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Abstract—Identifying an appropriate underlying graph kernel
that reflects pairwise similarities is critical in many recent graph
spectral signal restoration schemes, including image denoising,
dequantization, and contrast enhancement. Existing graph learn-
ing algorithms compute the most likely entries of a properly
defined graph Laplacian matrix L, but require a large number
of signal observations z’s for a stable estimate. In this work, we
assume instead the availability of a relevant feature vector fi per
node i, from which we compute an optimal feature graph via opti-
mization of a feature metric. Specifically, we alternately optimize
the diagonal and off-diagonal entries of a Mahalanobis distance
matrix M by minimizing the graph Laplacian regularizer (GLR)
z>Lz, where edge weight is wi,j = exp{−(fi − fj)

>M(fi − fj)},
given a single observation z. We optimize diagonal entries via
proximal gradient (PG), where we constrain M to be positive
definite (PD) via linear inequalities derived from the Gershgorin
circle theorem. To optimize off-diagonal entries, we design a block
descent algorithm that iteratively optimizes one row and column
of M. To keep M PD, we constrain the Schur complement of
sub-matrix M2,2 of M to be PD when optimizing via PG. Our
algorithm mitigates full eigen-decomposition of M, thus ensuring
fast computation speed even when feature vector fi has high
dimension. To validate its usefulness, we apply our feature graph
learning algorithm to the problem of 3D point cloud denoising,
resulting in state-of-the-art performance compared to competing
schemes in extensive experiments.

Index Terms—Graph learning, Mahalanobis distance, graph
Laplacian regularizer, 3D point cloud denoising

I. INTRODUCTION

Graphs are flexible mathematical structures modeling pair-
wise relations between data entities, such as brain networks,
social networks, computer networks and transportation net-
works. Nodes in a graph represent data collecting entities (e.g.,
users in a social group or sensors in a wireless network) while
edges connecting nodes describe pairwise affinities. A scalar
(weight) is often assigned to each edge, which reflects the
degree of pairwise similarity between two nodes. In settings
where the graph is not readily available, it is critical to first
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identify an appropriate underlying graph kernel—a process
commonly called graph learning [1]–[3]—before it is used
for many recent graph spectral signal restoration schemes,
including image denoising, dequantization, deblurring, and
contrast enhancement [4]–[7].

Existing graph learning methods1 can be roughly classi-
fied into two main categories: statistical methods and graph
spectral methods. The common assumption among statistical
methods is that multiple data observations generated from the
same probability model are available to estimate model param-
eters, which determine an underlying graph. Graph learning
is then essentially the problem of estimating the inverse
covariance or precision matrix given sufficient empirical data,
with the addition of some prior topological information (e.g.,
sparsity) [9]–[18]. However, the requirement of multiple signal
observations is not applicable to scenarios where only a single
observed signal is available.

On the other hand, graph spectral learning methods offer
an alternative (or additional) signal representation perspec-
tive, where observed signals are assumed to lie in a low-
dimensional subspace spanned by the low frequency compo-
nents of the underlying graph topologies [19]–[26]. Specifi-
cally, the frequency components are eigenvectors of a chosen
variational operator on graphs like the adjacency matrix or
the graph Laplacian matrix [27]. This “low-pass” spectral
assumption translates to additional constraints during graph
learning, potentially leading to more accurate graph estimates
when there are few signal observations.

Extending on these previous works [22], [25], [28], in this
paper we study spectral graph learning when the number of
signal observations is extremely small—just one observation
or even fewer (i.e., partial observation of one signal). This is
typically the case for image restoration applications with non-
stationary statistics [4]–[7], where the underlying graph for a
target image patch needs to be estimated for graph spectral
processing given just one or partial noisy patch observation.
To ease the ill-posedness of the problem, we assume the
availability of a relevant feature vector fi per node i, fi ∈ RK
(e.g., the color pixel intensities), and that an edge weight is
an inverse function of the feature distance (i.e., larger the
inter-node feature distance, smaller the edge weight). Many
previous graph constructions including bilateral filter [4], [28],
[29] implicitly assume some notion of feature distance when

1We focus on learning of undirected graphs when one or fewer signal
observation is available in this paper, while learning of directed graphs [3],
[8] from small data is left for future work.
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assigning edge weights; our work is a more formal study of
feature metric learning in a rigorous mathematical setting.

Specifically, we assume an edge weight wi,j = exp{−(fi−
fj)
>M(fi − fj)}, where M ∈ RK×K is the Mahalanobis

distance metric matrix [30] given feature difference fi − fj
for the two connected nodes i and j. Given a single obser-
vation z ∈ RN , we seek to minimize the Graph Laplacian
Regularizer (GLR) [4] z>L(M)z using M, which measures
the smoothness of the signal z with respect to the underlying
graph specified by the graph Laplacian matrix L. Note that
because the feature dimension K is often much smaller than
signal dimension N , variable M has K2 entries only, while in
general Laplacian matrix L has N2 entries, resulting in more
stable parameter estimation given the same observed data.

To find the optimal M, we alternately optimize the diagonal
and off-diagonal entries. When optimizing diagonal entries,
we derive linear inequalities based on the Gershgorin circle
theorem (GCT) [31] to keep M positive definite (PD) and
then employ proximal gradient (PG) descent [32] to obtain
a solution. When optimizing off-diagonal entries, we design
a block descent algorithm that iteratively optimizes one row
and column of M until convergence. To keep M PD, we
constrain the Schur complement of M to be PD according to
the Haynsworth inertia additivity [33], which is enforced using
PG descent. Further, we relax the PD constraint via vector-
norm bounding to avoid matrix inverse computation during the
optimization. Our algorithm is designed to mitigate full eigen-
decomposition of M, thus ensuring fast computation speed
even when the feature dimension K is large.

To validate the usefulness of our proposed feature graph
learning algorithm, we apply it to the problem of 3D point
cloud denoising. Point clouds provide efficient representa-
tion for arbitrarily-shaped objects, which consist of a set of
irregularly-spaced points. The maturity of depth sensing and
3D laser scanning techniques2 enables convenient acquisition
of 3D point clouds, which have a variety of applications such
as 3D immersive tele-presence, navigation for autonomous
vehicles, free-viewpoint rendering, and heritage reconstruction
[34]. However, point clouds are often perturbed by noise,
which comes from hardware, software or other causes.

To denoise point clouds, we first assume that local patches
are self-similar [35], [36] and connect corresponding points
into a graph. Assuming a first-order intrinsic Gaussian Markov
random field (IGMRF) model [37], we pose a Maximum a
Posteriori (MAP) estimation problem with GLR as signal
prior. Interpreting the precision matrix in the IGMRF model
as a graph Laplacian, we employ our feature graph learning
scheme to determine edge weights, where for each point we
employ 3D coordinates and surface normals as relevant fea-
tures. Finally, we optimize the point cloud and the underlying
graph alternately until convergence. Extensive experiments
show that we achieve state-of-the-art performance compared
to competing methods [38]–[40].

To summarize, the main contributions of our works are:

2Commercial products include Microsoft Kinect, LiDAR, Intel RealSense,
etc.

1) To identify an appropriate underlying graph given a
single signal observation z, we formulate a feature graph
learning problem by minimizing the GLR z>L(M)z
using the Mahalanobis distance metric matrix M as vari-
able, assuming relevant features per node are available.

2) We develop a fast block descent algorithm to optimize
the feature metric matrix M, while keeping M positive
definite and mitigating full matrix eigen-decomposition
and large matrix inverse; and

3) We employ feature graph learning for 3D point cloud
denoising, where the graph for each set of self-similar
patches is computed using 3D coordinates and surface
normals as features, resulting in superior denoising per-
formance.

The paper is organized as follows. We first review previous
works on graph learning and point cloud denoising in Sec-
tion II. Then we review basic concepts in graph spectral pro-
cessing in Section III. In Section IV, we describe the proposed
problem formulation and algorithm development for feature
graph learning. We employ our graph learning scheme for
point cloud denoising in Section V. Finally, experiments and
conclusions are presented in Section VI and VII, respectively.

II. RELATED WORK

We overview previous works on graph learning and point
cloud denoising in order.

A. Graph Learning

Previous graph learning methods can be divided into two
main categories: statistical methods and graph spectral meth-
ods.

