
EXPLORING STRUCTURE-ADAPTIVE GRAPH LEARNING FOR ROBUST
SEMI-SUPERVISED CLASSIFICATION

Xiang Gao, Wei Hu* , and Zongming Guo

{gyshgx868, forhuwei, guozongming}@pku.edu.cn
Wangxuan Institute of Computer Technology, Peking University, Beijing

ABSTRACT

Graph Convolutional Neural Networks (GCNNs) are gener-
alizations of CNNs to graph-structured data, in which convo-
lution is guided by the graph topology. In many cases where
graphs are unavailable, existing methods manually construct
graphs or learn task-driven adaptive graphs. In this paper, we
propose Graph Learning Neural Networks (GLNNs), which
exploit the optimization of graphs (the adjacency matrix in
particular) from both data and tasks. Leveraging on spec-
tral graph theory, we propose the objective of graph learning
from a sparsity constraint, properties of a valid adjacency ma-
trix as well as a graph Laplacian regularizer via maximum a
posteriori estimation. The optimization objective is then inte-
grated into the loss function of the GCNN, which adapts the
graph topology to not only labels of a specific task but also
the input data. Experimental results show that our proposed
GLNN significantly outperforms state-of-the-art approaches
over widely adopted social network datasets and citation net-
work datasets for semi-supervised classification.

Index Terms— Graph learning, graph convolutional neu-
ral networks, structure-adaptive, robustness

1. INTRODUCTION
Graphs are natural and efficient representation for non-
Euclidean data, such as social networks, citation networks,
brain neural networks and 3D geometric data. Recently,
Graph Convolutional Neural Networks (GCNNs) have been
proposed to generalize CNNs to non-Euclidean domain [1],
which has shown its efficiency in various applications such as
semi-supervised classification [2, 3, 4, 5, 1, 6]. Graphs are fed
into the network for basic operations such as graph convolu-
tion, and thus play a vital role in feature extraction. In cases
where graphs are not readily available, many previous works
manually construct graphs from the input data, which tend to
be sub-optimal.

Existing graph learning methods can be divided into three
main categories: statistical methods, graph spectral methods,
and deep learning methods. Statistical methods estimate the

* Corresponding author: Wei Hu (forhuwei@pku.edu.cn). This work
was supported by National Natural Science Foundation of China [61972009]
and Beijing Natural Science Foundation [4194080].

inverse covariance or precision matrix given sufficient empir-
ical data, assuming certain prior topological information (e.g.,
sparsity) [7, 8]. Graph spectral learning methods often opti-
mize the Laplacian matrix [9] from observed graph signals,
which are assumed to reside in a low-dimensional subspace
spanned by low frequency components [10, 11, 12].

Recently, there have been few attempts at graph learning
in GCNNs. Li et al. [13] learn an adaptive graph via distance
metric learning for graph classification, which is task-driven
during the model optimization. Jiang et al. [14] propose a
graph learning convolutional network, which learns a non-
negative edge weight function that represents pairwise simi-
larities within graph data for semi-supervised learning. How-
ever, only edge weights are learned while edge connectivities
resort to the structure of the given ground truth graph, which
may not capture potential connections. Li et al. [15] propose a
spatio-temporal graph learning scheme for skeleton-based ac-
tion recognition, which adaptively learns intrinsic high-order
connectivities for skeleton joints. Shi et al. [16] come up
with a two-stream adaptive graph convolutional network for
skeleton-based action recognition, where a shared graph for
all instances and an individual graph for each instance are
learned in an end-to-end manner. Nevertheless, the optimiza-
tion of the above network models either are task-driven or
focus on edge weight learning based on an available graph
structure.

To this end, we propose a structure-adaptive Graph Learn-
ing Neural Network (GLNN) for robust graph representa-
tion learning especially at low label rates. The key idea
is to pose graph learning as an optimization problem of an
adjacency matrix1 from both data and labels based on a
structure-adaptive regularization—Graph Laplacian Regular-
izer (GLR) [17]. GLR measures the smoothness of data
with respect to the underlying graph represented by the graph
Laplacian matrix2, which essentially enforces the graph to
capture pairwise similarities within the data. This structure-
adaptive regularization enhances the robustness of the net-

1The adjacency matrix encodes connectivities of a graph.
2In spectral graph theory, a graph Laplacian matrix is an algebraic rep-

resentation of connectivities and node degrees of the corresponding graph,
which can be computed from the adjacency matrix and will be introduced in
Section 2.

978-1-7281-1331-9/20/$31.00 c©2020 IEEE

work model especially in case of low label rates by enforcing
smoothness over labels of similar samples. Also, we learn
both graph connectivities and edge weights encoded in the
adjacency matrix.

