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ABSTRACT

Most person re-identification (ReID) approaches focus on retrieving

a person-of-interest from a database of collected individual images.

In addition to the individual ReID task, matching a group of per-

sons across different camera views also plays an important role in

surveillance applications. This kind of Group Re-identification (G-

ReID) task is very challenging since we face the obstacles not only

from the appearance changes of individuals, but also from the group

layout and membership changes. In order to obtain robust repre-

sentation for the group image, we design a Domain-Transferred

Graph Neural Network (DoT-GNN) method. The merits are three

aspects: 1) Transferred Style. Due to the lack of training samples, we

transfer the labeled ReID dataset to the G-ReID dataset style, and

feed the transferred samples to the deep learning model. Taking the

superiority of deep learning models, we achieve a discriminative

individual feature model. 2) Graph Generation. We treat a group as

a graph, where each node denotes the individual feature and each

edge represents the relation of a couple of individuals. We propose

a graph generation strategy to create sufficient graph samples. 3)

Graph Neural Network. Employing the generated graph samples,

we train the GNN so as to acquire graph features which are robust

to large graph variations. The key to the success of DoT-GNN is

that the transferred graph addresses the challenge of the appear-

ance change, while the graph representation in GNN overcomes

the challenge of the layout and membership change. Extensive ex-

perimental results demonstrate the effectiveness of our approach,

outperforming the state-of-the-art method by 1.8% CMC-1 on Road

Group dataset and 6.0% CMC-1 on DukeMCMT dataset respectively.

CCS CONCEPTS

• Information systems→Multimedia content creation; • Se-

curity and privacy → Social aspects of security and privacy; •

Computing methodologies→ Image representations.
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1 INTRODUCTION
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Figure 1: Illustration of the G-ReID task and its challenges.

The persons with the red, blue and green bounding boxes

change their locations in a group. The persons with purple

bounding boxes join in the group. The person with the yel-

low bounding box leaves out of the group. Besides the chal-

lenge of the appearance change, G-ReID further brings in

the challenges of group layout and membership changes.

Person re-identification (ReID) has been drawing a lot of atten-

tions [1, 5, 22, 23, 25, 31, 35] due to its wide-range applications

such as security and surveillance [15, 21]. Existing research mainly

focused on re-identifying individuals, while searching out a certain

group of persons simultaneously was relatively rarely studied. Ac-

tually, a group of persons moves around a street together is very

common. As illustrated in Figure 1, a group of persons walked from

the view of camera A to that of camera B. The system requires an



algorithm to re-identify a group of persons across different cameras

(called Group ReID or G-ReID). In practice, G-ReID is becoming

more and more important in daily life, which is a powerful supple-

ment to the individual ReID.

Unlike individual ReID, the target of G-ReID is to associate a

certain group under different camera views. Besides the traditional

challenges in individual ReID such as low-resolution [24, 27], pose

variation [13, 30], illumination variation [26, 32], and blurred vision,

G-ReID has its own unique challenges. As Figure 1 shows, when the

group walked from camera A to camera B, 1) the persons change
their locations in the group (called group layout change), 2) some

persons join and leave the group dynamically (called group member-

ship change). That is to say, G-ReID is a more challenging task, as

a group has deformable characteristics. Hence, treating the group

as a whole and extracting its global or semi-global features as [12]

may not do a good job, because the group layout and membership

changes can significantly alter the visual content of the group.

As a group is made up of several individuals, its representation

can be a combination of representations of individuals and their

relationships. It inspires us to use graphs to construct the whole

representation. In particular, we choose to employ an undirected

graph to represent the pair-wise symmetric relationship in the

group image and exploit a Graph Neural Network (GNN) model

[9] to identify the graph ID. By representing relationships among

persons on a graph, GNN is able to extract group features via

graph convolution, i.e., message passing among neighboring nodes.

Further, GNN is suitable for addressing the challenge of group

layout changes and membership changes, by offering a flexible

representation of relationships in each group on graphs.

Let graph G = (V ,E) denote a group image, where V represents

the set of nodes and E represents the set of edges. Each node vi
denotes the representation of person i , and each edge ej denotes
the representation of the relationship of person pair j. In order to

re-identify a probe graph Gp with a gallery group Gд , we need to

evaluate their similarity as S(M(Gp ),M(Gд)). Here, M(·) is the

graphical model used to characterize a graph, andS(·, ·) denotes the

similarity metric of two graphs. In this way, we need to construct

plenty of informative graph samples to train the graphical model

M(·) so as to achieve better G-ReID performance. However, some

key challenges need to be coped with for G-ReID, as listed in Table 1.

