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Outline

• Introduction to Graph Convolutional Neural Networks (Graph CNN)

• Background in Graph Signal Processing for analysis on graphs  

• Spectral Graph CNNs 

• Spatial Graph CNNs 

• Applications, Challenges, Open problems
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Motivation

Graphs are flexible mathematical structures modeling pair-wise relations between 

data entities.
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(a) Brain network (b) Social network (c) 3D point clouds
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Deep Learning on Graphs?
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Application example: graph-wise classification
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Point cloud classification Action recognition

Skeleton Sequence

t

GCN
Action:

Hand Waving
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Application example: vertex-wise classification
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Social network classification 
Detection in  

autonomous driving 
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Fixed v.s. different domain
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Social network 

(fixed graph)

3D shapes

(different graphs)
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Known v.s. unknown domain
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Given graph Learned graph
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Deep neural networks: key ingredients and properties
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LeCun et al. 1989

LeNet-5 CNN architecture
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CNN on graphs?
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Image Graph
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Graph Signal Processing in a Nutshell

• Graph: fixed or learned from data

• Signal: set of scalars / vectors associated to graph vertices

• Define notions: frequency, sampling, transforms, etc.

• Use these to solve problems such as compression, reconstruction, frequency 

analysis, spectral clustering, etc. 
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Graph Signal Processing in a Nutshell

• Overview papers: [1-3] 

• Many research contributions (3 GSP workshops)

• Toolbox: GSPbox, GraSP, PyGSP

• Three textbooks coming up 

15

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of signal processing on 

graphs: Extending high-dimensional data analysis to networks and other irregular domains,” IEEE Signal Processing 
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pp.1644-1656, 2013.
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Basic Definitions

• Graph: vertices (nodes) connected via some edges (links)

• Graph Signal: set of scalar/vector values defined on the vertices.
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Allow to define locality on the graph
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Algebraic representations

17

• Adjacency matrix:  

• : edge weight for the edge

• Describe the similarity / correlation between nodes

• Undirected graph:   

1 2 3

4 5
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Algebraic representations
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• Adjacency matrix:  

• : edge weight for the edge

• Describe the similarity / correlation between nodes

• Undirected graph:   

• Degree matrix: 

1 2 3

4 5
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Algebraic representations
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• Combinatorial Graph Laplacian matrix 
1 2 3

4 5
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Algebraic representations
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• Combinatorial Graph Laplacian matrix 

• is symmetric 

1 2 3

4 5
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Algebraic representations

21

• Combinatorial Graph Laplacian matrix 

• is symmetric 

• When operating     on a graph signal    , it captures the variation in the signal

1 2 3

4 5
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Algebraic representations

22

• Combinatorial Graph Laplacian matrix 

• is symmetric 

• When operating     on a graph signal    , it captures the variation in the signal

• Total variation 

Graph-signal smoothness prior 

--- an important regularizer

1 2 3

4 5
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Graph Fourier Transform

• The graph Laplacian                      is real and symmetric: 

- a set of real eigenvalues                

- a complete set of orthonormal eigenvectors 

• The eigenvectors               define the GFT basis:  

23
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Graph Fourier Transform

• For any signal               residing on the nodes of   , its GFT               is defined 

as  

(                ) 

24

GFT coefficients GFT basis graph signal 



计算机科学技术研究所

Graph Fourier Transform

• For any signal               residing on the nodes of   , its GFT               is defined 

as  

(                ) 

• The inverse GFT follows as   

(                )  
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GFT coefficients GFT basis graph signal 
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Why Graph Fourier Transform

• Offer compact transform domain representation

• Reason: the graph adaptively captures the correlation in the graph signal

• KLT for a family of statistical models

26

GFT DCT

Wei Hu, Gene Cheung, Antonio Ortega, Oscar C. Au, “Multi-resolution Graph Fourier Transform for Compression of 

Piecewise Smooth Images,” IEEE Transactions on Image Processing, vol. 24, no. 1, pp. 419-433, January 2015.
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Outline
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Convolution
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Convolution
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Principle of Spectral Graph CNNs

