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ABSTRACT

We propose a general projection-free metric learning framework,
where the minimization objective minM∈S Q(M) is a convex dif-
ferentiable function of the metric matrix M, and M resides in the set
S of generalized graph Laplacian matrices for connected graphs with
positive edge weights and node degrees. Unlike low-rank metric ma-
trices common in the literature, S includes the important positive-
diagonal-only matrices as a special case in the limit. The key idea
for fast optimization is to rewrite the positive definite cone constraint
in S as signal-adaptive linear constraints via Gershgorin disc align-
ment, so that the alternating optimization of the diagonal and off-
diagonal terms in M can be solved efficiently as linear programs via
Frank-Wolfe iterations. We prove that the Gershgorin discs can be
aligned perfectly using the first eigenvector v of M, which we up-
date iteratively using Locally Optimal Block Preconditioned Conju-
gate Gradient (LOBPCG) with warm start as diagonal / off-diagonal
terms are optimized. Experiments show that our efficiently com-
puted graph metric matrices outperform metrics learned using com-
peting methods in terms of classification tasks.

Index Terms— Metric Learning, graph signal processing

1. INTRODUCTION

Given a feature vector fi ∈ RK per sample i, a metric matrix M ∈
RK×K defines the feature distance—Mahalanobis distance [1] be-
tween two samples i and j in a feature space as (fi−fj)>M(fi−fj),
where M is commonly assumed to be positive definite (PD). Metric
learning—identifying the best metric M minimizing a chosen ob-
jective function Q(M) subject to M � 0—has been the focus of
many recent machine learning research efforts [2, 3, 4, 5, 6].

One key challenge in metric learning is to satisfy the positive
(semi-)definite (PSD) cone constraint M � 0 (M � 0) when
minimizing Q(M) in a computation-efficient manner. A standard
approach is iterative gradient-descent / projection (e.g., proximal
gradient (PG) [7]), where a descent step α from current solu-
tion Mt at iteration t in the direction of the negative gradient
−∇Q(Mt) is followed by a projection Pr() back to the PSD cone,
i.e., Mt+1 := Pr

(
Mt −α∇Q(Mt)

)
. However, projection Pr()

typically requires eigen-decomposition of M and soft-thresholding
of its eigenvalues, which is computation-expensive.

Recent methods consider alternative search spaces of ma-
trices such as sparse or low-rank matrices to ease optimization
[3, 4, 5, 8, 9]. While efficient, the assumed restricted search spaces
often degrade the quality of sought metric M in defining the Maha-
lanobis distance. For example, low-rank methods explicitly assume
reducibility of the K available features to a lower dimension, and
hence exclude the simple yet important weighted feature metric
case where M contains only positive diagonal entries [10], i.e.,
(fi − fj)

>M(fi − fj) =
∑

kmk,k(fk
i − fk

j )2, mk,k > 0,∀k. We

show in our experiments that computed metrics by these methods
may result in inferior performance for selected applications.

In this paper, we propose a metric learning framework that is
both general and projection-free, capable of optimizing any con-
vex differentiable objectiveQ(M). Compared to low-rank methods,
our framework is more encompassing and includes positive-diagonal
metric matrices as a special case in the limit1. The main idea is as
follows. First, we define a search space S of general graph Lapla-
cian matrices [11], each corresponding to a connected graph with
positive edge weights and node degrees. The underlying graph edge
weights capture pairwise correlations among theK features, and the
self-loops designate relative importance among the features.