Table 1: Comparison of the challenges in ReID and G-ReID

and our strategies for overcoming the individual challenges.

Challenge ReID G-ReID Strategy

Training Set Abundant Insufficient

Appearance � � Node generating (transfer)

Layout × � Membership-preserving grouping

Membership × � Membership-varying grouping

• Training data deficiency & appearance change. G-ReID

usually suffers from the training data deficiency problem, i.e., the

quantity of labeled group images with group IDs is not sufficient

to learn a robust group representation model. Since it is difficult to

acquire training data for representation learning of a group, [28]

exploited hand-crafted features to represent persons in a group.

Nevertheless, the hand-crafted representations cannot effectively

tackle the appearance change problem. As a result, when represent-

ing a group image with a graphical model, the node of the graph

cannot be expressed well using the hand-crafted features. As we

know, there exist rich amounts of training datasets suitable for

general ReID, which motivates us to make use of existing labeled

ReID samples to learn node features. However, the domain gap

between the ReID training datasets and the target G-ReID images

often cause a severe performance drop. In order to compensate for

the domain shift, inspired by [36, 37], we propose to transfer the

image style of a ReID dataset to that of the target G-ReID dataset

while preserving individuals’ identities. In this way, the features of

individual persons in a group (nodes of the graph) can be properly

extracted by our transferred representation model.

• Layout change &Membership change. Taking the features

of transferred samples as the signal on graph nodes, we construct

the graph samples for training the graphical models of group images.

As the images of the same group involve layout and membership

changes, for each graph class ID, we build its training graph sam-

ples considering the variations from both samples of the same iden-

tity and different identities. We propose a membership-preserving

grouping strategy and a membership-varying grouping strategy to

construct sufficient graph samples for training the graphical models

of group images.

After acquiring graph samples, it is vital to learn a graphical

model so that graphs with different IDs can be separated apart

automatically. Since graphs are irregular structures with unordered

nodes for non-Euclidean data, it is inappropriate to construct graphs

via Convolution Neural Networks (CNNs), which can only handle

regular-structure data such as images (2D) and texts (1D). GNN [9]

is a novel deep learning based method that operates in the graph do-

main by defining or approximating graph convolution and pooling,

which is a suitable tool to learn the graphical model of irregular-

structure data. Hence, we employ GNN to acquire group features.

Based on the considerations above, we propose a novel Domain-

Transferred Graph Neural Network (DoT-GNN) model for group

re-identification, that can stimulate graphs by transferred samples.

After that, GNN is exploited to learn group features for the identifi-

cation of the corresponding group. In summary, our contributions

lie in three aspects:

• We address the irregularity problem with G-ReID by exploit-

ing the idea of graphical representation and modeling. To

the best of our knowledge, we are the first to propose a

GNN-based framework for G-ReID. Although deep learning

models have their superiority, no effective deep learning

models have been proposed for G-ReID, let alone deep GNN

with transfer learning.

• We propose a domain-transferred graph node construction

method and two grouping strategies for preserving and vary-

ing groupmembership to overcome the challenges of individ-

uals’ appearance and membership changes in G-ReID with

very limited training data. The graph construction process

benefits from transferred graph nodes.

• We demonstrate the effectiveness of our proposed method

on challenging G-ReID datasets like DukeMTMC Group

and Road Group.



2 RELATED WORKS

Deep learning based person re-identification. Deep learning

based approaches have been extensively studied in general ReID

field. For example, [11] proposed a filter pairing neural network to

jointly handle misalignment and geometric transforms. In order to

learn features frommultiple domains, [29] utilized a domain-guided

dropout algorithm to improve the feature learning procedure. More-

over, the method proposed in [16] makes full use of human part cues

to alleviate the pose variations and learn robust representations

from both the whole image and its different local parts. However,

these supervised learning based works all require abundant labeled

training data. Moreover, all of these works mainly focused on in-

dividual person re-identification. None of them paid attention to

G-ReID with very limited training data.

Group re-identification. Comparedwith individual ReID tasks,

relatively fewer existing works focused on G-ReID tasks [4, 12, 28,

34, 38]. Some of them mainly attempted to extract global or semi-

global features for G-ReID. For example, [4] proposed a discrimina-

tive covariance descriptor to obtain both global statistical features.