Statistical methods: In graphical models including Markov
random fields [37] and Bayesian networks [41], edges in
the graph encode conditional dependencies among random
variables represented as nodes. Learning the graph structure
amounts to learning the inverse covariance or precision matrix
for such models. Dempster [12] proposed to introduce zero
entries in inverse covariance matrices for simplified covariance
estimation. The estimation of a sparse inverse covariance ma-
trix was then studied in several works [9], [13], [14]. Friedman
et al. formulated sparse inverse covariance estimation with a
regularization framework and developed the Graphical Lasso
algorithm to address the regularized optimization problem
[11]. Some algorithmic extensions of the Graphical Lasso are
presented in [10], [15], and a few computationally efficient
variations are discussed in [16]–[18]. However, inverse co-
variance estimation methods assume many observations of a
graphical model are available, which is not practical for many
imaging applications.

Graph spectral methods: The key idea for these methods is
to enforce low frequency representations of observed signals as
well as constraints for a valid graph Laplacian matrix. Tenen-
baum et al. [19] proposed to learn combinatorial graph Lapla-
cians using a proposed sparse model. A regression framework
was presented in [42] to learn a graph Laplacian matrix based
on a fitness metric between the signals and the graph, which
essentially evaluates the smoothness of the signals on the
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graph. Dong et al. [22] and Kalofolias [20] proposed to learn
Laplacian matrices from the smoothness prior of the graph
signal. Egilmez et al. [25] proposed graph learning under pre-
defined graph structural and graph Laplacian constraints. Yang
et al. [28] computed optimal feature weights in a similarity
graph given a restored binary classifier signal. This is an earlier
version of our feature metric learning, but restricts the search
space only to diagonal matrices, which limits its effectiveness.

Orthogonally, some studies focus on inferring graph topolo-
gies from signals that are diffused on a graph over time.
A fitness metric similar to the regression framework was
employed in [43] to learn a valid graph topology. In particular,
Segarra et al. [23] and Pasdeloup et al. [24] focused on
learning graph shift/diffusion operators (such as adjacency
matrices) from a set of diffused graph signals. Sardellitti et
al. [21] proposed to learn the graph topology from data under
the assumption of band-limited signals, which corresponded
to signals with clustering properties. Nonetheless, this class
of methods also assume a large number of signal observations
for a stable estimate.

B. Point Cloud Denoising
Point cloud denoising methods mainly include Moving

Least Squares (MLS) based methods, Locally Optimal Projec-
tion (LOP) based methods, sparsity based methods, non-local
based methods and graph-based methods.

MLS-based methods: MLS-based methods approximate
the point cloud with a smooth surface and then project the
points of the point cloud onto the fitted surface. [44] used
the MLS projection operator to calculate the optimal MLS
surface of the point cloud, and moved the points around
the surface to the MLS surface. [45] proposed a MLS-based
spherical fitting denoising method (APSS). Compared with the
aforementioned MLS projection-based algorithm, this method
improved the stability at low sampling rate and high curvature.
[46] proposed an algorithm based on improved MLS and local
kernel regression to smooth the point cloud surface (RIMLS).
However, these MLS-based methods are often sensitive to
outliers.

LOP-based methods: The widely known LOP [47] aimed
to produce a set of points to represent the underlying surface
while enforcing a uniform distribution over the point cloud.
Weighted LOP (WLOP) [48] provided a more uniformly
distributed output than LOP by adapting a repulse term to
the local density. Further, anisotropic WLOP (AWLOP) [49]
modified WLOP with an anisotropic weighting function in
order to preserve sharp features better. Nevertheless, LOP-
based methods often suffer from over-smoothing.

Sparsity based methods: These methods are based on
sparse representation theory [50], and generally involve two
phases. In the first phase, the sparse reconstruction of the
cloud normals is obtained by solving the global minimization
problem of sparse regularization. In [51] l1 regularization
was adopted, while [52] used l0 regularization to seek more
characteristic sparsity. In the second phase, each point position
is updated by solving global l1 (or l0) minimization problem
based on the reconstructed normals and local planarity hy-
pothesis. The recently proposed method called Moving Robust

Principal Components Analysis (MRPCA) [38] used weighted
l1 minimization of the point deviations from the local reference
plane to preserve sharp features. However, when the noise level
is high, over-smoothing or over-sharpening tends to occur [52].

Non-local based methods: These approaches exploit
the non-local similarities among patches in a point cloud. In
[53], an extended non-local denoising (NLD) algorithm was
introduced to process point clouds, where the neighborhood of
each point was described by the polynomial coefficients of the
local MLS surface to compute point similarity. [54] and [55]
applied a scale space scheme and non-local means denoising
algorithm. [36] extended the BM3D [56] algorithm to point
cloud denoising, searched similar patches globally via Iterative
Closest Point (ICP) [57] algorithm, and then combined them
into a collaborative group for denoising. [39] utilized patch
self-similarity and optimized for a low rank (LR) dictionary
representation of the extracted patches to smooth 3D patches.
However, the computational complexity of such methods is
often high due to the global search.

Graph-based methods: This class of methods interpret
a point cloud as a signal on a graph, and perform denoising
via chosen graph filters. In [58], the input point cloud was
represented as a signal on a k-nearest-neighbor graph and then
denoised via a convex optimization problem regularized by the
gradient of the point cloud on the graph. In [59], a reweighted
graph Laplacian regularizer for surface normals was designed,
with a general lp-norm fidelity term that modeled two types
of additive noise. Moreover, they established a linear relation-
ship between normals and 3D point coordinates via bipartite
graph approximation for ease of optimization. [40] proposed
graph Laplacian regularization (GLR) of a low dimensional
manifold model (LDMM), and sought self-similar patches to
denoise them simultaneously. Instead of directly smoothing
the coordinates or normals of 3D points, [60] estimated a
local tangent plane at each 3D point based on a graph, and
then reconstructed each 3D point via weighted averaging of
its projections on multiple tangent planes.

Our approach belongs to the family of graph-based methods.
The key difference is that edge weights in our graph are
not pre-defined with hand-crafted parameters, but optimized
rigorously via feature metric learning given available signal(s)
assumed to be smooth with respect to the graph.

III. PRELIMINARIES IN GRAPH SIGNAL PROCESSING

We first review basic concepts in graph signal processing
[27] that are essential in our feature graph learning and point
cloud denoising algorithms.

A. Graph and Graph Laplacian

We consider an undirected graph G = {V, E ,W} composed
of a node set V of cardinality |V| = N , an edge set E
connecting nodes, and a weighted adjacency matrix W. Each
edge (i, j) ∈ E is associated with a non-negative weight wi,j
which reflects the degree of similarity between nodes i and j.

Among different variants of Laplacian matrices, in this
paper we employ the combinatorial graph Laplacian [27]
defined as L := D −W, where D is the degree matrix—
a diagonal matrix where di,i =

∑N
j=1 wi,j .
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TABLE I
LIST OF ABBREVIATIONS AND THEIR DESCRIPTIONS.

Abbreviation Description
GLR Graph Laplacian Regularizer
PD Positive Definite

PSD Positive Semi-Definite
PG Proximal Gradient

IGMRF Intrinsic Gaussian Markov Random Fields
MAP Maximum a Posteriori
MLS Moving Least Squares

RIMLS Robust Implicit MLS
APSS Algebraic Point Set Surfaces
LOP Locally Optimal Projection

WLOP Weighted LOP
AWLOP Anisotropic WLOP

NLD Non-Local Denoising
LR Low Rank

B. Graph Laplacian Regularizer

Graph signal refers to data that resides on the nodes of a
graph, such as functionality of regions on a neural network
and temperatures on a sensor network.

A graph signal z ∈ RN defined on a graph G is smooth
with respect to G if

z>Lz =
N∑
i=1

N∑
j=1

wi,j(zi − zj)2 < ε, (1)

where ε is a small positive scalar. To satisfy (1), connected
node pair zi and zj must be similar for a large edge weight
wi,j ; for a small wi,j , zi and zj can differ significantly. Hence,
(1) forces z to adapt to the topology of G, and is commonly
called the graph Laplacian Regularizer (GLR) [4], [27]. This
prior also has a frequency interpretation:

z>Lz =
∑
k

λkα
2
k, (2)

where λk is the k-th eigenvalue of L and is commonly
interpreted as the k-th graph frequency, and αk = v>k z is
the inner-product between the corresponding k-th eigenvector
vk and signal z. In other words, α2

k is the energy in the k-th
graph frequency for signal z. Thus, a small z>Lz means that
most signal energies are in the low graph frequencies, or z is
roughly low-pass.

