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Outline

 Introduction to Graph Convolutional Neural Networks (Graph CNN)
« Background in Graph Signal Processing for analysis on graphs

» Spectral Graph CNNs

« Spatial Graph CNNs

« Applications, Challenges, Open problems
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Motivation

Graphs are flexible mathematical structures modeling pair-wise relations between
data entities.

(a) Brain network (b) Social network (c) 3D point clouds
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Deep Learning on Graphs?
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graph-wise classification
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Application example: vertex-wise classification

Detection in

Social network classification .
autonomous driving
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Social network 3D shapes
(fixed graph) (different graphs)
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Known V.S. unknown domain

Given graph Learned graph
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C3: 1. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

6@28x28
32x32 @ S2:f. maps
B@14x14

LeNet-5 CNN architecture

|
‘ Full confection ‘ Gaussian connections

Convolutions Subsampling Convolutions  Subsampling Full connection

© Convolutional filters (Translation invariance+Self-similarity)
© Multiple layers (Compositionality)
© Filters localized in space (Locality)

© O(1) parameters per filter (independent of input image size n)

© O(n) complexity per layer (filtering done in the spatial domain)

LeCun et al. 1989
1 HEnSERALMREN




Image Graph
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Outline

« Background in Graph Signal Processing for analysis on graphs
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Graph Signal Processing in a Nutshell

« Graph: fixed or learned from data
« Signal: set of scalars / vectors associated to graph vertices
« Define notions: frequency, sampling, transforms, etc.

« Use these to solve problems such as compression, reconstruction, frequency
analysis, spectral clustering, etc.

14 T RS G EARRER



Graph Signal Processing in a Nutshell

Overview papers: [1-3]

Many research contributions (3 GSP workshops)
Toolbox: GSPbox, GraSP, PyGSP

Three textbooks coming up

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of signal processing on
graphs: Extending high-dimensional data analysis to networks and other irregular domains,” IEEE Signal Processing
Magazine, vol. 30, pp. 83-98, May 2013.

[2] A. Sandryhaila and J.M. Moura, “Discrete signal processing on graphs,” IEEE transactions on signal processing, 61(7),
pp.1644-1656, 2013.

[3] A. Ortega, P. Frossard, J. Kovacevi¢, J.M. Moura, and P. Vandergheynst, “Graph signal processing: Overview,
challenges, and applications,” Proceedings of the IEEE, 106(5), pp.808-828, 2018.
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Basic Definitions

« Graph: vertices (nodes) connected via some edges (links)
« Graph Signal: set of scalar/vector values defined on the vertices.

Graph G = (V, E, w)
Vertex Set V = {v1, v, ...}
Edge Set E = {(vi, v2), (v1, v3), ...}
Weighted edges w, sets of weights aj;
Graph Signal x = {x1, x2, ...}
Neighborhood, h-hop
Nw(i) ={j €V : hop_dist(i.j) < h}
\ Allow to define locality on the graph
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Algebraic representations

« Adjacency matrix: A

ai,; : edge weight for the edge (vi, v;) 9 @ 9

Describe the similarity / correlation between nodes 9 e

Undirected graph: a; ; = a;;
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Algebraic representations

« Adjacency matrix: A

* a;,; : edge weight for the edge (vi,v;) 0 e 9
* Describe the similarity / correlation between nodes 9‘6

« Undirected graph: a;; = a;;

* Degree matrix: D

N
dii = )i Qi
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Algebraic representations

« Combinatorial Graph Laplacian matrix

LoD A (O—2—3
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Algebraic representations

« Combinatorial Graph Laplacian matrix

LoD A (O—2—3

* L Is symmetric @‘6
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Algebraic representations

« Combinatorial Graph Laplacian matrix

L-D A D—2—C¢

* L is symmetric 9‘6

* When operating I, on a graph signal x, it captures the variation in the signal

(Lx) () = > en; ij(Ti — )
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Algebraic representations

« Combinatorial Graph Laplacian matrix

* L is symmetric 9 e

* When operating I, on a graph signal x, it captures the variation in the signal

(Lx) () = > en; ij(Ti — )

 Total variation

XTLX — Z ;. j (337, — le'j)Z Graph-signal smoothness prior
i~ --- an important regularizer
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Graph Fourier Transform