[34] proposed semi-global features by segmenting a group image

into many ring regions. However, since persons in a group often

change their locations under different views (i.e., layout-change),

these global and semi-global features are usually sensitive to such

changes. In order to take advantage of individuals’ features in the

groups, [38] introduced patch matching between two group pho-

tos. However, it requires the matched group images to be well

aligned vertically in advance, making it unworkable under certain

circumstances. The method proposed in [28] leveraged multi-grain

information and attempted to fully capture the characteristics of

a group. This approach, however, involves too much redundant

information and relies on hand-crafted features, thereby making

its accuracy unsatisfactory. In this paper, we choose to employ a

graph to represent the group image. The graph’s superiority lies in

establishing the membership of the individuals in the group image,

so as to overcome the challenges in G-ReID.

Graph Neural Networks. CNN has revolutionized many fields,

such as computer vision [8, 10, 18] and natural language process-

ing [17] because it can learn and extract informative features to

replace traditional hand-crafted features. However, CNN can only

handle regular-structure data in the Euclidean domain. There are

increasing needs of representing non-Euclidean data, such as irregu-

lar graph-structured data. For example, in chemistry, molecules and

their structures are represented on graphs and graph classification

is used to identify their pharmaceutical properties [6]. In connec-

tomics, neuronal pathways or functional connections between brain

regions are commonly modeled as graphs [19] to obtain disease

signals. Due to the increasing needs to handle non-Euclidean data,

GNNs have been proposed to extend CNNs to the non-Euclidean

domain [3] by defining graph convolution and pooling. [7] utilized

GNNs to compute the embeddings of out-of-knowledge-base en-

tities, exploiting the limited auxiliary knowledge provided at test

time. [2] proposed to encode the full structural information con-

tained in the graph. Their architecture couples the Gated Graph

Neural Networks with an input transformation that allows nodes

and edges to have their own hidden representations, while tackling

the parameter explosion problem. [20] presented graph attention

networks (GATs) operating on graph-structured data, leveraging

masked self-attentional layers to address the shortcomings of prior

methods based on graph convolutions or their approximations. In

our work, GNN is proposed to classify the graphs constructed for

representing groups of persons so as to learn the features of each

group.

3 OUR METHOD

In the G-ReID task, we have a probe image p, which is represented

as a graph Gp . The corresponding group of probe image p should

be found in gallery images G = {дn }
N
n=1, where N stands for the

number of images in the gallery. For each gallery image дn , it can
be also represented as a graph Gдn .

3.1 Proposed Framework

The proposed framework is presented in Figure 2, which consists

of a training step and a testing step. In the training step, the frame-

work consists of a domain-transferred model that is responsible for

transferring the source-domain individuals’ images to their corre-

sponding target-domain ones, a graph generator for constructing

the pool of graph samples with the transferred individuals’ repre-

sentations as nodes, and a GNN model trained on the pool of graph

samples for classifying the group IDs. In the testing step, we extract

features from probe image p and the gallery images G via the GNN

model, and then calculate the distances between the probe feature

and the gallery features so as to re-identify the group ID of the

probe image according to the distances.

3.2 Domain-Transferred Model

The total number of groups in a collection of G-ReID images is usu-

ally rather limited, so it is difficult to train a useful network directly

solely based on those data themselves. To learn better representa-

tions, we should make use of external information. There exists a

rich collection of ReID datasets which can be used to train good fea-

ture representations for individuals. Nevertheless, the domain gap

between the existing ReID datasets and the target G-ReID images,

that is caused by their different capturing conditions, usually sig-

nificantly degrades the performance of representation learning. To

address this problem, given a training ReID dataset S, we propose

utilizing domain transfer to learn a mapping function T : S → T

from the style of ReID dataset S to that of G-ReID dataset T so

that the distribution of T (S) can be indistinguishable from that of

dataset T . In this paper, the mapping function is implemented by

CycleGAN [39].

In this way, the dataset T (S), where ys
k

∈ T (S) denotes the

k-th image of the s-th person in the dataset, can be used to train

the CNN for representing individuals’ features. Then, the domain-

transferred individuals’ features extracted by the CNN serve as the

graph signals on nodes for graph construction, where graph signal

{vs
k
} denotes the feature of the k-th image of the s-th person.