C. Signal-Dependent Graph Laplacian Regularizer

In the aforementioned GLR, the graph Laplacian L is fixed,
which does not promote reconstruction of the target signal with
discontinuities if the corresponding edge weights are not very
small. It is thus extended to signal-dependent GLR in [4]–[6],
[61] by considering L(z) as a function of the graph signal z.
Specifically, an edge weight wi,j(zi, zj) is an inverse function
of the inter-node pixel intensity difference, e.g., wi,j(zi, zj) =
exp{−(zi − zj)2/σ2}. The reweighted prior is defined as

z>L(z)z =
∑
i∼j

wi,j(zi, zj) · (zj − zi)2, (3)

where wi,j(zi, zj) is the (i, j)-th element of the corresponding
adjacency matrix W.

It has been shown in [4]–[6] that minimizing the signal-
dependent GLR iteratively can promote piecewise smoothness
(PWS) in the reconstructed graph signal z, assuming that the
edge weights are appropriately initialized. In our feature metric
learning setting, a feature vector fi associated with node i
may include the signal intensity zi as one feature. Thus our
work can be considered a general case that includes signal-
dependent GLR as a special case.

IV. FEATURE METRIC LEARNING

A. Problem Formulation

Conceptually, an edge weight wi,j reflects the similarity
between samples at nodes i and j; specifically, using the
commonly used Gaussian kernel [62], edge weight wi,j =
exp {−δi,j}, where δi,j denotes the estimated feature distance
between samples i and j. One advantage of the Gaussian
kernel is that edge weight wi,j is in range [0, 1] and thus non-
negative, ensuring the resulting combinatorial graph Laplacian
matrix L to be positive semi-definite (PSD) [63].

The feature distance between two samples measures the
inter-sample similarity. As one well-known example of feature
distance, consider the bilateral filter in image denoising [29]
that employs pixel intensities xi and pixel locations li as
relevant features to compute δi,j , namely,

δi,j =
(xi − xj)2

σ2
x

+
‖li − lj‖22

σ2
l

, (4)

where σx and σl are parameters. Defining fi = [xi li]
>, we

can rewrite (4) in matrix form as:

δi,j = (fi − fj)
>
[

1/σ2
x 0

0 1/σ2
l

]
(fi − fj) . (5)

[29] shows that with appropriate parameters σx and σl, the
bilateral filter can achieve very good edge-preserving image
denoising performance. How to best determine σx and σl,
however, was left unanswered.

More generally, associated with each sample i is a length-
K vector of relevant features, and our goal is to compute an
optimal Mahalanobis distance for the given features:

δi,j = (fi − fj)
>M(fi − fj), (6)

where M ∈ RK×K is a positive definite (PD) matrix3. As a
special case, when M is a diagonal matrix with strictly positive
diagonal entries, the definition in (6) defaults to that in [28].
Diagonal M can capture the relative importance of individual
features when computing δi,j , but fails to capture possible
cross-correlation among features, and thus is sub-optimal in
the general case.

1) Importance of Off-diagonal Terms in M: We illustrate
the importance of off-diagonal terms via the following analysis
and example. Fundamentally, a real symmetric matrix M
is normal and thus diagonalizable, i.e., it can be eigen-
decomposed into the following form:

M = QΛQ>, (7)

3PD is required for a proper metric definition [64]: if fi − fj 6= 0, then
(fi − fj)

>M(fi − fj) > 0.
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where Λ is a diagonal matrix with eigenvalues λi along its
diagonal, and Q contains the corresponding eigenvectors as
columns. Although the spectral theorem requires Q to be a
unitary matrix, more generally, we can interpret (7) to mean
that symmetric real matrix M generalizes any diagonal matrix
Λ by pre- and post-multiplying it by any chosen square matrix
Q and its transpose.

To demonstrate the importance of this generalization, con-
sider the following simple example. Define first the dif-
ference vector as the difference between feature vectors fi
and fj , i.e., ∇fi,j = fi − fj . Thus, given metric M, the
Mahalanobis distance between nodes i and j is computed as
(fi − fj)

>M(fi − fj) = (∇fi,j)
>

M (∇fi,j). Suppose now
that there are only two available features fi = [f

(1)
i f

(2)
i ]> for

every node i. Suppose also that the optimal metric M in this
case computes the difference of the two components in the
difference vector ∇fi,j , i.e.,

(∇fi,j)
>M(∇fi,j)

=
[
∇f

(1)
i,j ∇f

(2)
i,j

] [
1 1
−1 1

]︸ ︷︷ ︸
Q

[
1 0
0 0

]︸ ︷︷ ︸
Λ

[
1 −1
1 1

]︸ ︷︷ ︸
Q>

[
∇f

(1)
i,j

∇f
(2)
i,j

]

=
(
∇f

(1)
i,j −∇f

(2)
i,j

)2
.

(8)

In this case, two nodes i and j with difference vector
∇fi,j = [ε ε]> having the same component ∇f

(1)
i,j = ∇f

(2)
i,j =

ε will result in a Mahalanobis distance of (∇fi,j)
>M(∇fi,j) =

0, no matter how large ε is. On the other hand, any non-zero
PSD diagonal matrix Λ′ = diag(λ′1, λ

′
2), where λ′1 > 0 or

λ′2 > 0, will lead to a distance (∇fi,j)
>Λ′(∇fi,j) = λ′1ε

2 +
λ′2ε

2 =∞ as ε→∞. Thus, we can conclude that a diagonal-
only metric Λ′ can be arbitrarily worse than the optimal metric
M with off-diagonal terms, and off-diagonal terms for metric
M are essential in computing feature distances.

To demonstrate that the above 2-feature example is not con-
trived, consider the following concrete application. Suppose
the first and second features, f

(1)
i and f

(2)
i , measure the x-

location of a train on a line track at time 0 and time t > 0,
respectively. Suppose the optimal metric M considers only the
difference in velocity, vi−vj , of the two trains i and j, i.e.,

(vi − vj)
2

=
(

(f
(1)
i − f

(2)
i )− (f

(1)
j − f

(2)
j )
)2

(9)

=
(
∇f

(1)
i,j −∇f

(2)
i,j

)2
, (10)

which is the same as (8). Clearly, if the two trains i and j
have the same velocity, the Mahalanobis distance between
them should be zero, regardless of their difference in start
/ end locations. Using any diagonal-only metric, however,
would compute a Mahalanobis distance that is a function of
the difference between their start / end locations, which is
incorrect.

2) Formulation: We can now pose an optimization problem
for M with GLR (3) as objective: we seek the optimal metric
M that yields the smallest GLR term given feature vector fi
for each node i, and one signal observation z. Specifically,

denote by di,j = (zi − zj)2 the inter-node sample difference
square of observation z. Our optimization is

min
M

∑
{i,j}

exp
{
−(fi − fj)

>M(fi − fj)
}
di,j

s.t. M � 0.

(11)

(11) can be easily rewritten to account for multiple observa-
tions z’s, as well as partial observation of a single signal z.

Minimizing (11) directly would lead to one pathological
solution, i.e., mi,i = ∞,∀i, resulting in edge weights wi,j =
0. Topologically, this means nodes in the graph are all isolated,
defeating the goal of finding a similarity graph. To avoid this
solution, we constrain the trace of M to be smaller than a
constant parameter C, resulting in

min
M

∑
{i,j}

exp
{
−(fi − fj)

>M(fi − fj)
}
di,j

s.t. M � 0; tr(M) ≤ C.
(12)

One naı̈ve approach to the optimization problem in (12)
using PG descent [32] is as follows. The objective q(M) in
(12) itself is convex and differentiable with respect to M, and
thus a gradient descent step ∇q(M) can be computed. The
constraints in (12) describe a feasible solution space that is a
convex cone of all PD matrices with trace upper-bounded by
C. One can thus rewrite the constraints as a second objective
term h(M) that evaluates to 0 if M is in the convex set
and∞ otherwise. This convex but non-differentiable objective
term h(M) has the following proximal mapping proxh(M):
orthogonally project the eigenvalues λk’s of M into the convex
set: λk > 0,∀k,

∑
k λk ≤ C. This results in a proximal

gradient step: Mt+1 = proxh (Mt − γ∇q(Mt)), where γ is
a chosen step size.

