space representation, each ray in the 3D world is represented
by a corresponding point in the ray-space domain. The propagation
path of a ray going through space can be uniquely parameterized
by the location of a point and a direction [13]. For the linear cam-
era arrangement, people proposed the idea of epipolar plane image
(EPI) in the ray-space domain. An EPI is constructed by collating
the horizontal rows with the same y coordinate in the multi-view im-
ages one by one. If the multi-view images have H rows each, the
number of EPIs constructed will be H . An example is shown in Fig.
1, in which the multi-view images are captured by cameras which
are equally-spaced along the baseline and indexed accordingly by an
integer u. In Fig. 1, the EPI shown is generated by collating the hor-
izontal rows with y = 287 from 101 views of the first frame of the
“Xmas” multi-view test sequences. The top row of EPI corresponds
to the leftmost view (u = 0) while the bottom row corresponds to the
rightmost view (u = 100). An important property of EPI is that if
the camera interval (the distance between adjacent cameras) is con-
stant, the pixels corresponding to the same scene point in different
multi-view images would form a straight line in the EPI with a slope
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Fig. 1. EPI generation for test sequence “Xmas”
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Fig. 2. (a)Pin-hole camera model, (b)The corresponding EPI

proportional to the depth of that scene point. The depth is the per-
pendicular distance between the scene point and the reference plane.
This relationship can be easily obtained from the projective camera
model as shown in Fig. 2.

In Fig. 2(a), P is a scene point of interest in the world. All
the cameras are placed equally along a straight line in the reference
plane, with Ci being the optical center of camera i, and Oi being
the intersection point between its optical axis and the image plane
which is parallel to the reference plane and is at a distance of f from
the reference plane, for i = 0, 1, ..., N − 1. Ci,i+1 is the camera
spacing between Ci and Ci+1. Here pi and pi+1 are the two pixels
corresponding to P in two adjacent multi-view images (u = i and
u = i + 1). Z(P ) is the perpendicular distance between P and the
reference plane. Based on triangle similarity, we can obtain:

Ci,i+1 − (xi(P )− xi+1(P ))

Ci,i+1
=

Z(P )− f

Z(P )
(1)

which can be simplified to give

di,i+1(P ) = xi(P )− xi+1(P ) =
f · Ci,i+1

Z(P )
(2)

And di,i+1(P ) is called the disparity (or relative displacement
in local coordinate) between the pixels pi and pi+1. As Z(P ) and
focal length f are fixed, the disparity di,i+1(P ) depends only on
the camera interval Ci,i+1. As the cameras are equally spaced, the
Ci,i+1 = C is constant for all i and thus the disparity di,i+1(P ) =
d(P ) is constant for all i. In Fig. 2(b), ui,i+1 is the distance between
neighboring rows in the u direction, i = 0, 1, 2, ..., N − 2. Thus the
slope between pi and pi+1 is

si,i+1(P ) =
ui,i+1

di,i+1(P )
(3)

Since we pack the rows one by one in the EPI, the distance
between adjacent rows ui,i+1 is constant (actually, ui,i+1 = 1,

i = 0, 1, 2, ..., N − 2). In this case, the slopes of the line segments
in any two adjacent rows (si,i+1(P )) are the same. Therefore, pix-
els corresponding to any scene point P from different views form
a straight line in the EPI. Considering that all pixels in any image
correspond to some scene points, an EPI contains multiple straight
lines each of which corresponds to one scene point.

3. PROPOSED RAY-SPACE BASED CAMERA SPACING
CORRECTION

The cameras are assumed to be equally spaced with constant distance
of C so far. But in the real situations, the camera distance may not
be the same due to inaccurate camera configuration or environmental
constraint, which leads to the unequally space or wrong view order.
When this happens, pixels corresponding to the same scene point
will not form a straight line in the EPI, as shown in the example of
Fig. 3(a). In this section, we propose a camera spacing correction al-
gorithm to ensure the planes are ordered accurately and the unequal
camera spacing is detected to preserve the straight line structures in
the EPI. The other pre-processing algorithms we mentioned in Sec-
tion 1 are supposed to be performed before our algorithm such that
all the cameras have the same focal length f and are placed along a
horizontal baseline and all the optical axes are perpendicular to the
reference plane. Notice that our method does not require the calibra-
tion parameters of the cameras, such as f , Ci, and camera intrinsic
parameters. We assume that the locations of the corresponding pix-
els in each of the multi-view images are known for at least one scene
point P . In our algorithm, the corresponding pixels can be marked
manually or identified using some pixel matching algorithms.