3.3 Graph Generator

We can obtain additional useful information from neighboring

group members. In our work, each group image is represented

as a graph to characterize the mutual and global relations of per-

sons. Each node in the graph represents one person in the group,
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Figure 2: Proposed architecture of DoT-GNN. We take DukeMTMC group dataset as the example target-domain dataset. In

the training step, we first transfer the style of the source-domain dataset (e.g., Market-1501) to that of the target one (e.g.,

DuketMTMC). We then construct a graph sample pool based on the transferred individual samples (nodes). After that, we

train the GNN on the constructed graph samples. In the testing step, the GNNmodel first extracts features from the probe and

gallery images, then calculates the distances between the probe feature and the gallery features, and finally determines the

group ID according to the distance.

and the edge between two nodes indicates the intimacy between

two persons, which are measured by the similarity between the

two persons’ features based on a predefined similarity metric. If we

use a graph to represent a group image, we can search for a target

group based on the similarity measurements between graphs. In

our work, a GNN is employed to represent graph features for mea-

suring the graph similarity. In order to train the GNN, we use the

domain-transferred nodes to construct a pool of graph samples. For

a graphGx , that contains multiple nodes, edges and its correspond-

ing label lx . For each kind of label lx , we construct multiple graph

samples {Gi
x }

Nx

i=1. The generator employs two kinds of strategies

to construct graph samples, i.e., membership-preserving grouping,

and membership-varying grouping.

Membership-preserving grouping.We simulate a graph sample

by the transferred images feature (generated nodes {vs
k
}). If two

group images contain the same members, these two images are

labeled as the same group. As we know, the same group may exhibit

layout change when moving from one camera to another. We use an

undirected graph to tackle the problem of layout and appearance

changes. However, for member si , we need to pick up different

nodes {vsi
kj
} for different graph samples with the same individual

label ysi .
Here, we propose a membership-preserving grouping strategy

to generate graph samples with layout and appearance changes,

but without membership changes, as shown in the second row of

Figure 3. The strategy is described as follows. First, for a graph class

lx , we randomly choose a number of persons {si }, i ∈ [1,Ns ] as the

members of the group. Second, for each member si , we randomly

select one node vsi
kj

from those nodes associated with this member.

Third, the nodes of different members together constitute a graph

sample G
j
x , where the edge weights between every two nodes are

calculated. In this way, we can also construct graph samples with

the same set of group members.

Membership-varying grouping. As mentioned above, a group

may also have membership change dynamically, implying that

graph samples corresponding to the same label lx may contain

nodes not exactly the same as each other. In order to cope with

such dynamic membership changes in group images, we calculate

the membership similarity ratio between two graph samples, which

is defined as the percentage of the nodes of the two graphs being

from the same common group members. If two graph samples have

a membership similarity ratio, they are considered to share the

same group ID. For graphs Ga and Gb , we denote Ga
⋂
Gb as the

number of common members in these two graphs and Ga
⋃
Gb

as the total number of members that constitute these two graphs.

Then, the membership similarity ratio is defined as

r =
Ga

⋂
Gb

Ga
⋃
Gb
. (1)

In G-ReID, if the similarity ratio of graphGa andGb is larger than

a threshold r0, the corresponding group images are treated as the

same group. We propose a membership-varying grouping strategy
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Figure 3: Graph samples construction process. The graph

samples are constructed based on the domain-transferred

nodes. The whole process includes two grouping strate-

gies. The second row indicates the membership-preserving

grouping strategy, where the nodes of fixed persons with

preserved IDs are selected, i.e., the group members only

changes their layout and appearance, without any mem-

bership chance. The third row illustrates the membership-

varying grouping strategy, where unfixed members may

join or leave the group randomly to capture the behavior

of dynamic membership changes in group images.

to construct graph samples with such dynamic group membership

changes, as illustrated in the third row of Figure 3. We first fix

r0 ∗Nu members in one group, where Nu denotes the average total

number of members constituting the graph samples of the same

group. Then, we randomly add or remove members to and from

the remaining unfixed members to simulate the dynamic group

membership changes.