30

• According to the Convolution Theorem, the graph convolution of signal 𝐟 and 

filter 𝐠 is

𝐠 ∗𝒢 𝐟 = Φ Φ⊤𝐠⨀Φ⊤𝐟

Φ is the matrix of eigenvectors

⨀ denotes the Hadamard product
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Principle of Spectral Graph CNNs
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• According to the Convolution Theorem, the graph convolution of signal 𝐟 and 

filter 𝐠 is

𝐠 ∗𝒢 𝐟 = Φ Φ⊤𝐠⨀Φ⊤𝐟

• Let 𝐠𝜃 = diag Φ⊤𝐠 , the graph convolution is simplified as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐠𝜃Φ
⊤𝐟
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Principle of Spectral Graph CNNs
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• According to the Convolution Theorem, the graph convolution of signal 𝐟 and 

filter 𝐠 is

𝐠 ∗𝒢 𝐟 = Φ Φ⊤𝐠⨀Φ⊤𝐟

• Let 𝐠𝜃 = diag Φ⊤𝐠 , the graph convolution is simplified as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐠𝜃Φ
⊤𝐟

The key difference in spectral Graph CNNs is the choice of filter 𝐠𝜃.



计算机科学技术研究所

Spectral Graph CNNs --- Spectral Networks
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• The convolution operation is defined in the graph Fourier domain as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐖Φ⊤𝐟

𝐠𝜃 = 𝐖 is a learnable diagonal matrix.   

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in 

Proceedings of the 3rd International Conference on Learning Representations (ICLR), 2014.
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Spectral graph CNNs --- Spectral Networks
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• The convolution operation is defined in the graph Fourier domain as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐖Φ⊤𝐟

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in 

Proceedings of the 3rd International Conference on Learning Representations, 2014.
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Spectral graph CNNs --- Spectral Networks
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• The convolution operation is defined in the graph Fourier domain as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐖Φ⊤𝐟

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in 

Proceedings of the 3rd International Conference on Learning Representations, 2014.

 Filters are basis-dependent ⇒ does not generalize across graphs
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Spectral graph CNNs --- Spectral Networks
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• The convolution operation is defined in the graph Fourier domain as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐖Φ⊤𝐟

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in 

Proceedings of the 3rd International Conference on Learning Representations, 2014.

 Filters are basis-dependent ⇒ does not generalize across graphs

 Only undirected graphs (symmetric Laplacian matrix required for 

orthogonal eigendecomposition)
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Spectral graph CNNs --- Spectral Networks
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• The convolution operation is defined in the graph Fourier domain as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐖Φ⊤𝐟

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in 

Proceedings of the 3rd International Conference on Learning Representations, 2014.

 Filters are basis-dependent ⇒ does not generalize across graphs

 Only undirected graphs (symmetric Laplacian matrix required for 

orthogonal eigendecomposition)
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Spectral graph CNNs --- Spectral Networks
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• The convolution operation is defined in the graph Fourier domain as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐖Φ⊤𝐟

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in 

Proceedings of the 3rd International Conference on Learning Representations, 2014.

 Filters are basis-dependent ⇒ does not generalize across graphs

 Only undirected graphs (symmetric Laplacian matrix required for 

orthogonal eigendecomposition)

 𝒪 𝑛 parameters per layer
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Spectral graph CNNs --- Spectral Networks

39

• The convolution operation is defined in the graph Fourier domain as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐖Φ⊤𝐟

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in 

Proceedings of the 3rd International Conference on Learning Representations, 2014.

 Filters are basis-dependent ⇒ does not generalize across graphs

 Only undirected graphs (symmetric Laplacian matrix required for 

orthogonal eigendecomposition)

 𝒪 𝑛 parameters per layer

 𝒪 𝑛2 computation of forward / inverse Fourier transforms 𝚽⊤, 𝚽
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Spectral graph CNNs --- Spectral Networks
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• The convolution operation is defined in the graph Fourier domain as

𝐠𝜃 ∗𝒢 𝐟 = Φ𝐖Φ⊤𝐟

J. Bruna, W. Zaremba, A. Szlam, and Y. Lecun, “Spectral networks and locally connected networks on graphs,” in 

Proceedings of the 3rd International Conference on Learning Representations, 2014.