Assuming M ∈ S, we next rewrite the PD cone constraint
as signal-adaptive linear constraints via Gershgorin disc alignment
[12, 13]: first compute scalars sk’s from previous solution Mt that
align the Gershgorin disc left-ends of matrix SMtS−1, where S =
diag(s1, . . . , sK), then derive scaled linear constraints using sk’s to
ensure PDness of the next computed metric Mt+1 via the Gersh-
gorin Circle Theorem (GCT) [14]. Linear constraints mean that our
proposed alternating optimization of the diagonal and off-diagonal
terms in M can be solved speedily as linear programs [15] via Frank-
Wolfe iterations [16]. We prove that for any metric Mt in S, us-
ing scalars sk = 1/vk can perfectly align Gershgorin disc left-
ends for matrix SMtS−1 at the smallest eigenvalue λmin, where
Mtv = λminv. We efficiently update v iteratively using Locally
Optimal Block Preconditioned Conjugate Gradient (LOBPCG) [17]
with warm start as diagonal / off-diagonal terms are optimized. Ex-
periments show that our computed graph metrics outperform metrics
learned using competing methods in a range of applications.

2. REVIEW OF SPECTRAL GRAPH THEORY

We consider an undirected graph G = {V, E ,W} composed of a
node set V of cardinality |V| = N , an edge set E connecting nodes,
and a weighted adjacency matrix W. Each edge (i, j) ∈ E has
a positive weight wi,j > 0 which reflects the degree of similarity
between nodes i and j. Specifically, it is common to compute edge
weight wi,j as the exponential of the feature distance δi,j between
nodes i and j [18]:

wi,j = exp (−δi,j) (1)

Using (1) means wi,j ∈ (0, 1] for δi,j ∈ [0,∞). We discuss feature
distance δi,j in the next section.

There may be self-loops in graph G, i.e., ∃i where wi,i > 0, and
the corresponding diagonal entries of W are positive. The combina-
torial graph Laplacian [18] is defined as L := D−W, where D is

1As the inter-feature correlations tend to zero, only graph self-loops ex-
pressing relative importance among the K features remain, and the general
graph Laplacian matrix tends to diagonal.



the degree matrix—a diagonal matrix where di,i =
∑N

j=1 wi,j . A
generalized graph Laplacian [11] accounts for self-loops in G also
and is defined as Lg = D −W + diag(W), where diag(W) ex-
tracts the diagonal entries of W. Alternatively we can write Lg =
Dg−W, where the generalized degree matrix Dg = D+diag(W)
is diagonal.

3. GRAPH METRIC LEARNING

3.1. Graph Metric Matrices

We first define the search space of metric matrices for our optimiza-
tion framework. We assume that associated with each sample i is a
length-K feature vector fi ∈ RK . A metric matrix M ∈ RK×K de-
fines the feature distance δi,j(M)—the Mahalanobis distance [1]—
between samples i and j as:

δi,j(M) = (fi − fj)
>M(fi − fj) (2)

We require M to be a positive definite (PD) matrix2. The special
case where M is diagonal with strictly positive entries was studied
in [10]. Instead, we study here a more general case: M must be a
graph metric matrix, which we define formally as follows.

Definition 1. A PD symmetric matrix M is a graph metric if it is a
generalized graph Laplacian matrix with positive edge weights and
node degrees for an irreducible graph.

For a generalized graph Laplacian Lg to have positive degrees,
each node i may have a self-loop, but its loop weight wi,i must
satisfy wi,i > −

∑
j | j 6=i wi,j . Irreducible graph [20] essentially

means that any graph node can commute with any other node.

3.2. Problem Formulation

Denote by S the set of all graph metric matrices. We pose an opti-
mization problem for M: find the optimal graph metric M in S—
leading to inter-sample distances δi,j(M) in (2)—that yields the
smallest value of a convex differential objective Q({δi,j(M)}):

min
M∈S

Q ({δi,j(M)}) , s.t. tr(M) ≤ C (3)

where C is a chosen parameter. Constraint tr(M) ≤ C is needed
to avoid pathological solutions with infinite feature distances, i.e.,
δi,i(M) = ∞. For stability, we assume also that the objective is
lower-bounded, i.e., minM∈S Q({δi,j(M)}) ≥ κ > −∞ for some
constant κ.