In the graph generator, we have the transferred dataset {vs
k
} that

contains Ns person IDs, and we divide these IDs into Nsub subsets

equally, each containing � Ns

Nsub
� persons in total and being assigned

with a unique group ID, where �·� means the floor function. Based

on the consideration above, we assume each group has a set of

r0 ∗ Nu fixed members, that are randomly picked from its group

members. These fixed members will stay in the group, but may

change their positions in the group. The rest of � Ns

Nsub
� − r0 ∗ Nu

unfixed group members may join or leave the group randomly. No

matter how they change their positions or how many people are

in the group, they share the same group ID. The whole process is

shown in Figure 3. Algorithm 1 shows the whole algorithm process

of graph generator.

Algorithm 1 Algorithm for graph generator

1: k ← 0

2: while Nu × (k + 1) < Ns do

3: Group[k] ← ranдe(Nu ∗ k,Nu ∗ (k + 1))
4: k ← k + 1
5: end while

6: // split group

7: дroup_model = {}

8: for key ∈ Group do

9: shuffle(Group[key])
10: f ix_num ← Nu ∗ r0
11: f ix_ids ← Group[key][0 : f ix_num]

12: nonf ix_ids ← Group[key][f ix_num :]

13: дroup_model[key] ← the subsets of all nonfix_ids

14: plus fix_ids

15: end for

16: for key ∈ дroup_model do
17: i ← 0

18: while i < len(дroup_model) do
19: randomaly select v for each IDs in дroup[key][i] to
20: construct graph, this step can repeat several times to

21: create more unique graphs

22: // membership-preserving grouping

23: i ← i + 1
24: end while

25: end for

26: // membership-varying grouping

3.4 GNN

Since groups are represented as graphs, we adopt the GNN model

proposed in [9] for feature learning. As discussed in Section 3.3, the

graphs representations of groups and their associated group IDs are

used to train GNN. In our work, we use batch-wise classification to

train GNN with an adjacency matrix each. At the end of GNN, a

unique graph pooling layer is appended to collect the nodal features

in graph Gx . Then, the features of the entire graph are sent to the

softmax layer to calculate their probability for every class lx . We

adopt the cross-entropy as the cost function to train the GNN. The

entire process is illustrated in Figure 4.

3.5 Testing Step

In the training step, a CNN model is trained for extracting the fea-

tures of individuals in group images and a GNNmodelM is learned

for obtaining graph-based group features from graph samples con-

sisting of nodes of individuals’ features. Given a probe image p and

gallery images G = {дn }
N
i=1, we use CNN to obtain nodal features

and construct graphsGp andGдn , n ∈ [1,N ]. Then, we utilizeM to

acquire the graph features fp =M(Gp ) and fдn =M(Gдn ). Finally,
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Figure 4: Training of GNN. The framework supports the

batch-wise classification of multiple graph samples (of po-

tentially different size) with an adjacency matrix each.

It concatenates respective feature matrices and builds a

(sparse) block-diagonal matrix A where each block corre-

sponds to the adjacencymatrix of one graph sample.We use

a simple pooling matrix (output pooling layer) that collects

features from the respective graph samples as graph-level

outputs. The cross-entropy loss is employed after the soft-

max layer, and the output is the graph sample label.

we calculate the similarities between the probe and gallery images

by their L2 distance to obtain the ranking results.

4 EXPERIMENTS

4.1 Datasets and Experimental Setting

Datasets. Our method is evaluated on two public G-ReID datasets

constructed in [28]. Some examples are shown in Figure 5. The

DukeMTMC Group dataset contains 177 group image pairs se-

lected from an 8-camera-view DukeMTMC dataset [14], and the

Road Group dataset contains 162 group pairs taken from a two-

camera crowd road scene. Both datasets include severe object occlu-

sions and large layout & groupmembership changes. Following [28],

half of each dataset is evaluated under the protocol in [38], and the

Cumulative Matching Characteristic (CMC) metric [28] is used for

performance evaluation.

We also used the Market-1501 dataset [33] as the source-domain

ReID dataset due to its large amount of training instances: 15936

images for 751 individuals. In our work, we transfer theMarket-1501

dataset to the styles of DukeMTMC Group and Road Group,

respectively, as illustrated in Figure 5.

Setting for Domain Transfer. In our work, we transfer the

domain of an existing ReID dataset to that of the target G-ReID

datasets (e.g., DukeMTMC Group and Road Group), prior to

training the representations. We use the CycleGAN [39] to transfer

the domain for each target G-ReID dataset . As a result, we ob-

tain the DukeMTMC-style Market-1501 dataset and the Road-style

Market-1501 dataset. In the training process, we resize all input

images to 256 × 256 and use the Adam optimizer. The batch-size is

10, and the learning rates are 0.0002 and 0.0001 for the Generator

and the Discriminator respectively.