Specifically, we first represent features of network data
(e.g., social/citation networks) as signals on the graph, and
pose a Maximum a Posteriori (MAP) estimation on the un-
derlying adjacency matrix. In the MAP estimation, we pro-
pose a likelihood function based on GLR. Also, we propose
a prior distribution from the sparsity constraint and properties
of a valid adjacency matrix, considering a symmetric, nor-
malized and loopless graph. The MAP estimation then leads
to an optimization problem for the underlying adjacency ma-
trix. Secondly, we integrate the optimization objective into
the cross-entropy loss function of a GCNN, thus optimiz-
ing the network model in both structure-adaptive and task-
driven fashion. Finally, we design a framework of the pro-
posed GLNN, which mainly consists of a Graph Learning
Layer and Graph Convolution Layers. We evaluate GLNN on
semi-supervised classification tasks for social networks and
citation networks, and set the new state-of-the-art. Further,
we demonstrate the robustness of GLNN at low label rates,
which is crucial to practical applications.

In summary, our main contributions are as follows:
• We propose graph learning regularized by GLR for ro-

bust semi-supervised node classification especially at low
label rates, which jointly learns graph connectivities and
edge weights in both structure-adaptive and task-driven
manners.

• We present a GLNN framework that integrates graph
learning with graph convolution, which optimizes the net-
work model by introducing GLR, properties of valid adja-
cency matrices and sparsity constraints into the loss func-
tion.

• Extensive experiments demonstrate the superiority and ro-
bustness of our method compared to state-of-the-art ap-
proaches on widely used citation network datasets and so-
cial network datasets.

2. BACKGROUND IN SPECTRAL GRAPH THEORY
2.1. Graph Laplacian
We consider an undirected graph G = {V, E ,A} composed
of a node set V of cardinality |V| = N , an edge set E connect-
ing nodes, and a weighted adjacency matrix A. A is a real
symmetric N × N matrix, where ai,j is the weight assigned
to the edge (i, j) connecting nodes i and j.

The graph Laplacian is defined from the adjacency ma-
trix. Among different variants of Laplacian matrices, the
commonly used combinatorial graph Laplacian [18] is de-
fined as

L = D−A, (1)

where D is the degree matrix—a diagonal matrix where
di,i =

∑N
j=1 ai,j .

To ensure the numerical stability in a deep neural network
model, we employ the symmetric normalized Laplacian [18],
which is defined as

L = D−
1
2LD−

1
2 = I−D−

1
2AD−

1
2 , (2)

where I is an identity matrix.

2.2. Graph Laplacian Regularizer
Graph signal refers to data that reside on the nodes of a graph.
In our context, we treat each person in a social network or
each paper in a citation network as a node in a graph, and the
relationship between each pair of nodes as the edge. Then we
define the graph signal as the social feature or paper informa-
tion of each node.

A graph signal x ∈ RN defined on a graph G is smooth
with respect to G [17] if

x>Lx =

N∑
i=1

N∑
j=1

ai,j(xi − xj)2 < ε, (3)

where ε is a small positive scalar. To satisfy (3), disconnected
or weakly connected node pair xi and xj with significantly
different values must correspond to a small edge weight ai,j ;
for strongly connected xi and xj with similar values, ai,j can
be large. Hence, (3) forces G to capture pairwise similarities
in x, and is commonly called the graph Laplacian Regularizer
(GLR) [17].

3. THE PROPOSED GRAPH LEARNING
In this section, we elaborate on the formulation of structure-
adaptive graph learning, and then describe the corresponding
network model optimization.

3.1. Problem Formulation of Graph Learning
We propose to exploit the learning of the direct representation
of the underlying graph, i.e., the adjacency matrix. In particu-
lar, we pose a MAP estimation of the adjacency matrix, which
leads to graph learning from the GLR, sparsity constraint and
properties of a valid adjacency matrix.

3.1.1. MAP Estimation of Graph Adjacency Matrices

We first formulate a MAP estimation problem for the optimal
graph adjacency matrix Â: given the observed graph signal
x, find the most probable graph Â,

ÃMAP(x) = argmax
Â

f(x | Â)g(Â), (4)

where f(x | Â) is the likelihood function, and g(Â) is the
prior probability distribution of Â. The likelihood function
f(x | Â) is the probability of obtaining the observed graph
signal x given the graph Â, while the prior probability distri-
bution g(Â) provides the prior knowledge of Â. The likeli-
hood and prior functions are discussed in order as follows.