However, this naı̈ve realization of proximal gradient—called
vanilla PG—requires eigen-decomposition of Mt per iteration
t with complexity O(K3), which is computation-expensive
when the feature vectors fi are large. To completely circum-
vent eigen-decomposition, we rewrite the PD cone constraint
as a set of linear constraints, which form another convex
set (a polytope) that is much easier to solve. In particular,
our strategy is to optimize M’s diagonal and off-diagonal
entries alternately until convergence. We discuss the two
optimizations in order next.

B. Optimization of Diagonal Entries

When M’s diagonal entries are optimized, (12) can be
simplified as follows. Let gi,j = fi − fj , gi,j ∈ RK . Further,
let matrix M′ be M with only the off-diagonal entries, i.e.,
M′ = M− diag(M). Then,

min
{mi,i}

∑
{i,j}

exp
{
−g>i,j (M′ + diag(M)) gi,j

}
di,j

s.t. M � 0;
∑
i

mi,i ≤ C.
(13)

1) Gershgorin-based reformulation: To enforce the positive
definiteness constraint M � 0 using simple linear constraints,
we leverage on the Gershgorin circle theorem (GCT) [31] and
constrain each Gershgorin disc Ψi corresponding to each row

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TSP.2020.2978617

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6

i of M to reside in strictly positive territory. Specifically, disc
Ψi has center ci = mi,i and radius ri =

∑
j 6=i |mi,j |. To keep

Ψi in positive territory, we need the left-end ci − ri to be
positive. (13) thus becomes:

min
{mi,i}

∑
{i,j}

exp

{
−
∑
k

mk,kgi,j(k)2 − g>i,jM
′gi,j

}
di,j

s.t. mi,i −
∑
j 6=i

|mi,j | > 0, ∀i;
∑
i

mi,i ≤ C.

(14)

We can further simplify the objective by defining d̃i,j =
exp{−g>i,jM

′gi,j}di,j , resulting in

min
{mi,i}

∑
{i,j}

exp

{
−
∑
k

mk,kgi,j(k)2

}
d̃i,j

s.t. mi,i −
∑
j 6=i

|mi,j | > 0, ∀i;
∑
i

mi,i ≤ C.
(15)

2) Proximal Gradient algorithm: To solve (15) efficiently,
we employ a PG approach [32]. Let m = [m1,1, ...,mK,K ]>.
The linear constraints for m form a convex set:

S =

m

∣∣∣∣ mi,i >
∑
j 6=i

|mi,j |,
K∑
i=1

mi,i ≤ C,∀i

 . (16)

Then, we define the indicator function IS(m):

IS(m) =

{
0, m ∈ S
∞, otherwise (17)

We now rewrite the optimization for m as an unconstrained
problem by exchanging the convex set constraint with indicator
function IS(m) in the objective:

min
m

∑
{i,j}

exp

{
−
∑
k

mk,kgi,j(k)2

}
d̃i,j + IS(m). (18)

The first term is convex with respect to m and differentiable,
while the second term IS(m) is convex but non-differentiable.
we can thus employ PG to solve (18) as follows.

We first compute the gradient of the first term with respect
to m:
∇F (m) =
−
∑
{i,j}

exp

{
−
∑
k

mk,kgi,j(k)2
}

gi,j(1)2d̃i,j

...

−
∑
{i,j}

exp

{
−
∑
k

mk,kgi,j(k)2
}

gi,j(K)2d̃i,j


(19)

We next define a proximal mapping ΠIS (v) for the second
term—indicator function IS(v)—which is a projection onto
the convex set S, i.e.,

ΠIS (v) =

{
PT (v), 1>PT (v) ≤ C,
PT (v − α · 1), otherwise, (20)

where PT (v) = max
{
vi,
∑
j 6=i |mi,j |

}K
i=1

, and α is any

positive root of 1>PT (v − α · 1) = C [65].

Each iteration of the PG algorithm can be now written as:

ml+1 = ΠIS (ml − γ∇F (ml)), (21)

where γ is the step size. As discussed in [32], the algorithm
converges with rate O(1/l) for a fixed step size γ ∈ (0, 2/L],
where L is a Lipschitz constant. In our experiment, we choose
a small step size γ empirically, which is small enough to
satisfy the Lipschitz smoothness of the objective function. In
the first iteration, we initialize M to be a diagonal matrix with
each diagonal entry mi,i = C/K, thus ensuring M is PD and
tr(M) ≤ C.

Further, we may reduce the complexity of the proposed
algorithm via accelerated proximal gradient (APG) [66], [67].
APG is able to accelerate convergence, by first extrapolating
a point from the current point and the previous point and
then performing a proximal gradient step. We leave this as
our future work.

C. Optimization of Off-diagonal Entries

For off-diagonal entries of M, we develop a block coordi-
nate descent algorithm, which optimizes one row / column at
a time.

1) Block Coordinate Iteration: First, we divide M into four
sub-matrices:

M =

[
m1,1 M1,2

M2,1 M2,2

]
, (22)

where m1,1 ∈ R, M1,2 ∈ R1×(K−1), M2,1 ∈ R(K−1)×1 and
M2,2 ∈ R(K−1)×(K−1). The assumption that M is symmetric
means M1,2 = M>

2,1. Our strategy is to optimize one row and
column of off-diagonal entries represented by M2,1 in one
iteration, given objective and constraints in (12). In the next
iteration, a different row and column is selected, and with
appropriate rows and columns reordering, the optimization
variable M2,1 can still reside in the first row and column as
shown in (22).

By the Haynsworth inertia additivity [33], a symmetric real
matrix M is PD if and only if both its sub-matrix M2,2 and its
corresponding Schur complement m1,1 −M>

2,1M
−1
2,2M2,1 are

PD. Hence, we can ensure M is PD by constraining the Schur
complement m1,1−M>

2,1M
−1
2,2M2,1 to be positive, given that

matrix M, and therefore sub-matrix M2,2, are both PD from
the previous iteration.

In the first iteration, we initialize M to be a diagonal
matrix with diagonal entries as optimized in Sec. IV-B. In
each subsequent iteration, we impose a positivity constraint
on the Schur complement of a submatrix M2,2 as follows:

m1,1 −M>
2,1M

−1
2,2M2,1 > 0. (23)

Optimization problem (12) thus becomes:

min
M2,1

∑
{i,j}

exp
{
−(fi − fj)

>M(fi − fj)
}
di,j

s.t. m1,1 −M>
2,1M

−1
2,2M2,1 > 0,

m1,1 ≤ C − tr(M2,2).

(24)
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Given M2,2 is fixed in (24), we can simplify the objective
as follows. Writing M in terms of its four sub-matrices in
(22), we simplify the objective via matrix multiplication as∑

{i,j}

exp
{
−2gi,j(1)M>

2,1gi,j(2))
}
d̃i,j , (25)

where the reused notation d̃i,j = exp{−gi,j(1)2m1,1 −
gi,j(2)>M2,2gi,j(2)}di,j is a constant as m1,1 and M2,2 are
fixed in the iteration. gi,j(1) denotes the first entry in vector
gi,j , and gi,j(2) ∈ RK−1 denotes the remaining entries.

2) λmax-bounded Reformulation: Computation of a large
matrix inverse M−1

2,2 in (24) per iteration is costly. To avoid
computing M−1

2,2, we derive a bound based on the largest
eigenvalue λmax of M−1

2,2 to ensure the positivity constraint
on the Schur complement m1,1 −M>

2,1M
−1
2,2M2,1 in (24) is

satisfied.
First, since M−1

2,2 is a real and symmetric PD matrix, it
admits diagonalization with eigen-matrix U (eigenvectors as
columns) and diagonal matrix Λ with real eigenvalues 0 <
λ1 ≤ . . . ≤ λK along its diagonal. Hence,

M>
2,1M

−1
2,2M2,1 = M>

2,1UΛU>M2,1

= (U>M2,1)>Λ(U>M2,1),
(26)

which is essentially scaling the l2-norm of U>M2,1 by
eigenvalues in Λ. Hence, a sufficient condition to the first
constraint in (24) is to bound with the maximum eigenvalue
λmax of M−1

2,2:

m1,1 > λmax(U>M2,1)>(U>M2,1)

⇒ m1,1 > λmaxM
>
2,1UU>M2,1

⇒ m1,1 > λmaxM
>
2,1M2,1.