« The graph Laplacian L € RNV *¥ is real and symmetric: L, = A\
- a set of real eigenvalues {\}¥*
- a complete set of orthonormal elgenvectors {wz}i‘;al

- The eigenvectors {v,};* ;' define the GFT basis:

=% - Yna
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Graph Fourier Transform

 For any signal x € R" residing on the nodes of G, its GFT x € R is defined
as

%() =<, x>,1=0,1,...,.N — 1 (x=2"x)

GFT coefficients GFT basis  graph signal
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Graph Fourier Transform

 For any signal x € R" residing on the nodes of G, its GFT x € R is defined
as

%() =<, x>,1=0,1,...,.N — 1 (x=2"x)

] GFT coefficients GFT basis  graph signal
 The inverse GFT follows as

x(n) = S o %(Dy(n),n=0,1,.,N—1 (x=2x)

25 HEnSERALMREN




« Offer compact transform domain representation
h37\0 0 0 985 —20 -5 4|
63/0 0 O 16 1 —16 —4
O 0 0 O —5 3 5 —7
0O 0 0 O -1 -4 1 9

« Reason: the graph adaptively captures the correlation in the graph signal

« =~ KLT for a family of statistical models

Wei Hu, Gene Cheung, Antonio Ortega, Oscar C. Au, “Multi-resolution Graph Fourier Transform for Compression of
Piecewise Smooth Images,” IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 419-433, January 2015.
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Outline

» Spectral Graph CNNs
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Convolution

Euclidean

Spatial domain

T

(f*g)(x) = f(x")g(x—a")da'

i

Spectral domain

e

(f *9)(w) = fw) - g(w)

‘Convolution Theorem’

28

Non-Euclidean
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Convolution

Euclidean Non-Euclidean

Spatial domain

(fxg)(z) = f(x")g(x—a")da' ?

Spectral domain

——

(f*xg)(w) = flw) - g(w) frg=(® g)o(®F)

‘Convolution Theorem’
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Principle of Spectral Graph CNNs

« According to the Convolution Theorem, the graph convolution of signal f and
filter g is

g f=o(P'gOP'f)

® Is the matrix of eigenvectors
® denotes the Hadamard product
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Principle of Spectral Graph CNNs

« According to the Convolution Theorem, the graph convolution of signal f and
filter g is

g f=o(P'gOP'f)
« Let gy = diag(®"g), the graph convolution is simplified as

8o *g f = (DgQCDTf

B oeiry 31 T RS G EARRER



Principle of Spectral Graph CNNs

« According to the Convolution Theorem, the graph convolution of signal f and
filter g is

g f=o(P'gOP'f)
« Let gy = diag(®"g), the graph convolution is simplified as

8o *g f = (DgQCDTf

The key difference in spectral Graph CNNs is the choice of filter gg4.
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Spectral Graph CNNs --- Spectral Networks

« The convolution operation is defined in the graph Fourier domain as

gg *; f = OWDTS

g, = W s a learnable diagonal matrix.

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in
Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2014.
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Spectral graph CNNs --- Spectral Networks

« The convolution operation is defined in the graph Fourier domain as

gg *; f = OWDTS

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in
Proceedings of the 3rd International Conference on Learning Representations, 2014.
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Spectral graph CNNs --- Spectral Networks

« The convolution operation is defined in the graph Fourier domain as

gg *; f = OWDTS

® Filters are basis-dependent = does not generalize across graphs

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in
Proceedings of the 3rd International Conference on Learning Representations, 2014.
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Spectral graph CNNs --- Spectral Networks

« The convolution operation is defined in the graph Fourier domain as

gg *; f = OWDTS

® Filters are basis-dependent = does not generalize across graphs

@ Only undirected graphs (symmetric Laplacian matrix required for
orthogonal eigendecomposition)

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in
Proceedings of the 3rd International Conference on Learning Representations, 2014.
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Spectral graph CNNs --- Spectral Networks

« The convolution operation is defined in the graph Fourier domain as

gg *; f = OWDTS

® Filters are basis-dependent = does not generalize across graphs

@ Only undirected graphs (symmetric Laplacian matrix required for
orthogonal eigendecomposition)