Our strategy to solve (3) is to optimize M’s diagonal and off-
diagonal terms alternately using Frank-Wolfe iterations [16], where
each iteration is solved as an LP until convergence. We discuss first
the initialization of M, then the two optimizations in order. For nota-
tion convenience, we will write the objective simply as Q(M), with
the understanding that metric M affects first the feature distances
δi,j(M), which in turn determine the objective Q({δi,j(M)}).

3.3. Initialization of M

We first initialize a valid graph metric M0 as follows:

1. Initialize each diagonal term m0
i,i := C/K.

2By definition of a metric [19], (fi−fj)
>M(fi−fj) > 0 if fi−fj 6= 0.

2. Initialize off-diagonal terms m0
i,j , i 6= j, as:

m0
i,j :=

{
−ε if j = i± 1
0 o.w. (4)

where ε > 0 is a parameter. Initialization of the diagonal terms
ensures that constraints tr(M0) ≤ C, M0 � 0 and m0

i,i > 0 are
satisfied. Initialization of the off-diagonal terms ensures that M0

is symmetric and irreducible, and constraint m0
i,j ≤ 0, i 6= j, is

satisfied; i.e., M0 is a Laplacian matrix for graph with non-negative
edge weights. We can hence conclude that initial M0 is a graph
metric, i.e., M0 ∈ S.

3.4. Optimization of Diagonal Terms

When optimizing M’s diagonal terms mi,i, (3) becomes

min
{mi,i}

Q(M) (5)

s.t. M � 0;
∑
i

mi,i ≤ C; mi,i > 0, ∀i

where tr(M) =
∑

imi,i. Because the diagonal terms do not affect
the irreducibility of matrix M, the only requirements for M to be a
graph metric are: i) M must be PD, and ii) diagonals must be strictly
positive.

3.4.1. Gershgorin-based Reformulation

To efficiently enforce the PD constraint M � 0, we derive sufficient
(but not necessary) linear constraints using the Gershgorin Circle
Theorem (GCT) [14]. By GCT, each eigenvalue λ of a real matrix
M resides in at least one Gershgorin disc Ψi, corresponding to row
i of M, with center ci = mi,i and radius ri =

∑
j | j 6=i |mi,j |, i.e.,

∃i s.t. ci − ri ≤ λ ≤ ci + ri (6)

Thus a sufficient condition to ensure M is PD (smallest eigenvalue
λmin > 0) is to ensure that all discs’ left-ends are strictly positive,
i.e.,

0 < min
i
ci − ri ≤ λmin (7)

This translates to a linear constraint for each row i:

mi,i ≥
∑

j | j 6=i

|mi,j |+ ρ, ∀i ∈ {1, . . . ,K} (8)

where ρ > 0 is a sufficiently small parameter.
However, GCT lower bound mini ci−ri for λmin is often loose.

When optimizing M’s diagonal terms, enforcing (8) directly means
that we are searching for {mi,i} in a smaller space than the original
space {M |M � 0} in (5), resulting in an inferior solution. As an
illustration, consider the following example matrix M:

M =

 2 −2 −1
−2 5 −2
−1 −2 4

 (9)

Gershgorin disc left-ends mi,i −
∑

j | j 6=i |mi,j | for this matrix are
{−1, 1, 1}, of which −1 is the smallest. Thus the diagonal terms
{2, 5, 4} do not meet constraints (8). However, M is PD, since its
smallest eigenvalue is λmin = 0.1078 > 0.



3.4.2. Gershgorin Disc Alignment

To derive more appropriate linear constraints—thus more suitable
search space when solving minM∈S Q(M), we examine instead the
Gershgorin discs of a similar-transformed matrix B from M, i.e.,

B = SMS−1 (10)

where S = diag(s1, . . . , sK) is a diagonal matrix with scalars
s1, . . . , sK along its diagonal, sk > 0, ∀k. B has the same
eigenvalues as M, and thus the smallest Gershgorin disc left-end,
mini bi,i −

∑
j | j 6=i |bi,j |, for B is also a lower bound for M’s

smallest eigenvalue λmin. Our goal is then to derive tight λmin

lower bounds by adapting to good solutions to (5)—by appropriately
choosing s1, . . . , sK used to define B in (10).