(27)

λmax is the reciprocal of the minimum eigenvalue θmin of M2,2,
i.e., λmax = 1

θmin
. We employ Locally Optimal Block Precondi-

tioned Conjugate Gradient (LOBPCG) [68] to calculate θmin,
which is efficient to compute the extreme eigen-pairs of a large
sparse matrix with linear convergence.

Having computed θmin from M2,2 without eigen-
decomposition, we can reformulate (24) as

min
M2,1

∑
{i,j}

exp
{
−2gi,j(1)M>

2,1gi,j(2)
}
d̃i,j

s.t. m1,1 >
1

θmin
M>

2,1M2,1.

(28)

Next, we design an efficient algorithm to address (28).

3) PG Algorithm: In each iteration of the block descent
algorithm, we hold the diagonal entries fixed and optimize
M2,1 in (28).

The objective is convex while the lone constraint for M2,1

forms a convex set. In particular, the constraint in (28) reduces
to

S = {‖M2,1‖22 < θminm1,1}, (29)

which is a (K − 1)-dimensional norm ball with radius√
θminm1,1. We now define an indicator function IS′(M2,1):

IS′(M2,1) =

{
0, M2,1 ∈ S ′
∞, otherwise (30)

We can rewrite the optimization for M2,1 as an unconstrained
problem by exchanging the convex set constraint with the
indicator function IS′(M2,1) in the objective:

min
M2,1

∑
{i,j}

exp
{
−2gi,j(1)M>

2,1gi,j(2)
}
d̃i,j + IS′(M2,1).

(31)
The first term is convex with respect to M2,1 and differen-
tiable, while the second term IS′(M2,1) is convex but non-
differentiable. Hence, we employ again the PG algorithm to
solve (31).

Specifically, we first compute the gradient of the first term
F in the objective with respect to M2,1 as

∇F (M2,1) =

− 2
∑
{i,j}

gi,j(1)gi,j(2) exp
{
−2gi,j(1)M>

2,1gi,j(2)
}
d̃i,j ,

(32)

which will be adopted in the step of gradient descent. We
define a proximal mapping ΠIS′ (v) for v ∈ R(K−1)×1, which
is a projection onto the norm ball with radius

√
θminm1,1:

ΠIS′ (v) =

{
v, ‖v‖2 ≤

√
θminm1,1

v
‖v‖2 ·

√
θminm1,1, otherwise.

(33)
Then each iteration in the PG algorithm can be written as

Ml+1
2,1 := ΠIS′ (M

l
2,1 − γ∇F (Ml

2,1)), (34)

where γ is the step size as discussed in Sec. IV-B. We may
also deploy APG to reduce the complexity further.

Finally, we analyze the convergence of our algorithm. The
proposed alternating optimization algorithm optimizes diago-
nal and off-diagonal terms in M in turn. When computing a
solution for diagonal or off-diagonal terms, we adopt the newly
computed solution only if the objective strictly decreases.
Further, using an exponential kernel to compute edge weights
means that any metric M would always result in non-negative
edge weights. This results in a PSD graph Laplacian L [63],
and our GLR objective (12) is lower-bounded by 0. Hence,
our algorithm strictly decrements an objective iteratively that
is lower-bounded by 0, and our algorithm surely converges to
a locally optimal solution.

V. FEATURE METRIC LEARNING FOR POINT CLOUD
DENOISING

Having described our feature graph learning scheme, we
now employ it for 3D point cloud denoising. We first propose
a patch-based model and designate graph connectivities over
similar patches in a neighborhood. Then we formulate an
inverse problem for point cloud denoising with GLR for
regularization, which can be interpreted alternatively assuming
an IGMRF model. Finally, we develop an alternating algorithm
to efficiently solve the formulated problem.

A. Patch-based Model

We assume an additive noise model for a point cloud,
namely

P = Y + E, (35)
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where P ∈ RN×3 denotes the observed noise-corrupted 3D
coordinates of the target point cloud with N points, Y ∈
RN×3 is the ground truth 3D coordinates of the point cloud,
and E ∈ RN×3 is an additive noise.

Modeling of E depends on the actual point cloud acquisition
mechanism. There exist a wide range of point cloud acquisition
systems at different price points—from consumer-level depth
sensors like Intel RealSense4 costing 150 USD to high-end
outdoor scanners like Teledyne Optech5 that cost up to 250,000
USD—and defining accurate noise models for all of them is
difficult. We thus select the most common Gaussian noise
model, which has been shown to be reasonably accurate for
popular depth cameras like Microsoft Kinect [69], [70]. Hence,
E in (35) represents zero-mean additive white Gaussian noise
(AWGN) with standard deviation σ, i.e.,

E ∼ N (0, σ2I). (36)

In image denoising, a simple and effective assumption is
self-similarity (also known as nonlocal means (NLM)) [35],
[36], [56]: similar pixel patches exist throughout the same
image, which can be searched and gathered for joint denoising.
To exploit self-similarity also in point clouds, we also divide
P into patches. However, defining inter-patch similarity in a
point cloud is not straightforward, because a point cloud is a
collection of irregularly sampled points in 3D space6. Instead,
our work circumvents explicit search for similar patches.

Mimicking a fixed-size image patch with a center pixel, we
first define a patch Vi in a point cloud P as done in [40]:

Definition 1. A patch Vi in a point cloud is a local point set
of k + 1 points, consisting of a center point ci ∈ R3 and its
k-nearest-neighbors in terms of Euclidean distance.

We divide the input point cloud P into a set of M over-
lapping patches, each with a center point ci ∈ P. The patch
centers are selected from a subset of points in P. Intuitively,
uniformly distributed center points are preferred, since they
efficiently cover the entire point cloud. Hence, we employ the
uniform sampling method in [71]. M is empirically set, where
M ≤ N and (k + 1)M ≥ N .

Next, for each center point ci we construct a patch by
identifying ci’s k nearest neighbors. To exploit the assumed
similarity among patches for denoising, we align patches via
translation so each patch has its center at the origin. This
results in patch set V ∈ R(k+1)M×3:

V = TY −C, (37)

where T ∈ {0, 1}(k+1)M×N is a selection matrix to choose
points from Y to form M patches, each with k + 1 points.
Specifically, each row in T contains only 0s except one 1 to
choose one point in Y. C = {ci}Mi=1 ∈ R(k+1)M×3 denotes
the coordinates of patch centers.

4https://www.intelrealsense.com/
5https://www.teledyneoptech.com/en/products/static-3d-survey/
6 [40] formally defined patch similarity based on projections on parallel

planes, but it is computation-intensive.

A

B
C

Fig. 1. Illustration of graph connectivities over adjacent patches. Correspond-
ing points in each pair of neighboring patches are connected, while there are
no connectivities within each patch unless when patches are overlapped.

B. Proposed Graph Connectivity

We connect two adjacent patches as follows. Two patches
are considered adjacent if their centers are k-nearest neighbors.
Specifically, we use the k-nearest-neighbor (kNN) algorithm
to search the nearest ε patches of each patch as the neighbors
based on the Euclidean distance between patch centers. Then
we build a graph over each pair of adjacent patches. Overall,
this leads to a ε-nearest-patch graph on the entire point cloud.

Each point in one patch is then connected to its correspond-
ing point in the other patch. For simplicity, we treat a pair
of points in adjacent patches as corresponding points if their
coordinates relative to their respective centers are closest to
each other. Namely, for each point pi ∈ Vs, we search the
corresponding nearest point pj ∈ Vt, which has the smallest
Euclidean distance to pi:

pj = arg min
pl∈Vt

‖pi − pl‖2, pi ∈ Vs. (38)

We do not explicitly connect points within the same patch,
though two points in a patch may nonetheless be connected
because they are also corresponding points in two different
patches due to patch overlaps, as shown in Fig. 1.

We note that this is one possible graph connectivity among
many. For example, one can in addition enable intra-patch
filtering by drawing connections among points in the same
patch [60], [72], resulting in a denser graph. For simplicity,
we employ the most basic graph connectivity given inter-patch
similarities. More sophisticated graph constructions consider-
ing also intra-patch filtering is left for future work.

Next, we formulate the problem of point cloud denoising via
MAP estimation based on the chosen graph connectivities.