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in
Proceedings of the 3rd International Conference on Learning Representations, 2014.
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Spectral graph CNNs --- Spectral Networks

« The convolution operation is defined in the graph Fourier domain as

gg *; f = OWDTS

® Filters are basis-dependent = does not generalize across graphs

@ Only undirected graphs (symmetric Laplacian matrix required for
orthogonal eigendecomposition)

® 0(n) parameters per layer

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in
Proceedings of the 3rd International Conference on Learning Representations, 2014.
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Spectral graph CNNs --- Spectral Networks

« The convolution operation is defined in the graph Fourier domain as

gg *; f = OWDTS

® Filters are basis-dependent = does not generalize across graphs

@ Only undirected graphs (symmetric Laplacian matrix required for
orthogonal eigendecomposition)

® 0(n) parameters per layer
® 0(n?) computation of forward / inverse Fourier transforms &, &

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in
Proceedings of the 3rd International Conference on Learning Representations, 2014.
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Spectral graph CNNs --- Spectral Networks

« The convolution operation is defined in the graph Fourier domain as

gg *; f = OWDTS

® Filters are basis-dependent = does not generalize across graphs

@ Only undirected graphs (symmetric Laplacian matrix required for
orthogonal eigendecomposition)

® 0(n) parameters per layer
® 0(n?) computation of forward / inverse Fourier transforms &, &
® No guarantee of spatial localization of filters

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in
Proceedings of the 3rd International Conference on Learning Representations, 2014.
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Spectral graph CNNs --- Spectral Networks

* Localization in space = smoothness in frequency domain

« Parametrize the filter using a smooth spectral transfer function (A1)

0(1,)
POA)DP'f =P OTf
0(1,)

M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-structured data,” arXiv preprint
arXiv:1506.05163, 2015.
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Spectral graph CNNs --- ChebNet

* Represent spectral transfer function as a polynomial of order K
K—-1
O(A) = 2 6, \¥
k=0
where 0,, ..., 0x_, are learnable parameters

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral

filtering,” in NIPS, pp. 3844-3852, 2016.
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Spectral graph CNNs --- ChebNet

* Represent spectral transfer function as a polynomial of order K
K—-1
O(A) = 2 6, A
k=0
« Using Chebyshev polynomial to approximate above formulation
K—-1
O(A) = z 0, Ty (A)
k=0
where To(x) =1, Ty(x) =x, Tip(x) = 2xTs_1(x) — Ts_o(x).

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral

filtering,” in NIPS, pp. 3844-3852, 2016.
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Spectral graph CNNs --- ChebNet

« The graph convolution operation becomes
K—-1
k=0

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral

filtering,” in NIPS, pp. 3844-3852, 2016.
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Spectral graph CNNs --- ChebNet

« The graph convolution operation becomes
K—-1

8o 6 £ = POMPTE ~ @ ) 6,T (K) &7
k=0

K—-1
Z 0, Ty (L) £
k=0

L — I, A,.x denotes the largest eigenvalue of L, which

where L =

Amax

makes eigenvalues lie in [—1,1].

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral

filtering,” in NIPS, pp. 3844-3852, 2016.
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Spectral graph CNNs --- ChebNet

« The graph convolution operation of ChebNet

K-1
gH *g f =~ 2 Qka(i‘) f
k=0

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral

filtering,” in NIPS, pp. 3844-3852, 2016.
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Spectral graph CNNs --- ChebNet

« The graph convolution operation of ChebNet

K-1
gH *g f =~ 2 Qka(i‘) f
k=0

© Can be applied to directed graphs (spectral interpretation is lost)

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral

filtering,” in NIPS, pp. 3844-3852, 2016.
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Spectral graph CNNs --- ChebNet

« The graph convolution operation of ChebNet

K-1
gH *g f =~ 2 Qka(i‘) f
k=0

© Can be applied to directed graphs (spectral interpretation is lost)
© 0(1) parameters per layer

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral

filtering,” in NIPS, pp. 3844-3852, 2016.
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Spectral graph CNNs --- ChebNet

« The graph convolution operation of ChebNet

K-1
gH *g f =~ 2 Qka(i‘) f
k=0

© Can be applied to directed graphs (spectral interpretation is lost)