 Filters are basis-dependent ⇒ does not generalize across graphs

 Only undirected graphs (symmetric Laplacian matrix required for 

orthogonal eigendecomposition)

 𝒪 𝑛 parameters per layer

 𝒪 𝑛2 computation of forward / inverse Fourier transforms 𝚽⊤, 𝚽

 No guarantee of spatial localization of filters



计算机科学技术研究所

Spectral graph CNNs --- Spectral Networks

41

• Localization in space = smoothness in frequency domain

• Parametrize the filter using a smooth spectral transfer function Θ 𝜆

ΦΘ 𝚲 Φ⊤𝐟 = Φ
Θ 𝜆1

⋱
Θ 𝜆𝑛

Φ⊤𝐟

M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on graph-structured data,” arXiv preprint 

arXiv:1506.05163, 2015.
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Spectral graph CNNs --- ChebNet

42

• Represent spectral transfer function as a polynomial of order 𝐾

Θ 𝚲 = ෍

𝑘=0

𝐾−1

𝜃𝑘Λ
𝑘

where 𝜃0, … , 𝜃𝐾−1 are learnable parameters

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and 

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral 

filtering,” in NIPS, pp. 3844–3852, 2016.
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Spectral graph CNNs --- ChebNet
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• Represent spectral transfer function as a polynomial of order 𝐾

Θ 𝚲 = ෍

𝑘=0

𝐾−1

𝜃𝑘Λ
𝑘

• Using Chebyshev polynomial to approximate above formulation 

Θ 𝚲 = ෍

𝑘=0

𝐾−1

𝜃𝑘𝑇𝑘 ෩𝚲

where 𝑇0 𝑥 = 1, 𝑇1 𝑥 = 𝑥, 𝑇𝑘 𝑥 = 2𝑥𝑇𝑘−1 𝑥 − 𝑇𝑘−2 𝑥 .

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and 

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral 

filtering,” in NIPS, pp. 3844–3852, 2016.
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Spectral graph CNNs --- ChebNet
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• The graph convolution operation becomes

𝐠𝜃 ∗𝒢 𝐟 = ΦΘ 𝚲 Φ⊤𝐟 ≈ Φ෍

𝑘=0

𝐾−1

𝜃𝑘𝑇𝑘 ෩𝚲 Φ⊤𝐟

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and 

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral 

filtering,” in NIPS, pp. 3844–3852, 2016.
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Spectral graph CNNs --- ChebNet
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• The graph convolution operation becomes

𝐠𝜃 ∗𝒢 𝐟 = ΦΘ 𝚲 Φ⊤𝐟 ≈ Φ෍

𝑘=0

𝐾−1

𝜃𝑘𝑇𝑘 ෩𝚲 Φ⊤𝐟

= ෍

𝑘=0

𝐾−1

𝜃𝑘𝑇𝑘 ሚ𝐋 𝐟

where ሚ𝐋 =
2

𝜆max
𝐋 − 𝑰𝑛, 𝜆max denotes the largest eigenvalue of 𝐋, which 

makes eigenvalues lie in −1,1 .

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and 

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral 

filtering,” in NIPS, pp. 3844–3852, 2016.
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Spectral graph CNNs --- ChebNet
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• The graph convolution operation of ChebNet

𝐠𝜃 ∗𝒢 𝐟 ≈ ෍

𝑘=0

𝐾−1

𝜃𝑘𝑇𝑘 ሚ𝐋 𝐟

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and 

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral 

filtering,” in NIPS, pp. 3844–3852, 2016.
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Spectral graph CNNs --- ChebNet
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• The graph convolution operation of ChebNet

𝐠𝜃 ∗𝒢 𝐟 ≈ ෍

𝑘=0

𝐾−1

𝜃𝑘𝑇𝑘 ሚ𝐋 𝐟

 Can be applied to directed graphs (spectral interpretation is lost)

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and 

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral 

filtering,” in NIPS, pp. 3844–3852, 2016.
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Spectral graph CNNs --- ChebNet
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• The graph convolution operation of ChebNet