Specifically, given scalars s1, . . . , sK , a disc Ψi for B has center
mi,i and radius si

∑
j | j 6=i |mi,j |/sj . Thus to ensure B is PD (and

hence M is PD), we can write similar linear constraints as (8):

mi,i ≥ si
∑

j | j 6=i

|mi,j |
sj

+ ρ, ∀i ∈ {1, . . . ,K} (11)

It turns out that given a graph metric M, there exist scalars
s1, . . . , sK such that all disc left-ends are aligned at the same
value λmin. We state this formally as a theorem.

Theorem 1. Let M be a graph metric matrix. There exist strictly
positive scalars s1, . . . , sK such that all Gershgorin disc left-ends
of B = SMS−1 are aligned exactly at the smallest eigenvalue, i.e.,
bi,i −

∑
j | j 6=i |bi,j | = λmin, ∀i.

In other words, for matrix B the Gershgorin lower bound
mini ci − ri is exactly λmin, and the bound is the tightest possible.
The important corollary is the following:

Corollary 1. For any graph metric M, which by definition is PD,
there exist scalars s1, . . . , sK where M is feasible using linear con-
straints in (11).

Proof. By Theorem 1, let s1, . . . , sK be scalars such that all Gersh-
gorin disc left-ends of B = SMS−1 align at λmin. Thus

∀i, mi,i − si
∑

j | j 6=i

|mi,j |
sj

= λmin > 0 (12)

where λmin > 0 since M is PD. Hence M must also satisfy (11) for
all i for sufficiently small ρ > 0.

Continuing our earlier example, using s1 = 0.7511, s2 =
0.4886 and s30.4440, we see that B = SMS−1 for M in (9) has
all disc left-ends aligned at λmin = 0.1078. Hence using these
scalars and constraints (11), diagonal terms {2, 5, 4} now constitute
a feasible solution.

To prove Theorem 1, we first establish the following lemma.

Lemma 1. There exists a first eigenvector v with strictly positive
entries for a graph metric matrix M.

Proof. By definition, graph metric matrix M is a generalized graph
Laplacian Lg = Dg −W with positive edge weights in W and
positive degrees in Dg . Let v be the first eigenvector of M, i.e.,

Mv = λminv

(Dg −W)v = (λminI)v

Dgv = (W + λminI)v

v = D−1
g (W + λminI)v

where λmin > 0 since M is PD. Since the matrix on the right con-
tains only non-negative entries and W is an irreducible matrix, v is
a positive eigenvector by the Perron-Frobenius Theorem [21].

We now prove Theorem 1 as follows.

Proof. Denote by v a strictly positive eigenvector corresponding to
graph metric matrix M’s smallest eigenvalue λmin. Define S =
diag(1/v1, . . . , 1/vK). Then,

SMS−1Sv = λminSv (13)

where Sv = 1 = [1, . . . , 1]>. Let B = SMS−1. Then,

B1 = λmin1 (14)

(14) means that

bi,i +
∑

j | j 6=i

bi,j = λmin, ∀i

Note that the off-diagonal terms bi,j = (vi/vj)mi,j ≤ 0, since i)
v is strictly positive and ii) off-diagonal terms of graph metric M
satisfy mi,j ≤ 0. Thus,

bi,i −
∑

j | j 6=i

|bi,j | = λmin, ∀i (15)

Thus defining S = diag(1/v1, . . . , 1/vK) means B = SMS−1

has all its Gershgorin disc left-ends aligned at λmin.