Setting for GNN. In our work, the GNN is used to learn group

features. We use the source code from [9] to do batch-wise clas-

sification. In the training process, Adam Optimizer is used. The

batch-size is 12 and the learning rate is 0.0001.

Setting for Graph Generator. In our work, we generate graph

samples as training data. Here, we set Nu as 15 and r0 as 0.1. That is
to say, the maximum number of people in a group is 15. No matter

Market-1501 DukeMTMC Group Road Group

Figure 5: Snapshots of the utilized datasets. From left to

right, the datasets are respectively Market-1501 (ReID),

DukeMTMC Group and Road Group (G-ReID). Each row

of each dataset shows a few snapshots with the same per-

son/group ID.

Market-1501

DukeMTMC

Market-1501

DukeMTMC

Road

Market-1501

Road

Figure 6: Snapshots of domain-transferred samples. The im-

ages in the third row are cropped from the source domain

Market-1501. The images in the first and fifth rows are

cropped respectively from the target domain DukeMTMC

Group and Road Group. The second row shows the gener-

ated images with the DukeMTMC style, and the fourth row

shows the generated images with the Road style.

how we change the number of people in a group, one person stays

in this group always.

4.2 Performance of Image Domain Transfer

For the testing G-ReID datasets, we exploited DukeMTMC/Road

samples as the target-domain samples for domain transfer. Some

examples of domain-transferred samples are shown in Figure 6.



Table 2: Comparison with the state-of-the-art G-ReID methods on the DukeMTMC and Road Group datasets.

Method
DukeMTMC Group Road Group

CMC-1 CMC-5 CMC-10 CMC-20 CMC-1 CMC-5 CMC-10 CMC-20

CRRRO-BRO [34] 9.9 26.1 40.2 64.9 17.8 34.6 48.1 62.2

Covariance [4] 21.3 43.6 60.4 78.2 38.0 61.0 73.1 82.5

PREF [12] 22.3 44.3 58.5 74.4 43.0 68.7 77.9 85.2

BSC+CM [38] 23.1 44.3 56.4 70.4 58.6 80.6 87.4 92.1

MGR [28] 47.4 68.1 77.3 87.4 72.3 90.6 94.1 97.5

Resnet50 + Feature Fusion 31.8 56.8 73.9 80.7 38.3 58.0 67.9 77.8

DoT + Feature Fusion 40.9 69.3 77.3 83.0 43.2 65.4 70.4 76.5

DoT + Distance Fusion 35.2 46.6 46.6 47.7 9.9 9.9 55.6 65.4

DoT + GNN 53.4 72.7 80.7 88.6 74.1 90.1 92.6 98.8

4.3 Comparison with the State-of-the-art
Methods

Table 2 also shows the results of some state-of-the-art methods on

DukeMTMC Group and Road Group. The compared methods

include CRRO-BRO [34], Covariance [4], PREF [12], BSC+CM [38]

and MGR [28]. ‘Resnet50’ indicates that the individuals’ features

are extracted by the Resnet50 network, which was trained on the

Market-1501 dataset without transferring. ‘DoT’ indicates that the

person features are extracted by the domain-transferred model.

‘Feature Fusion’ means that the group image features are obtained

by the average pooling of all individuals’ features of the group.

‘Distance Fusion’ means that the final distance of two group images

is measured by the average value of all the distances of individuals’

features. Comparing the results of ‘Resnet50+Feature Fusion’ and

‘DoT+Feature Fusion’, we can see that the domain-transferredmodel

is effective. Comparing the results of ‘DoT+Feature Fusion’ and

‘DoT+GNN’, we can see that the graph generation process and

GNN are effective. Comparing the results of ‘DoT+Feature Fusion’

and ‘DoT+Distance Fusion’, we can see that early feature fusion is

better than the late distance fusion for measuring the distance of

graph samples. The results also show that our method outperforms

existing G-ReID methods at most of the rankings. Note that, the

marginal gain on the Road Group dataset is attributed to the heavy

occlusions and viewpoint changes in Road Group, which limit the

effectiveness of nodal representations. To overcome the changes of

nodal representations, we select hard samples (the samples from the

same identity but have a large distance) to construct our training

graph samples. With this new strategy, we achieve 75.1%, 92.3%,

95.2%, 98.9% on corresponding CMC scores.