𝐠𝜃 ∗𝒢 𝐟 ≈ ෍

𝑘=0

𝐾−1

𝜃𝑘𝑇𝑘 ሚ𝐋 𝐟

 Can be applied to directed graphs (spectral interpretation is lost)

 𝒪 1 parameters per layer

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and 

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral 

filtering,” in NIPS, pp. 3844–3852, 2016.
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Spectral graph CNNs --- ChebNet
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• The graph convolution operation of ChebNet

𝐠𝜃 ∗𝒢 𝐟 ≈ ෍

𝑘=0

𝐾−1

𝜃𝑘𝑇𝑘 ሚ𝐋 𝐟

 Can be applied to directed graphs (spectral interpretation is lost)

 𝒪 1 parameters per layer

 Filters have guaranteed 𝐾-hop support

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and 

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral 

filtering,” in NIPS, pp. 3844–3852, 2016.
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Spectral graph CNNs --- ChebNet

50

• The graph convolution operation of ChebNet

𝐠𝜃 ∗𝒢 𝐟 ≈ ෍

𝑘=0

𝐾−1

𝜃𝑘𝑇𝑘 ሚ𝐋 𝐟

 Can be applied to directed graphs (spectral interpretation is lost)

 𝒪 1 parameters per layer

 Filters have guaranteed 𝐾-hop support

 No explicit computation of 𝚽⊤, 𝚽 ⇒ 𝒪 𝑛 computational complexity

D. K. Hammond, P. Vandergheynst, and R. Gribonval, "Wavelets on graphs via spectral graph theory," Applied and 

Computational Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011

M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with fast localized spectral 

filtering,” in NIPS, pp. 3844–3852, 2016.
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Example: citation networks

51

Figure: Monti, Boscaini, Masci, Rodola, Svoboda, B 2017; data: Sen et al. 2008
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Example: citation networks

52

Classification accuracy of different methods on citation network datasets
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Outline

• Introduction to Graph Convolutional Neural Networks (Graph CNN)

• Background in Graph Signal Processing for analysis on graphs  

• Spectral Graph CNNs 

• Spatial Graph CNNs 

• Applications, Challenges, Open problems

53



计算机科学技术研究所

Convolution

54
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Spatial convolution

55

Euclidean Non-Euclidean

Boscaini, Masci, B, Vandergheynst 2015
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Spatial convolution
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Euclidean Non-Euclidean

Boscaini, Masci, B, Vandergheynst 2015
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Spatial convolution

57

Euclidean Non-Euclidean

Boscaini, Masci, B, Vandergheynst 2015
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Spatial convolution on graphs

• Local feature 𝒖𝑖,𝑖′, e.g. vertex degree, geodesic distance, ...

• Set of weighting functions

𝑤1 𝒖 ,… ,𝑤𝑗(𝒖)

Spatial convolution

𝑓 ⋆ 𝑔 𝑖 =෍

𝑗=1

𝐽

𝑔𝑗 ෍

𝑖′=1

𝑁

𝑤𝑗 𝒖𝑖,𝑖′ 𝑓𝑖′

where 𝑔1, … , 𝑔𝐽 are the spatial filter coefficient, σ𝑖′=1
𝑁 𝑤𝑗(𝒖𝑖,𝑖′)are 

patch operators

58

Monti, Boscaini, Rodola, Svoboda, B 2017
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Learnable patch operator

• Local feature 𝒖𝑖,𝑖′, e.g. vertex degree, geodesic distance,...

• Gaussian weighting functions

𝑤𝜇,Σ 𝒖 = exp −
1

2
𝒖 − 𝝁 𝑇𝚺−1 𝒖 − 𝝁

with learnable covariance 𝚺 and mean 𝝁

Spatial convolution

𝑓 ⋆ 𝑔 𝑖(𝑥) =෍

𝑗=1

𝐽

𝑔𝑗 ෍

𝑖′=1

𝑁

𝑤𝜇𝑗,Σ𝑗 𝒖𝑖,𝑖′ 𝑓𝑖′

where 𝑔1, … , 𝑔𝐽 are the spatial filter coefficients and 𝜇1, … , 𝜇𝐽 and 

Σ1, … , Σ𝐽 are patch operator parameters

59

Monti, Boscaini, Rodola, Svoboda, B 2017
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Mixture Model Network (MoNet)

• Local feature 𝒖𝑖,𝑖′, e.g. vertex degree, geodesic distance,...