C. MAP Formulation for Point Cloud Denoising

We pose a MAP estimation problem for the underlying
patches V: given the observed patches V̂, find the most
probable signal V,

ṼMAP(V̂) = arg max
V

f(V̂ | V)g(V), (39)

where f(V̂ | V) is the likelihood function, and g(V) is the
prior probability distribution of V.
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1) Likelihood function: Since patches are extracted from
the observed point cloud, f(V̂ | V) is equivalent to f(P |
Y). We thus define the likelihood function according to the
additive Gaussian noise model in (35) and (36):

f(V̂ | V) = f(P | Y) = exp
{
−α ‖Y −P‖2F

}
, (40)

where α = 1/(2σ2) is a parameter.
2) Prior probability distribution: We employ signal-

dependent GLR as the prior, namely,

g(V) = exp
{
−βtr

(
V>L(M)V

)}
, (41)

where β is a parameter, and M is the Mahalanobis distance
matrix satisfying constraints in (12). This prior essentially
enforces the smoothness of patch signals V with respect to
the underlying graph L.

We provide an alternative interpretation of GLR next.
Specifically, we model the self-similarity among chosen
patches in point clouds via first-order IGMRFs on irregular
lattices. The definition of IGMRF is as follows [37]:

Definition 2. Let Q be an n × n symmetric positive semi-
definite matrix with rank n − r > 0. Then x = (x1, ..., xn)>

is an intrinsic GMRF of order r ≥ 0 with parameters (µ,Q),
if its density is

π(x) = (2π)−
n−k

2 (|Q|∗) 1
2 exp

{
−1

2
(x− µ)>Q(x− µ)

}
,

(42)
where | · |∗ denotes the generalized determinant (the product
of non-zero eigenvalues). An intrinsic GMRF of order r ≥ 0
is also known as an improper GMRF of rank n− r.

Further, x is an intrinsic GMRF with respect to a graph
G = {V, E}, where

Qi,j 6= 0⇐⇒ {i, j} ∈ E , ∀i 6= j. (43)

In our context, we only consider the case where the graph
G is loopless and connected, leading to first-order IGMRF
modelling of point clouds (i.e., r = 1) [73].

Specifically, for patches translated to the origin V = TY−
C, we model the difference between corresponding points pi
and pj in adjacent patches. As the coordinates along each
axis are independent, we consider each component separately.
Taking the x-axis coordinate xi and xj for instance, we define
a normal increment

xi − xj ∼ N (0, 1/(wi,jκ)), (44)

where κ is a precision parameter, and wi,j is a positive and
symmetric weight we incorporate for each pair of neighboring
nodes i and j. The joint density then becomes

π(x) ∝ κ(n−1)/2 exp

−κ2 ∑
i∼j

wi,j(xi − xj)2
 . (45)

As derived in [37], the corresponding precision matrix has
the following form:

Qi,j = κ


∑
k∼i wi,k i = j,

−wi,j i ∼ j,
0 otherwise.

(46)

Hence, under the first-order IGMRF model on irregular
lattices where we assume normal increments between corre-
sponding points, the prior distribution of V is

g(V) = β exp

{
−1

2
V>QV

}

∝ κ(n−1)/2 exp

−κ2 ∑
i∼j

wi,j(xi − xj)2
 ,

(47)

where β = (2π)−
n−1
2 (|Q|∗) 1

2 . Here Q has the specific form
as in (46).

Further, comparing the specific form of Q in (46) and
the definition of the combinatorial graph Laplacian L in
Sec. III-A, we have

Q = κL. (48)

Hence, we replace Q in the quadratic term in (47) with L
and consider all the three components, which leads to the GLR
prior in (41) and thus an alternative perspective of GLR under
first-order IGMRF.

3) Final formulation for point cloud denoising: Combining
(37), (39), (40) and (41), we have

max
Y,M

exp { − α ‖Y −P‖2F

−βtr
(
(TY −C)>L(M)(TY −C)

)}
.

(49)

We rewrite the objective by taking the logarithm of (49)
and multiplying by −1. Also, with the constraints of M
considered, we have the final problem formulation for point
cloud denoising

min
Y,M
‖Y −P‖2F + γtr

(
(TY −C)>L(M)(TY −C)

)
,

s.t. M � 0; tr(M) ≤ C,
(50)

where γ = β/α.
Next, we develop an alternating algorithm to solve (50).

D. Proposed Algorithm for Point Cloud Denoising

We propose to address (50) by alternately optimizing the
point cloud Y and the Mahalanobis distance matrix M. The
iterations terminate when the difference in the objective be-
tween two consecutive iterations stops decreasing. Parameter
settings are presented in Section VI.

1) Optimizing the point cloud Y: In the first iteration, we
initialize M with an identity matrix and thus fix L in (50).
Next, taking the derivative of (50) with respect to the three
components of Y, {Yx,Yy,Yz}, we have

(γT >LT + I)Yx = Px + γT >LCx,
(γT >LT + I)Yy = Py + γT >LCy,
(γT >LT + I)Yz = Pz + γT >LCz,

(51)

where I is an identity matrix. (51) can be treated as three
linear equation sets and thus can be efficiently solved using
conjugate gradient (CG) methods, such as the LSQR algorithm
[74]. The acquired solution of Y is then used to update M in
the subsequent iteration.
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Fig. 2. The flowchart of the proposed point cloud denoising algorithm.

2) Optimizing the Mahalanobis distance matrix M: When
Y is fixed, the optimization of M is feature metric learning in
Sec. IV. L is then computed from optimized M by definition
and our edge weight kernel.

Specifically, we consider two features: Cartesian coordinates
and normals. As done in [60], [72], surface normals are
adopted to promote smoothness of the underlying surface
on which the point clouds are discrete samples. Along with
coordinates, we thus form a 6-dimensional feature vector
at each point i, i.e., fi = [xi, yi, zi, n

i
x, n

i
y, n

i
z]
>, where

[xi, yi, zi] denotes the coordinates of point i, and [nix, n
i
y, n

i
z]

denotes its normal vector. Together with one observation P
with coordinates {pi}Ni=1, these per-node feature vectors fi
are used for feature metric learning of matrix M as described
in Section IV.

The inter-node sample difference square di,j in (12) now de-
notes the squared Euclidean distance between the coordinates
of pi and pj , namely,

di,j = ‖pi − pj‖22, i ∼ j, (52)

where i ∼ j denotes pi and pj are corresponding points that
are connected.

A flowchart of the proposed feature graph learning for point
cloud denoising is demonstrated in Fig. 2, and an algorithmic
summary is presented in Algorithm 1.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate feature graph learning for point cloud denoising
by testing on several point cloud datasets: 1) Face model [48]
and Iron Vise model [49], which are raw scans from laser
scanners exhibiting real-world noise but without ground truth;
2) the surface reconstruction benchmark models including
five point clouds [75] and Fandisk model [36], which
are clean point clouds as ground truth. We add Additive
White Gaussian Noise (AWGN) to benchmark with a range
of standard deviation σ = {0.02, 0.03, 0.04, 0.05, 0.10} for
extensive objective comparison. AWGN with σ = 0.005 is
added to Fandisk for subjective comparison. We choose the
parameter C in (12) empirically by first selecting a median
value of 3 and searching around this value at a step size
of 0.1 to obtain good results for each dataset. We observe
that the denoising performance of our algorithm is relatively
insensitive to C experimentally.

We compare the proposed approach with seven competing
point cloud denoising algorithms, including two MLS-based
methods APSS [45] and RIMLS [46], one LOP-based method

Algorithm 1: 3D Point Cloud Denoising

Input: Noisy point cloud P ∈ RN×3, number of
patches M , number of nearest neighbors k,
number of nearest patches ε, trace constraint C,
optimization parameter γ

Output: Denoised point cloud Y
1 Initialize Y with P;
2 for iter = 1, 2, ... do
3 [nix, n

i
y, n

i
z]
N
i=1 ← estimate normal for Y;

4 Downsample Y via uniform sampling, denoted as
C = {ci}Mi=1;

5 Initialize M empty patches V;
6 for i = 1, ...,M do
7 Vi ← the nearest k points from ci in Y;
8 end
9 for i = 1, ...,M do

10 Bi ← the nearest ε patches to Vi;
11 Find corresponding node pairs from Bi via the

algorithm in Sec. V-B;
12 end
13 Initialize M with a diagonal matrix with diagonal

entries C/6;
14 di,j ← Euclidean distance via (52) for each node pair

(i, j);
15 gi,j ← feature distance for each node pair (i, j);
16 repeat
17 Solve off-diagonal entries of M via Block

Coordinate Descent algorithm in Sec. IV-C;
18 Solve diagonal entries of M via Proximal

Descent algorithm in Sec. IV-B;
19 until (12) converges;
20 Compute adjacency matrix W over all patches;
21 Compute Laplacian matrix L;
22 Construct selection matrix T ;
23 Y ← Solve (51);
24 end

AWLOP [49], one sparsity based method MRPCA [38], two
non-local based methods NLD [53] and LR [39], and one
graph-based method GLR [40]. The implementation details are
as follows. We employ the toolbox of the MeshLab software
[76] to run APSS and RIMLS. We try each filter scale in the
range [3, 10] and choose one with the best result. For AWLOP,
we use its function in the EAR software [49], and choose the
repulsion force in {0.3, 0.4, 0.5} and the filter iteration in the
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(a) Noisy input (161K points) (b) Iteration 1 (c) Iteration 3 (d) Iteration 5 (e) Iteration 7

Fig. 3. Results on Iron Vise model in different iterations with real-world noise obtained by a laser scanner.