© 0(1) parameters per layer
© Filters have guaranteed K-hop support

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral

filtering,” in NIPS, pp. 3844-3852, 2016.
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Spectral graph CNNs --- ChebNet

« The graph convolution operation of ChebNet

K-1
gH *g f =~ 2 Qka(i‘) f
k=0

© Can be applied to directed graphs (spectral interpretation is lost)

© 0(1) parameters per layer

© Filters have guaranteed K-hop support

© No explicit computation of @', ® = 0(n) computational complexity

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011
M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral

filtering,” in NIPS, pp. 3844-3852, 2016.
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citation networks

i

Figure: Monti, Boscaini, Masci, Rodola, Svoboda, B 2017; data: Sen et al. 2008
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Example: citation networks

Method Cora’ PubMed-

Manifold Regularization®  59.5% 70.7%
Semidefinite Embedding®  59.0% 71.1%

Label Propagation” 68.0% 63.0%
DeepWalk" 67.2% 65.3%
Planetoid’ 75.7% 77.2%

Spectral graph CNN® 81.6% 78.7%

Classification accuracy of different methods on citation network datasets

Data: 1'2Sen et al. 2008; methods: 2Belkin et al. 2006; W\Weston et al. 2012: 5Zhu et
al. 2003; ®Perozzi et al. 2014; "Yang et al. 2016; ®Kipf, Welling 2016 (simplification
of ChebNet)
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Outline

« Spatial Graph CNNs
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Convolution

Euclidean Non-Euclidean

Spatial domain

(fxg)(z) = f(x")g(x—a")da' ?

Spectral domain

——

(f*xg)(w) = flw) - g(w) frg=(® g)o(®F)

‘Convolution Theorem’
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Euclidean Non-Euclidean

Boscaini, Masci, B, Vandergheynst 2015
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Spatial convolution

Euclidean Non-Euclidean

Boscaini, Masci, B, Vandergheynst 2015
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Euclidean Non-Euclidean

Boscaini, Masci, B, Vandergheynst 2015
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Spatial convolution on graphs

* Local feature u,; ;s, e.g. vertex degree, geodesic distance, ...

« Set of weighting functions
wq (W), ..., wj(u)

® e O
®
[ '@
® ®
Spatial convolution o
] N O > @
(f*9)i = zgj z wj () f ®
— 4 ® ®
Jj=1 1'=1
where g4, ..., g; are the spatial filter coefficient, Z’i‘le w;(u; ;r)are ® ®

patch operators
Monti, Boscaini, Rodola, Svoboda, B 2017
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Learnable patch operator

* Local feature u; ;s, €.9. vertex degree, geodesic distance,...

« Gaussian weighting functions

1
w, s(u) = exp (— 5= w'E 1 (u—- u)) ® C
O
with learnable covariance X and mean ,
H O QP
O O
Spatial convolution
P ; N O o s o
(F* i) =) g ) Wz, (wyar)f o
: £ @ ®
j=1 1'=1
where g,, ..., g; are the spatial filter coefficients and py, ..., 1; and O @

%1, .., 2; are patch operator parameters

Monti, Boscaini, Rodola, Svoboda, B 2017
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Mixture Model Network (MoNet)

* Local feature u; ;s, €.9. vertex degree, geodesic distance,...

« Gaussian weighting functions

1
w, s (u) = exp (— 5= w'E 1 (u—- u)) ® C
O
with learnable covariance X and mean ,
H O QP
O O
Spatial convolution
P N o o > @
(f *g)i(x) = z Znguj,zj(ui,i’)fi’ o

i'=1 j=1 @ ®

where g,, ..., g; are the spatial filter coefficients and py, ..., 1; and O @

%1, .., 2; are patch operator parameters

Monti, Boscaini, Rodola, Svoboda, B 2017

B oeiry 60 H B g R ARMEN



Edge convolution (DGCNN)

« Permutation-invariant aggregation operator o (e.g. £ or max)

on the neighborhood of i O
« Edge feature function hg(-,-) parametrized by 6 '@
« Edge convolution ®

fi =0y @ineche (i fi) i
)

Method Aggregation [ Edge feature h o

PointNet — h(fi, fir) = h(fi)

MoNet ) h(fi, fir) = 30 g, =, (W) fi ®

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas, “PointNet: Deep learning on point sets for 3d classification
and segmentation,” IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, July, 2017