• Gaussian weighting functions

𝑤𝜇,Σ 𝒖 = exp −
1

2
𝒖 − 𝝁 𝑇𝚺−1 𝒖 − 𝝁

with learnable covariance 𝚺 and mean 𝝁

Spatial convolution

𝑓 ⋆ 𝑔 𝑖(𝑥) = ෍

𝑖′=1

𝑁

෍

𝑗=1

𝐽

𝑔𝑗𝑤𝜇𝑗,Σ𝑗 𝒖𝑖,𝑖′ 𝑓𝑖′

where 𝑔1, … , 𝑔𝐽 are the spatial filter coefficients and 𝜇1, … , 𝜇𝐽 and 

Σ1, … , Σ𝐽 are patch operator parameters

60

Monti, Boscaini, Rodola, Svoboda, B 2017
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Edge convolution (DGCNN)

• Permutation-invariant aggregation operator □ (e.g. Σ or max) 

on the neighborhood of 𝑖

• Edge feature function ℎΘ(∙,∙) parametrized by Θ

• Edge convolution

𝑓𝑖
′ = □𝑖′: 𝑖,𝑖′ ∈𝜀ℎΘ 𝑓𝑖 , 𝑓𝑖

′

61

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas, “PointNet: Deep learning on point sets for 3d classification 

and segmentation,” IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, July, 2017

Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, "Dynamic Graph CNN for Learning on Point 

Clouds," arXiv preprint arXiv:1801.07829, 2018.
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Edge convolution (DGCNN)

• Construct k-NN graph in feature space and update it after each layer

62
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Learning semantic features

63

Left: Distance from red point in the feature space of different DGCNN layers

Right: semantic segmentation results

Near

Far
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Semantic segmentation

64

Point cloud semantic segmentation using DGCNN
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Semantic segmentation

65

Results of semantic segmentation of point cloud+RGB data using different architectures

Methods: Qi et al. 2017 (PointNet); Wang, Sun, Liu, Sarma, B, Solomon 2018

(DynGCNN); data: Armeni et al. 2016 (S3DIS)
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Outline

• Introduction to Graph Convolutional Neural Networks (Graph CNN)

• Background in Graph Signal Processing for analysis on graphs  

• Spectral Graph CNNs 

• Spatial Graph CNNs 

• Applications, Challenges, Open problems

66
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Robust Point cloud segmentation

• Real-word data often suffer from noise, missing data…

• Integrate graph-signal smoothness prior to the loss

Loss = −σ𝑖=1
𝑁 𝑦𝑖 log 𝑦𝑖

′ +σ𝑖~𝑗 𝑎𝑖,𝑗 𝑦𝒊 − 𝑦𝒋 2

2

67

output labels g. t. labels edge weight

G. Te, W. Hu, A. Zheng, and Z. Guo, "RGCNN: Regularized graph CNN for point cloud segmentation," ACM Multimedia 

Conference, Seoul, Korea, October 2018. 

Framework
-- enforce the features of adjacent vertices to be more similar.
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Robust Point cloud segmentation

• Update the graph Laplacian dynamically

68

Network Structure
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Robust Point cloud segmentation

69

Near

Far

69

Performance on ShapeNet

Visualization of feature space Results
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Robust Point cloud segmentation

70

Accuracy with Gaussian noise
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Robust Point cloud segmentation

71

Accuracy with missing data

71
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Exploring graph learning for semi-supervised 

classification for social networks

72

• Pose a Maximum a Posteriori (MAP) estimation on the adjacency matrix

෩𝑨MAP 𝑥 = argmax
෡𝑨

𝑓 𝑥 ෡𝑨 𝑔 ෡𝑨

– ෡𝑨 is the optimal graph adjacency matrix

– 𝑥 is the observed graph signal

– 𝑓 𝑥 ෡𝑨 is the likelihood function

– 𝑔 ෡𝑨 is the prior distribution

X. Gao, W. Hu, and Z. Guo, "Exploring Graph Learning for Semi-Supervised Classification 

Beyond Euclidean Data," arXiv preprint arXiv:1904.10146, 2019.
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Exploring graph learning for semi-supervised 