(a) Ground-truth (b) Noisy (c) APSS (d) AWLOP (e) MRPCA (f) GLR (g) Ours

Fig. 4. Comparison results with Gaussian noise σ = 0.04 for Quasimoto: (a) The ground truth; (b) The noisy point cloud; (c) The denoised result by
APSS; (d) The denoised result by AWLOP; (e) The denoised result by MRPCA; (f) The denoised result by GLR; (g) The denoised result by our algorithm.

TABLE II
COMPARISON RESULTS UNDER GAUSSIAN NOISE σ = 0.05 AND

SAMPLING RATE 20% IN BENCHMARK .

Anchor Daratech DC Gargoyle Quasimoto
MSE

Ours 0.240 0.301 0.223 0.256 0.197
Diagonal 0.251 0.339 0.241 0.275 0.205

SNR
Ours 48.17 43.78 47.04 46.93 47.87

Diagonal 47.72 42.59 46.23 46.20 47.50

range [2, 5] to acquire one best solution. The source codes of
MRPCA and GLR are provided by the authors. We try data
fitting iterations in the range [2, 6] for MRPCA, and follow
the parameter settings in [40] for GLR. We implement NLD
and LR in MATLAB, and follow the default settings in their
papers. The Diagonal approach is implemented by ourselves
in MATLAB.

Further, to validate the necessity of optimizing edge
weights, we compare against two Baseline schemes of our
method: 1) Baseline1, where the edge weights are randomly
set in range [0, 1] instead of optimizing via feature graph
learning; 2) Baseline2, where the edge weights are calculated
from feature vectors using an exponential kernel.

B. Experimental Results

1) Demonstration of Iterations: To show the fast conver-
gence speed of our algorithm, we demonstrate the denoising
results of Iron Vise model in every two iterations. We set
the weighting parameter of GLR γ = 0.2i · (e − 1)1−i in
(50), where e is the natural logarithmic base and i is the
iteration index starting from 1. γ decreases with iterations
so as to prevent over-smoothing. As presented in Fig. 3, as
the number of iterations increases, the point cloud gradually
becomes smoother, until it almost converges at iteration 7.

2) Objective Comparison: We measure the quality of de-
noised results for Benchmark models by the Mean Squared
Error (MSE) and Signal-to-Noise Ratio (SNR) between each
denoised point cloud and the ground truth as in [60]. Numer-
ical results are listed in Table III and Table IV, respectively.

Both tables show that our method outperforms all the
other competing approaches at various noise levels in general,
especially at high noise level σ = 0.04. Also, we outperform
the Baseline1 scheme with random weights and Baseline2 with
empirical weights, which validates optimizing edge weights is
essential.

Further, to demonstrate the case of learning from partial
observation of one signal, we randomly sample a subset of
points (20%) in each point cloud for the learning of the feature
metric M at noise level σ = 0.05. As presented in Table II, on
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TABLE III
MSE COMPARISON FOR DIFFERENT MODELS IN BENCHMARK WITH GAUSSIAN NOISE.

Model Noisy APSS RIMLS AWLOP NLD MRPCA LR GLR Diagonal Baseline1 Baseline2 Ours

σ = 0.02
Anchor 0.259 0.208 0.212 0.237 0.231 0.202 0.228 0.189 0.199 0.197 0.198 0.194

Daratech 0.245 0.203 0.209 0.228 0.222 0.225 0.213 0.197 0.198 0.196 0.195 0.192
DC 0.237 0.186 0.198 0.211 0.206 0.189 0.206 0.177 0.180 0.180 0.180 0.177

Gargoyle 0.257 0.208 0.217 0.230 0.230 0.215 0.240 0.202 0.205 0.204 0.204 0.200
Quasimoto 0.224 0.171 0.183 0.196 0.190 0.171 0.180 0.162 0.162 0.163 0.162 0.161

Average 0.244 0.195 0.203 0.220 0.215 0.200 0.213 0.185 0.189 0.188 0.188 0.184
σ = 0.03

Anchor 0.322 0.239 0.244 0.259 0.265 0.230 0.246 0.217 0.225 0.227 0.225 0.221
Daratech 0.303 0.242 0.258 0.298 0.258 0.259 0.252 0.238 0.243 0.244 0.244 0.236

DC 0.293 0.210 0.226 0.257 0.235 0.211 0.221 0.203 0.205 0.207 0.204 0.200
Gargoyle 0.318 0.239 0.252 0.294 0.262 0.241 0.257 0.233 0.233 0.237 0.233 0.228

Quasimoto 0.274 0.188 0.203 0.226 0.217 0.187 0.193 0.176 0.179 0.181 0.179 0.175
Average 0.302 0.223 0.236 0.266 0.247 0.225 0.233 0.213 0.217 0.219 0.217 0.212

σ = 0.04
Anchor 0.372 0.254 0.263 0.306 0.297 0.242 0.259 0.228 0.236 0.243 0.236 0.232

Daratech 0.348 0.282 0.308 0.286 0.295 0.288 0.283 0.276 0.280 0.286 0.284 0.274
DC 0.338 0.227 0.254 0.270 0.269 0.223 0.234 0.228 0.223 0.225 0.219 0.215

Gargoyle 0.368 0.262 0.277 0.297 0.294 0.257 0.269 0.257 0.253 0.259 0.253 0.245
Quasimoto 0.318 0.201 0.219 0.218 0.252 0.199 0.204 0.187 0.195 0.195 0.191 0.182

Average 0.348 0.245 0.264 0.275 0.281 0.241 0.249 0.235 0.237 0.242 0.237 0.229
σ = 0.05

Anchor 0.417 0.267 0.281 0.315 0.331 0.253 0.270 0.244 0.246 0.248 0.246 0.240
Daratech 0.387 0.350 0.373 0.359 0.330 0.325 0.347 0.308 0.319 0.326 0.322 0.301

DC 0.381 0.251 0.265 0.324 0.306 0.239 0.247 0.241 0.231 0.247 0.245 0.222
Gargoyle 0.412 0.292 0.305 0.365 0.334 0.277 0.281 0.273 0.266 0.274 0.268 0.256

Quasimoto 0.362 0.229 0.242 0.267 0.291 0.207 0.218 0.209 0.195 0.203 0.196 0.193
Average 0.392 0.278 0.293 0.326 0.318 0.260 0.273 0.255 0.251 0.260 0.255 0.242

σ = 0.10
Anchor 0.631 0.389 0.402 0.536 0.571 0.382 0.398 0.407 0.352 0.360 0.350 0.333

Daratech 0.533 0.504 0.542 0.466 0.508 0.445 0.431 0.446 0.404 0.404 0.402 0.398
DC 0.575 0.403 0.464 0.502 0.529 0.405 0.402 0.389 0.378 0.390 0.385 0.368

Gargoyle 0.619 0.444 0.475 0.535 0.564 0.423 0.428 0.438 0.419 0.428 0.426 0.416
Quasimoto 0.561 0.402 0.414 0.473 0.523 0.388 0.387 0.356 0.293 0.312 0.304 0.286

Average 0.584 0.428 0.459 0.502 0.539 0.409 0.409 0.407 0.369 0.379 0.373 0.360

one hand, we achieve comparable results with learning from
the entire single observation as listed in Table III and Table IV.
On the other hand, we compare with the diagonal-only method
in [28], where only a diagonal feature metric is learned from
20% of points. Results show that we still outperform [28]
in the circumstance of learning feature metric from partial
observation. This validates the effectiveness of our method
even when extending to the case of partial observation of one
signal.