Thus, using a positive first eigenvector v of a graph metric M,
one can compute corresponding scalars sk = 1/vk to align all disc
left-ends of B = SMS−1 at λmin, and M satisfies (11) by Corol-
lary 1. Note that these scalars are signal-adaptive, i.e., sk’s depend
on v, which is computed from M. Our strategy then is to derive
scalars stk’s from a good solution Mt−1, optimize for a better solu-
tion Mt using scaled Gershgorin linear constraints (11), derive new
scalars again until convergence. Specifically,

1. Given scalars stk’s, identify a good solution Mt minimizing
objective Q(M) subject to (11), i.e.,

min
{mi,i}

Q (M) (16)

s.t. mi,i ≥ si
∑

j | j 6=i

|mi,j |
sj

+ ρ, ∀i;
∑
i

mi,i ≤ C

2. Given Mt, update scalars st+1
k = 1/vtk where vt is the first

eigenvector of Mt.

3. Increment t and repeat until convergence.

When the scalars in (16) are updated as st+1
k = 1/vtk for itera-

tion t+ 1, we show that previous solution Mt at iteration t remains
feasible at iteration t+ 1:

Lemma 2. Solution Mt to (16) in iteration t remains feasible in
iteration t + 1, when scalars st+1

i for the linear constraints in (16)
are updated as st+1

i = 1/vti , ∀i, where vt is the first eigenvector of
Mt.

Proof. Using the first eigenvector vt of graph metric Mt at iteration
t, by the proof of Theorem 1 we know that the Gershgorin disc left-
ends of B = SMtS−1 are aligned at λmin. Since Mt is a feasible
solution in (16), Mt � 0 and λmin > 0. Thus Mt is also a feasible
solution when scalars are updated as si = 1/vti , ∀i.



The remaining issue is how to best compute first eigenvector vt

given solution Mt repeatedly. For this task, we employ Locally Op-
timal Block Preconditioned Conjugate Gradient (LOBPCG) [17], a
state-of-the-art iterative algorithm known to compute extreme eigen-
pairs efficiently. Further, using previously computed eigenvector
vt−1 as an initial guess, LOBPCG benefits from warm start when
computing vt, reducing its complexity in subsequent iterations [17].

3.4.3. Frank-Wolfe Algorithm

To solve (16), we employ the Frank-Wolfe algorithm [16] that iter-
atively linearizes the objective Q(M) using its gradient ∇Q(Mt)
with respect to diagonal terms {mi,i}, computed using previous so-
lution Mt, i.e.,

∇Q(Mt) =


∂Q(M)
∂m1,1

...
∂Q(M)
∂mK,K


∣∣∣∣∣∣∣∣
Mt

(17)

Given gradient ∇Q(Mt), optimization (16) becomes a linear
program (LP) at each iteration t:

min
{mi,i}

vec({mi,i})> ∇Q(Mt) (18)

s.t. mi,i ≥ si
∑

j | j 6=i

|mt
i,j |
sj

+ ρ, ∀i;
∑
i

mi,i ≤ C.

where vec({mi,i}) = [m1,1 m2,2 . . . mK,K ]> is a vector com-
posed of diagonal terms {mi,i}, and mt

i,j are off-diagonal terms of
previous solution Mt. LP (18) can be solved efficiently using known
fast algorithms such as Simplex [15] and interior point method [22].
When a new solution {mt+1

i,i } is obtained, gradient ∇Q(Mt+1) is
updated, and LP (18) is solved again until convergence.

3.5. Optimization of Off-diagonal Entries

For off-diagonal entries of M, we design a block coordinate descent
algorithm, which optimizes one row / column at a time.

3.5.1. Block Coordinate Iteration

First, we divide M into four sub-matrices:

M =

[
m1,1 M1,2

M2,1 M2,2

]
, (19)

where m1,1 ∈ R, M1,2 ∈ R1×(K−1), M2,1 ∈ R(K−1)×1 and
M2,2 ∈ R(K−1)×(K−1). Assuming M is symmetric, M1,2 =
M>2,1. We optimize M2,1 in one iteration, i.e.,

min
M2,1

Q(M), s.t. M ∈ S (20)

In the next iteration, a different row / column i is selected, and with
appropriate row / column permutation, we still optimize the first col-
umn off-diagonal terms M2,1 as in (20).