As discussed in Section 2, when the cameras are equally spaced
without any error, the pixels corresponding to the same scene point
will form a straight line in the EPI. However, in the real situation, the
camera space contains some errors, while the corresponding EPIs
are still equally spaced at a distance of 1 between adjacent rows, as
shown in Fig. 3(a). In this case, the line structure are not preserved.
Note that in the example of Fig. 3(a), view 2 and 3 have a wrong or-
der and all of the views are not equally spaced. Let ui be the “true”
location of row i in the EPI, the vector u = [u0, u1, ..., uN−1]

T is
defined to correct the unequal camera spacing. If the cameras are
equally spaced, then ui = i which is called the nominal camera po-
sition. Let nu = [0, 1, ..., N − 1]T as the vector of the nominal po-
sitions of u. In the real case, if the cameras are unequally spaced, ui

can be any real number. Let ∆ui = ui − i which is the deviation of
row i from its nominal location , ∆u = [∆u0,∆u1, ...,∆uN−1]

T .
Actually we can move each row i by ∆ui to form a Corrected EPI
(CEPI) as shown in Fig. 3(b), the corresponding points in the CEPI
(in our example: p1, p2, ..., p5) will line up and form a straight line.
The camera spacing correction problem is now reduced to finding
the “optimal” ∆u with minimum displacement such that the cor-
responding points are co-linear. The optimal û can be derived by
solving the following convex optimization problem:

û = argmin
u

∥u − nu∥2l2 (4)

subject to u = X · a
where x = [x0, x1, .., xN−1]

T , in which xi is the horizontal coor-
dinate of pixel pi. X = [x IN ], and IN is a vector of size N × 1
with all elements being 1. And a = [α, β]T , where α and β are the
slope and y-intercept of the feature line. Note that the constraint here
are the affine formation of a line function and a is also a variable in
the optimization. The constraint of this optimization problem guar-
antees the corresponding points (in our example: p1, p2, ..., p5) of a
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Fig. 3. Ray-space based spacing correction: (a)Equally-spaced EPI
with non-equally-spaced cameras, (b)Space-corrected EPI

scene point, say P0, are co-linear. We note that many u can make
the points align into a straight line, because if u is a solution such
that u = αx + βIN , then u + γIN will also be a solution because
u + γIN = αx + (β + γ)IN . In this paper, we want to find the u
with minimum deviation, ∥u−nu∥2l2 , which is unique since the cost
function is convex.

Theorem 1: As long as the corresponding points of one scene
point are co-linear in the CEPI, for the corresponding points of any
other scene points visible will also be co-linear.

Proof. From Eqn. (2) and Eqn. (3), we can compute the slope of
the line segment connecting pi and pi+1 in the CEPI for the points
corresponding to any P by

si,i+1(P ) =
ui,i+1 · Z(P )

f · Ci,i+1

Suppose we make the corresponding points of one scene point,
say “P0”, co-linear. Thus, there exists a constant κ such that
κ = ui,i+1/Ci,i+1 for all i. Since κ is only related with camera
distance and row interval in the CEPI, for any other scene point P ′,
si,i+1(P

′) = κZ(P ′)/f which is the same for all i. In other words,
the corresponding points for any scene point are co-linear as long as
one set of points are co-linear.

As explained in Theorem 1, just one set of points corresponding
to a scene point are enough for camera spacing correction, which
can be solved directly by Eqn. 4. However, in reality, the values of
xi may contain small errors due to the finite precision of locations
(integer precision only) or the marking error of corresponding points
locations. There is no need to force such set of points to form a
straight line. Instead, we only need the set of points corresponding
to a scene point to be close to some straight line. In order to increase
the robustness of our correction algorithm, we assume M available
scene points leading to M set of points in the EPIs are marked. The
problem is relaxed into

û = argmin
u

∥u − nu∥2l2 (5)

subject to
1

M

M−1∑
k=0

∥u − Xk · ak∥2l2 < ε

where αk and βk are the slope and y-intercept of the kth line in the
EPI. ak = [αk, βk]

T and Xk are the corresponding quantities. Note
that u is the same for all k. By using the KKT conditions [14] of
the convex problem, Eqn. 5 can be transformed into minimizing the
following unconstrained cost function:

E(u, a0, a1, · · · , aM−1) = ∥u−nu∥2l2+
λ

M

M∑
k=1

∥u−Xkak∥2l2 (6)

Where λ is the Lagrange parameter related with ε. For any u, we
take the derivative of the cost function with respect to ak

∂E

∂ak
=

∂

∂ak
[
λ

M
(u − Xkak)

T (u − Xkak)]

=
λ

M

∂

∂ak
(uT u − aT

k XT
k u − uT Xkak + aT

k XT
k Xkak)