3) Comparison with Vanilla Proximal Gradient: Moreover,
we compare with the naı̈ve realization of proximal gradient
Vanilla PG as discussed in Section IV-A to solve (12). As
presented in Table V, while our proposed algorithm approx-
imates the original search space in Vanilla PG by rewriting
the PD constraint, our point cloud denoising results are very
close to the performance by Vanilla PG. This validates the
effectiveness of our optimization approximation.

4) Subjective Comparison: Fig. 4 shows visual results of
Quasimoto model in Benchmark without surface recon-
struction for details. We compare with other denoising ap-
proaches at noise level σ = 0.04. It can be seen that our results
preserve structural details well, even for tiny components such
as the cigarette in Fig. 4. In comparison, the cigarette is
distorted in all the other reconstruction results. Also, points

in our results are more uniformly distributed than the others,
even for noise with large variance.

In Fig. 5, we add AWGN to Fandisk model with standard
deviation σ = 0.005. We see that our method preserves sharp
features, while the other approaches result in smoothed edges
to various extent. Meanwhile, our method reconstructs smooth
surfaces well, such as the bottom surface as presented in the
first row of Fig. 5.

Finally, we evaluate on real-world noisy point clouds Iron
Vise and Face acquired from laser scanners. Typical im-
perfections associated with digital scans, such as noise, non-
uniform point distribution, or missing data, are ubiquitous in
these datasets. As shown in Fig. 3 and Fig. 6, our method is
able to keep local details and sharp edges while attenuating
noise significantly.

5) Computation Complexity: We compare the average com-
putation time per point cloud optimization with Baseline2
to demonstrate our computation complexity. As presented in
Table VI, the extra computation burden due to the optimization
of the metric matrix per point cloud optimization is small. Fur-
ther, the overhead of feature graph learning is roughly constant
over point clouds of different sizes, since the optimization of
the metric matrix depends mainly on the feature dimension
per node.
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TABLE IV
SNR (DB) COMPARISON FOR DIFFERENT MODELS IN BENCHMARK WITH GAUSSIAN NOISE.

Model Noisy APSS RIMLS AWLOP NLD MRPCA LR GLR Diagonal Baseline1 Baseline2 Ours

σ = 0.02
Anchor 47.41 49.61 49.41 48.31 48.53 49.88 48.69 50.55 50.03 50.14 50.11 50.30

Daratech 45.85 47.71 47.44 46.56 46.82 46.72 47.27 48.02 47.96 48.08 48.12 48.29
DC 46.42 48.83 48.23 47.59 47.82 48.68 47.83 49.34 49.19 49.16 49.16 49.33

Gargoyle 46.91 49.01 48.57 48.01 48.01 48.66 47.57 49.30 49.18 49.20 49.19 49.40
Quasimoto 46.61 49.27 48.60 47.92 48.22 49.27 48.78 49.81 49.85 49.77 49.82 49.90

Average 46.67 48.88 48.44 47.67 47.87 48.64 48.02 49.40 49.24 49.27 49.28 49.44
σ = 0.03

Anchor 45.25 48.24 48.00 46.69 47.16 48.60 47.91 49.20 48.82 48.72 48.83 48.99
Daratech 43.70 46.00 45.46 45.12 45.34 45.18 45.59 46.13 45.92 45.89 45.91 46.22

DC 44.32 47.64 46.94 46.04 46.49 47.62 47.10 47.94 47.84 47.76 47.90 48.11
Gargoyle 44.75 47.63 47.12 46.39 46.68 47.52 46.88 47.87 47.89 47.70 47.86 48.09

Quasimoto 44.58 48.34 47.57 46.53 46.89 48.40 48.09 49.00 48.83 48.72 48.82 49.06
Average 44.52 47.57 47.01 46.15 46.51 47.46 47.11 48.02 47.86 47.76 47.86 48.09

σ = 0.04
Anchor 43.78 47.60 47.27 45.74 46.02 48.09 47.41 48.67 48.34 48.04 48.35 48.51

Daratech 42.34 44.46 43.58 44.32 43.98 44.25 44.41 44.64 44.53 44.30 44.36 44.73
DC 42.86 46.84 45.71 45.11 45.15 47.00 46.54 46.80 47.03 46.93 47.21 47.38

Gargoyle 43.31 46.69 46.14 45.44 45.53 46.88 46.44 46.89 47.05 46.81 47.06 47.37
Quasimoto 43.09 47.68 46.80 46.85 45.40 47.80 47.52 48.40 48.00 47.97 48.20 48.67

Average 43.07 46.65 45.90 45.49 45.21 46.80 46.46 47.08 46.99 46.81 47.04 47.33
σ = 0.05

Anchor 42.65 47.09 46.59 45.44 44.94 47.64 46.99 48.00 47.90 47.80 47.92 48.17
Daratech 41.28 42.29 41.64 42.02 42.87 43.03 42.37 43.56 43.21 42.99 43.11 43.80

DC 41.68 45.86 45.30 43.27 43.85 46.33 46.01 46.24 46.68 45.98 46.06 47.07
Gargoyle 42.17 45.61 45.18 43.37 44.28 46.12 45.99 46.28 46.56 46.25 46.45 46.93

Quasimoto 41.79 46.36 45.83 44.83 43.99 47.39 46.85 47.28 47.96 47.55 47.94 48.08
Average 41.91 45.44 44.91 43.79 43.99 46.10 45.64 46.27 46.46 46.11 46.30 46.81

σ = 0.10
Anchor 38.52 43.35 43.04 40.13 39.51 43.52 43.12 42.89 44.33 44.10 44.38 44.87

Daratech 38.10 38.66 37.92 39.43 38.57 39.88 40.24 39.86 40.84 40.82 40.88 41.00
DC 37.57 41.14 39.72 38.91 38.38 41.07 41.13 41.45 41.71 41.39 41.54 42.00

Gargoyle 38.12 41.44 40.78 39.57 39.03 41.91 41.79 41.56 41.97 41.76 41.82 42.06
Quasimoto 37.43 40.78 40.49 39.13 38.13 41.11 41.13 41.96 43.88 43.26 43.53 44.14

Average 37.95 41.07 40.39 39.43 38.72 41.50 41.48 41.54 42.55 42.27 42.43 42.81

(a) Ground-truth (b) Noisy (c) APSS (d) AWLOP (e) MRPCA (f) GLR (g) Ours

Fig. 5. Comparison results with Gaussian noise σ = 0.005 for Fandisk, where the first row shows the bottom of Fandisk. (a) The ground truth; (b)
The noisy point cloud; (c) The denoised result by APSS; (d) The denoised result by AWLOP; (e) The denoised result by MRPCA; (f) The denoised result
by GLR; (g) The denoised result by our algorithm.
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TABLE V
MSE COMPARISON WITH VANILLA PG UNDER GAUSSIAN NOISE

σ = 0.05 IN BENCHMARK .

Anchor Daratech DC Gargoyle Quasimoto
Vanilla PG 0.240 0.301 0.222 0.256 0.191

Ours 0.240 0.301 0.222 0.256 0.193

(a) Noisy input (84.4K points) (b) MRPCA

(c) GLR (d) Ours

Fig. 6. Comparison results of Face model: (a) The real-world noisy point
cloud acquired by laser scanners; (b) The denoised result by MRPCA; (c)
The denoised result by GLR; (d) The denoised result by our algorithm.

VII. CONCLUSION

We study feature graph learning to identify an appropriate
underlying graph given a single signal observation. Assuming
the availability of relevant features per node, we formulate the
problem as a minimization of Graph Laplacian Regularizer
using the Mahalanobis distance matrix M as variable. We
develop a fast algorithm to alternately optimize diagonal and
off-diagonal entries of M, while keeping M positive definite.
We mitigate full matrix eigen-decomposition and large matrix
inverse for fast computation. To validate the effectiveness
of the proposed feature graph learning, we employ it for
3D point cloud denoising with 3D coordinates and surface
normals as features, leading to state-of-the-art performance.
We note finally that our proposed feature graph learning is
sufficiently general to address various applications that require
graph learning but have access only to small amounts of data.
As concrete examples, there have been two recent efforts to
adapt our learning methodology for binary classification [77]
and depth image enhancement [78].
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