4.4 The influence of Graph Generator

Figure 7 shows the influence of the graph generator on the final

result. In the DukeMTMC Group and Road Group datasets, the

maximum numbers of persons in one group is 11 and 8, respectively.

By analyzing the CMC-1 score, we can conclude that the total

number of persons in our graph generation process will influence

the final result. The more the total number of persons in our graph

generation process, the higher the CMC-1 score we can achieve.

However, if the total number of persons in our graph generation

process exceeds the maximum number of persons in one group, the

CMC-1 score stays stable, because our constructed graph samples

are already able to simulate all circumstances.

(a) DukeMTMC Group

(b) Road Group

Figure 7: Impact of graph generation method on the final

results for the DukeMTMC Group and RoadGroup datasets.

The x-axis represents the total number of persons in a group.

The red curve indicates the CMC-1 score and the green

curve shows the Cumulative Distribution Function (CDF)

for group images. From the figure, the maximum numbers

of persons in DukeMTMC Group dataset and RoadGroup

dataset are 11 and 8, respectively.



4.5 Ablation Study

Table 3 shows our ablation study on DukeMTMC Group Dataset,

where Tr . denotes the domain-transferred model, S1 stands for the
membership-preserving grouping strategy and S2 stands for the
membership-varying grouping strategy. Comparing Variant � with

Variant �, we can find that the membership-preserving grouping

strategy is more effective than the membership-varying grouping

strategy, in particular for the top results, since the membership-

preserving grouping is the basic one. Comparing Variants �, �, and

� with Variant �, we can find that both of the proposed domain-

transferred model and the graph generator contribute to the final

result. Comparing Variant � with Variant �, we can find that

although the domain-transferred model can effectively address

the appearance changes in G-ReID, the graph generator and GNN

together perform even better, meaning that addressing the issues of

layout and membership changes is more important for the G-ReID

task.

Table 3: Ablation Study on the DukeMTMC Group dataset.

Settings DukeMTMC Group

Variant Tr . S1 S2 GNN CMC-1 CMC-5 CMC-10 CMC-20

� � × × × 35.2 46.6 46.6 47.7

� � � × � 44.3 72.2 78.4 86.4

� � × � � 35.2 62.5 78.7 86.4

� × � � � 44.3 67.0 76.1 85.2

� � � � � 53.4 72.7 80.7 88.6

Probe Rank1 Rank2 Rank3 Rank4 Rank5 Rank6

DukeMTMC
Group

Road 
Group

GNN

Feature 
Fusion

Distance 
Fusion

GNN

Feature 
Fusion

Distance 
Fusion

Figure 8: Some subjective results. We choose one example

from the DukeMTMC Group dataset and one example from

the Road Group dataset. The figure shows their top six re-

sults, evaluating with ‘DoT+Feature Fusion’, ‘DoT+Distance

Fusion’ and ‘DoT+GNN’ methods, respectively. Each row

shows the results in one method. The first column shows

the probe image. The following columns show the top six

results. Among all the results, the green boxes indicate the

target group image.

4.6 Subjective Comparison

Figure 8 shows some subjective results of the proposed method on

both DukeMTMC Group and Road Group datasets. For each dataset,

we give one example and its top six results evaluated on three

kinds of methods, the former two are obtained by the ‘DoT+Feature

Fusion’ and ‘DoT+Distance Fusion’ methods respectively, while the

latter one is obtained by the ‘DoT+GNN’ method. As can be seen,

‘DoT’ with ‘GNN’ finds out the true target as the top one while

the other two methods can not. It may be because GNN gives a

comprehensive measurement to the nodes and relationships in the

graphs, while exploiting ‘Distance Fusion’ or ‘Feature Fusion’ may

lead to biased performances caused by some negative similar nodes

or relationships.

5 CONCLUSION

In this paper, we addressed an important but less studied problem:

group re-identification. We proposed to use node generation (trans-

fer), membership-preserving grouping and membership-varying

grouping to respectively overcome the three major challenges in

group re-identification: training data deficiency, layout and appear-

ance changes, and membership changes layout change. We have

also proposed a graph neural network to learn and extract the group

feature representations of the constructed graphs so as to better

identify their group IDs. Experimental results show our method

outperforms existing state-of-the-art approaches.
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