= − λ

2M
(XT

k u − XT
k Xkak)

By setting it to zero we obtain âk = (XT
k Xk)

−1XT
k u. Substitut-

ing it into Eqn. (6), we derive

E(u, â0, â1, · · · , âM−1) = ∥u−nu∥2l2 +
λ

M

M∑
k=1

∥u−Aku∥2l2 (7)

where Ak = Xk(XT
k Xk)

−1XT
k which is an N×N matrix. By taking

the derivative of Eqn. (7) with respect to u and setting it to zero, we
can derive the close-form solution:

û = [(λ+ 1)IN×N − λ

M

M∑
k=1

Ak]
−1nu (8)

Here IN×N is an identity matrix of size N ×N .

4. EXPERIMENTAL RESULTS

The proposed spacing correction algorithm is simulated on the test
sequence “Xmas” which contains 101 views, each of size 640×480.
In our experiment, 11 unequally spaced views are chosen with the
ground truth (original) camera locations lo = [1, 16, 18, 35, 37, 62,
51, 75, 80, 95, 99] which are used to form 480 EPIs each of 640x11.
In our experiment, we assume that the “real” unequal spacing are
unknown and the cameras are equally spaced. Therefore in the initial
stage, in each EPI, row i corresponds to a nominal camera location
(N − 1)i, for i = 0, 1, ..., 10. Note that the incorrect camera order
are simulated by placing View 62 in front of View 51.

To order to measure the accuracy of the spacing correction algo-
rithm, the Camera Spacing Error (CSE) is defined for the corrected
row position u as

CSE(u) = ∥u − uo∥l1 (9)

where uo = lo/(N − 1) is the normalized ground truth (original)
camera location. Obviously, a small CSE suggests a good camera
spacing correction algorithm.

Fig. 4 shows the relationship of CSE corresponding to the scene
points number M and the weighting coefficient λ of our proposed
algorithm in Eqn. (6). Here M = 1, 2, ..., 10 and λ = 1, 2, ..., 50.
Note that the curve is the average behavior of lots of experiments.
We apply the algorithm to two EPIs corresponding to Row 287 and
Row 319 of the multi-view images. A total of 10 sets of points corre-
sponding to 10 scene points are marked manually in our experiment.
When M = 1, there are 10 ways to choose 1 set out of the 10. The
CSE are computed for each case with the average shown in Fig. 4.
For M > 1, all the possible combinations of M sets of points are
used to compute the average CSE. For each M , CSE is computed
with respect to λ which is from 1 to 50 with step 1.

As shown in Fig. 4, CSE appears to decrease as M increases, as
expected since more data tend to give more reliable estimations. For
any M , small λ tends to generate large CSE, because small λ does
not emphasize enough the collinearity of the corresponding points.
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Fig. 4. CSE of Xmas with respect to M and λ

On the other hand, if λ is too large (more than 40), we emphasize too
much on the collinearity of the corresponding pixels, which is not
reasonable in the case that errors exist from the quantization errors
or marking errors for those pixels, the CSE will also become large
when we force them co-linear. The combination of M = 10 and
λ = 25 gives the minimum CSE in our experiment. And we observe
that even the combination of M = 2 (low complexity) and λ = 25
works quite well with a very small CSE.

Fig. 5(a) shows the EPI corresponding to Row 287 with equally
spaced rows before camera spacing correction. We apply our pro-
posed camera spacing correction with M = 2 and λ = 25. The
two sets of points corresponding to M = 2 are marked manually as
bright green points, which do not form straight lines before spacing
correction. By using the two marked sets of points, the proposed
camera spacing correction algorithm is applied to the EPI with the
result shown in Fig. 5(b). The optimal corrected row positions are

u∗ = [0.1, 1.6, 1.8, 3.5, 3.7, 6.1, 5.1, 7.4, 8.0, 9.5, 9.8]

with a small CSE of 0.027. The u∗ corresponds to real camera lo-
cations [1, 16, 18, 35, 37, 61, 51, 74, 80, 95, 98], which are very
similar to the original locations lo. As expected, each sets of points
form straight lines in the CEPI.

5. CONCLUSION

In this paper, to solve the problem that cameras are not equally
spaced, a novel ray-space based camera spacing correction algo-
rithm is proposed to find the real camera intervals by adjusting the

(a)

(b)

Fig. 5. Results of ray-space based spacing correction. (a) EPI with
incorrect camera order and distance, (b) EPI with camera spacing
correction.

EPIs such that pixels corresponding to the same scene point form
a straight line. Experimental results suggest that proposed method
can achieve good performance, even in the case that very few corre-
sponding points sets are provided.
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