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, "Dynamic Graph CNN for Learning on Point
Clouds," arXiv preprint arXiv:1801.07829, 2018.
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Edge convolution (DGCNN)

® ®
O ° o
®
o« S
@
®
®

Layer [ Layer [ + 1
Features xgl), e ,xg) € R% Features x§l+1>, e ,xﬁfH) € R%+1
k-NN graph G\ k-NN graph g +Y)
A RE x RY — R+ pUFD  RA+L ¢ RE+1 — RYH2
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Input Layer 1 Layer 2 Layer 3

Left: Distance from red point in the feature space of different DGCNN layers
Right: semantic segmentation results
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T 1

s
2 Al

{f“i.f?"u
°

Point cloud semantic segmentation using DGCNN
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PointNet DynGCNN Groundtruth Scene

Results of semantic segmentation of point cloud+RGB data using different architectures

Methods: Qi et al. 2017 (PointNet); Wang, Sun, Liu, Sarma, B, Solomon 2018
(DynGCNN); data: Armeni et al. 2016 (S3DIS)
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Outline

« Applications, Challenges, Open problems
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Robust Point cloud segmentation

Graph construction Graph convolution . . .
(coo‘idmtes;gmmm mruelenne o Real-word data often suffer from noise, missing data. ..
F Ll .
L AR ey ‘-//ro . . .
\ e \ / © « |ntegrate graph-signal smoothness prior to the loss
g*‘:ﬁw yd A 0 _ N / 2
B o Loss = — XL, yi log(y)) + Xivj aijl|yi — wjll
.‘{6“ ,. :'6’“ e ,’. '.
Segmentation result Dynamic graph output labels g. t. labels edge weight
Framework

-- enforce the features of adjacent vertices to be more similar.

G. Te, W. Hu, A. Zheng, and Z. Guo, "RGCNN: Regularized graph CNN for point cloud segmentation,” ACM Multimedia
Conference, Seoul, Korea, October 2018.
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Input Point Cloud

Chebyshev

Graph
Construction |

Graph
Convo-
lution

Laplacian 1
nxn

.| Laplacian 2

nxn

Laplacian 3

\ nxn

Network Structure

68

Segmentation\

v = o
g 5
MLP n " mip |7 E R
> X > X X 5 E
128 128+256 500 B £
D
\ concatenate & O/
Classiﬁcation\
Global Max
Pooling MLP (128,40)

Y
|E|
=)
Classification

K()utput Score
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Robust Point cloud segmentation

Performance on ShapeNet

| mean | aero  bag  cap car  chair earphone guitar knife lamp laptop motor mug pistol rocket skateboard table
ShapeNet 814 | 81.0 784 777 757 876 61.9 92.0 854 825 95.7 70.6 919  85.9 53.1 69.8 75.3
PointNet 83.7 | 834 787 825 749 896 73.0 91.5 859  80.8 95.3 65.2 93.0  81.2 57.9 72.8 80.6
PointNet++ 85.1 824 790 877 77.3 9038 71.8 91.0 85.9 83.7 95.3 71.6 94.1 81.3 58.7 76.4 82.6
SynSpecCNN 84.7 81.6 817 819 752 90.2 74.9 93.0 86.1 84.7 95.6 06.7 92.7 81.6 60.6 82.9 82.1
Ours 84.3 80.2 828 92.6 753 89.2 73.7 91.3 38.4 83.3 96.0 63.9 95.7 60.9 44.6 72.9 30.4
:_: - & Near
3 ,g; & 2 sot : : » i
L P
.&\;‘mwt';;. .“z\?‘m*‘:'ﬁt.;.
x % " ol e 1
3 & P W
: : : Far % e 'Z &
Visualization of feature space Results
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Robust Point cloud segmentation
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Accuracy with Gaussian noise
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Accuracy(%)
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Dropout Ratio(%)

e Ours e=@== PointNet
PointNet++(DP) e=@== PointNet++

Accuracy with missing data
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Exploring graph learning for semi-supervised

classification for social networks

 Pose a Maximum a Posteriori (MAP) estimation on the adjacency matrix

Ayap(x) = arg;lnax f(x|A)g(A)