Note that the constraint tr(M) ≤ C in (3) can be ignored, since
it does not involved optimization variable M2,1. For M to remain
in the set S of graph metric matrices, i) M must be PD, ii) M must
be irreducible, and iii) M2,1 ≤ 0.

As done for the diagonal terms optimization, we replace the PD
constraint with Gershgorin-based linear constraints. To ensure irre-
ducibility (i.e., the graph remains connected), we ensure that at least

one off-diagonal term (say index s) in column 1 has magnitude at
least ε > 0. The optimization thus becomes:

min
M2,1

Q(M) (21)

s.t. mi,i ≥ si
∑

j | j 6=i

|mi,j |
sj

+ ρ, ∀i

ms,1 ≤ −ε; M2,1 ≤ 0

Essentially any selection of s in (21) can ensure M is irreducible.
To encourage solution convergence, we select s as the index of the
previously optimized Mt

2,1 with the largest magnitude.
(21) also has a convex differentiable objective with a set of lin-

ear constraints. We thus employ the Frank-Wolfe algorithm again to
iteratively linearize the objective using gradient ∇Q(Mt) with re-
spect to off-diagonal M2,1, where the solution in each iteration is
solved as an LP. We omit the details for brevity.

4. EXPERIMENTS

We evaluate our proposed metric learning method by classification
performance. Specifically, the objective functionQ(M) we consider
here is the graph Laplacian Regularizer (GLR) [18, 23]:

Q(M) = z>L(M)z =

N∑
i=1

N∑
j=1

wi,j(zi − zj)2

= exp
{
−(fi − fj)

>M(fi − fj)
}

(zi − zj)2 (22)

A small GLR means that signal z at connected node pairs (zi, zj)
are similar for a large edge weight wi,j , i.e.z is smooth w.r.t. the
variation operator L(M). GLR has been used in the GSP literature
to solve a range of inverse problems, including image denoising [23]
and deblurring [24].

We evaluate our method with the following competing schemes:
three metric learning methods that only learn the diagonals of M,
i.e., [25], [26], and [10], and two methods that learn the full ma-
trix M, i.e., [6] and [27]. We do this by performing classificaiton
tasks via the following two classifiers: 1) a k-nearest-neighbour
classifier, and 2) a graph-based classifier with quadratic formulation
minz z

>L(M)z s.t. zi = ẑi, i ∈ F ,F ⊂ {1, . . . , J}, where ẑi
in subset F are the observed labels. We evaluate all classifiers on
wine (3 classes, 13 features and 178 samples), iris (3 classes,
4 features and 150 samples), seeds (3 classes, 7 features and 210
samples), and pb (2 classes, 10 features and 300 samples). All ex-
periments were performed in Matlab R2017a on an i5-7500, 8GB of
RAM, Windows 10 PC. We perform 2-fold cross validation 50 times
using 50 random seeds (0 to 49) with one-against-all classification
strategy. As shown in Tables 1, our proposed metric learning method
has the lowest classification error rates with a graph-based classifier.

Table 1. Classification error rates. (GB=Graph-based classifier.)
methods iris wine seeds pb

kNN GB kNN GB kNN GB kNN GB
[25] 4.61 4.41 3.84 4.88 7.30 7.20 - -
[26] 4.97 4.57 4.61 5.18 7.15 6.93 4.46 5.04
[10] 5.45 5.49 4.35 4.96 7.78 7.40 5.33 4.51
[6] 6.12 10.40 3.58 4.37 6.92 6.63 4.55 4.96
[27] 4.35 4.80 4.12 4.36 7.77 7.47 4.44 4.24

Prop. 4.35 4.12 4.27 4.19 7.10 6.61 4.8 4.23
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