classification for social networks

73

• Proposed likelihood function

𝑓 𝑥 ෡𝑨 = 𝛽 exp −𝜆0𝑥
⊤ 𝐼 − ෡𝑨 𝑥

where 𝛽 and 𝜆0 are parameters
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Exploring graph learning for semi-supervised 

classification for social networks

74

• Proposed prior distribution

𝑔 ෡𝑨 = exp −𝜆1 ෡𝑨
1
− 𝜆2 ෡𝑨⊤ − ෡𝑨

𝐹

2
− 𝜆3 ෡𝑨𝟏 − 𝟏

𝐹

2
− 𝜆4 tr ෡𝑨

2

𝜆𝑖 are parameters, tr ⋅ and ⋅ 𝐹 denote the trace and the Frobenius norm of a 

matrix.

Sparsity Symmetry Normalized Loopless

Properties of a valid adjacency matrix
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Exploring graph learning for semi-supervised 

classification for social networks

75

• Based on MAP estimation, propose graph learning loss function

ℒGL = ℒsmooth + ℒsparsity + ℒproperties

– ℒsmooth = 𝜆0 𝑥⊤ 𝐼 − ෡𝑨out 𝑥 2

2

– ℒsparsity = 𝜆1 ෡𝑨out 1

– ℒproterties = 𝜆2 ෡𝑨out
⊤ − ෡𝑨out 2

2
− 𝜆3 ෡𝑨out𝟏 − 𝟏

2

2
− 𝜆4 tr ෡𝑨out

2
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Exploring graph learning for semi-supervised 

classification for social networks

76

Input LayerInput LayerInput LayerInput LayerOutput

z3

z2

z4

z1

z5

Input LayerInput LayerOutput Graph
Input LayerInput LayerInput

Classification Loss

Graph Learning 

Loss

Graph Learning 

Layer

Graph Convolution 

Layers

+

Backward Propagation

x3

x5

x4

x1

x2

x3

x2

x4

x1

x5

The architecture of the proposed GLNN for semi-supervised node classification.
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Exploring graph learning for semi-supervised 

classification for social networks

77

Method Year TerroristsRel TerrorAttack Citeseer Cora Pubmed*

Planetoid 2016 - - 64.7 75.7 74.5

ChebNet 2016 60.1 62.5 69.6 81.2 71.6

MoNet 2017 59.2 62.4 - 81.7 73.5

LoNGAE 2018 63.5 66.0 71.8 79.0 74.7

GAT 2018 63.5 65.5 71.0 82.3 72.3

DGI 2019 52.7 61.5 71.8 82.3 74.6

GWNN 2019 65.5 65.0 71.7 82.8 72.4

GCN 2017 62.2 66.0 70.3 81.5 73.8

GLNN 66.2 68.0 72.2 83.4 74.8

Results of node classification in terms of accuracy.
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Exploring graph learning for semi-supervised 

classification for social networks

78
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Classification accuracy comparison with different label rates



计算机科学技术研究所

Shape completion with Intrinsic VAE

79

Litany, BB, Makadia 2018; data: Bogo et al. 2017 (FAUST scans)



计算机科学技术研究所

Molecule property prediction 

80

Duvenaud et al. 2015; Gomez-Bombarelli et al. 2016; Gilmer et al. 2017
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Molecule generation

81

Simonovsky, Komodakis 2017; You et al. 2018

Collaboration with A. Aspuru-Guzik et al. (Harvard)

Molecules generated with a graph VAE
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Open questions and future directions

• How to construct a graph? (graph learning)

• How to avoid over-fitting? (deep structure)

• How to achieve efficient computations? (large-scale graph processing)

82
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Open questions and future directions

• Time-varying domains (e.g., dynamic 3D point clouds)

• Directed graphs (e.g., scene graph, citation network)

• Synthesis problems (generative model, e.g., point cloud GAN)

• Reinforcement learning on graphs?

• Killer applications?
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Thank you!

forhuwei@pku.edu.cn

http://www.icst.pku.edu.cn/huwei/
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