- A s the optimal graph adjacency matrix . : .
- x is the observed graph signal e o A
- f(x|4) is the likelihood function oren. AL
- g(A) is the prior distribution

X. Gao, W. Hu, and Z. Guo, "Exploring Graph Learning for Semi-Supervised Classification
Beyond Euclidean Data," arXiv preprint arXiv:1904.10146, 20109.
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Exploring graph learning for semi-supervised

classification for social networks

* Proposed likelihood function
f(x|A) = B exp(—2oxT(I — A)x)

where f and A, are parameters
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Exploring graph learning for semi-supervised

classification for social networks

* Proposed prior distribution
Properties of a valid adjacency matrix

) o T
9(@) = exp (A JAl, - 27 - A - 23]jA1 - 1]]? - 2] (@)]")

1 1 1 1

Sparsity Symmetry Normalized Loopless

A; are parameters, tr(:) and ||-|| denote the trace and the Frobenius norm of a
matrix.
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Exploring graph learning for semi-supervised

classification for social networks

« Based on MAP estimation, propose graph learning loss function

LGL — Lsmooth + ['sparsity + Lproperties
- Lsmooth = /10||xT(I — ﬁout)xni

- Lsparsity — /11||710ut||1

- Lproterties = AZ||qut _ 2out”2 _ /13||20ut1 _ 1”2 _ A4|tr(2out)|2
2 2
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Exploring graph learning for semi-supervised

classification for social networks

Backward Propagation

- ) = N ) ,", \\Q
( \ 4 \ 4 N\
Input Output Graph Output
X2 X2 /%
/( N e X X [N | | \ AU
/ | i
\ X : Graph Learning g% . \ ', I~ Graph Convolution > Classification Loss
: \ ! Layer ! w{ \ I " Layers
/ e e e e e e e i e e e
1
|
Xy X4 oo *
l/ l/ //’

Graph Learning
Loss

v

The architecture of the proposed GLNN for semi-supervised node classification.
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Exploring graph learning for semi-supervised

classification for social networks

Results of node classification in terms of accuracy.

Method  Year TerroristsRel TerrorAttack Citeseer Cora Pubmed*
Planetoid 2016 - - 64.7 75.7 74.5
ChebNet 2016 60.1 62.5 69.6 81.2 71.6
MoNet 2017 59.2 62.4 - 81.7 73.5
LONGAE 2018 63.5 66.0 71.8 79.0 74.7
GAT 2018 63.5 65.5 71.0 82.3 72.3
DGI 2019 52.7 61.5 71.8 82.3 74.6
GWNN 2019 65.5 65.0 71.7 82.8 72.4
GCN 2017 62.2 66.0 70.3 81.5 73.8
GLNN 66.2 68.0 72.2 83.4 74.8
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Exploring graph learning for semi-supervised

classification for social networks

—o—ChebNet GCN GWNN GLNN —o—ChebNet GCN GWNN GLNN
75 80
60 65
45 50
30 35
0.025 0.02 0.015 0.01 0.005 0.025 0.02 0.015 0.01 0.005
Citeseer dataset Cora dataset

Classification accuracy comparison with different label rates
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Litany, BB, Makadia 2018; data: Bogo et al. 2017 (FAUST scans)
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Predicted
J properties
~ 10? sec Us. H. G
w1, A€
<R2>, H, &

Density Functional Theory

Graph Neural Network

~ 1072 sec

Duvenaud et al. 2015;: Gomez-Bombarelli et al. 2016: Gilmer et al. 2017
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Molecules generated with a graph VAE

Simonovsky, Komodakis 2017; You et al. 2018
Collaboration with A. Aspuru-Guzik et al. (Harvard)
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Open guestions and future directions

* How to construct a graph? (graph learning)

 How to avoid over-fitting? (deep structure)

« How to achieve efficient computations? (large-scale graph processing)
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Open guestions and future directions

« Time-varying domains (e.g., dynamic 3D point clouds)

« Directed graphs (e.g., scene graph, citation network)

« Synthesis problems (generative model, e.g., point cloud GAN)
* Reinforcement learning on graphs?

 Killer applications?
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Thank youl!

forhuwei@pku.edu.cn
http://www.icst.pku.edu.cn/huwel/
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