3.1.2. Proposed Prior Probability Distribution

The prior probability distribution g(Â) provides the prior
knowledge of Â. We propose the prior knowledge of an ad-
jacency matrix from two aspects: 1) the sparsity constraint

2

Input LayerInput LayerInput LayerInput Layer

z3

z2

z4

z1

z5

Input LayerInput LayerInput LayerInput Layer

x3

x5
x4

x1
x2

x3

x2

x4

x1

x5

Fig. 1. The architecture of the proposed GLNN for semi-supervised node classification.

gs(Â); 2) the property constraint of a valid adjacency matrix
gp(Â). Since the two prior constraints are independent, we
have

g(Â) = gs(Â)gp(Â). (5)

We elaborate on the sparsity constraint and property con-
straint separately as follows.

Sparsity Constraint. We pose a sparsity constraint on
Â. This is based on the observation that the similarity re-
lationship in real-world data is often sparse. Also, this con-
straint avoids data overfitting by capturing prominent similar-
ities. Mathematically, we define the sparsity prior as

gs(Â) = exp
(
−λ1‖Â‖1

)
, (6)

where ‖ · ‖1 denotes the l1-norm of a matrix, and λ1 is a
weighting parameter.

Property Constraint. The properties of a valid normal-
ized adjacency matrix include:
• Symmetry. We consider undirected graphs, corresponding

to a symmetric adjacency matrix Â, i.e.,
Â> = Â. (7)

• Normalized. We enforce normalized adjacency matrices
in order to avoid numerical instabilities and exploding or
vanishing gradients when employed in a deep neural net-
work architecture. The mathematical description is

Â1 = 1, (8)
where 1 denotes the vector with all elements equal to one.

• Loopless. Since it is often unnecessary to link a node with
itself such as in a citation network or social network, we
consider graphs without self loop, i.e.,

tr(Â) = 0, (9)
where tr(·) denotes the trace of a matrix.
Combining the above properties, we propose the follow-

ing prior probabilistic distribution of Â:

gp(Â) = exp (− λ2‖Â> − Â‖2F
−λ3‖Â1− 1‖2F − λ4|tr(Â)|2

)
,

(10)

where ‖ · ‖F is the Frobenius norm of a matrix, and λ2, λ3,
and λ4 are all weighting parameters.

3.1.3. Proposed Likelihood Function

Since GLR enforces the graph signal x to adapt to the topol-
ogy of the graph described by Â, we propose the likelihood
function as

f(x | Â) = exp
(
−λ0x>Lx

)
= exp

(
−λ0x>(I− Â)x

)
,

(11)

where λ0 is a parameter. Since we assume Â is normalized,
the degree matrix is an identity matrix as in (11). This pro-
vides a structural assumption of data encoded in the adjacency
matrix, which includes both graph connectivities and edge
weights.

3.1.4. Final MAP Estimation

Having discussed the proposed likelihood function and prior,
we arrive at our final MAP estimation of the graph adjacency
matrix. Combining (4), (5), (6), (10) and (11), we have

max
Â

exp
(
−λ0x>(I− Â)x

)
· exp

(
−λ1‖Â‖1

)
· exp (− λ2‖Â> − Â‖2F − λ3‖Â1− 1‖2F

−λ4|tr(Â)|2
)
.

(12)

Taking the logarithm of (12) and multiplying by −1, we
have

min
Â

λ0x
>(I− Â)x+ λ1‖Â‖1 + λ2‖Â> − Â‖2F

+ λ3‖Â1− 1‖2F + λ4|tr(Â)|2,
(13)

where the first term is GLR, the second term is the sparsity
constraint of the adjacency matrix, and the rest are the prop-
erty constraints of a valid adjacency matrix. Hence, the pro-
posed formulation is to learn such a valid and sparse adja-
cency matrix Â that the graph signal x is adaptive to the
learned graph.

3.2. Network Model Optimization
We propose to integrate the optimization objective in (13) into
the loss function of the GCN, which seamlessly optimizes the
network model with graph learning. Accordingly, the pro-
posed overall loss in graph learning LGL includes three com-
ponents: the loss in GLR LGLR, the loss in sparsity Lsparsity,

3

and the loss in property constraints Lproperties:
LGL = LGLR + Lsparsity + Lproperties. (14)

In accordance with (13), LGLR is defined as
LGLR = λ0‖x>(I− Âout)x‖22. (15)

where Âout is the final output adjacency matrix at each epoch.
LGLR is in a quadratic form, which is differentiable.
Lsparsity is accordingly defined as

Lsparsity = λ1‖Âout‖1. (16)
The l1-norm is non-differentiable since it is not continuous
everywhere. In the backward propagation algorithm of ma-
chine learning, the gradient of the l1 regularization is solved
using the sub-gradient.

Finally, we define Lproperties as

Lproperties =λ2‖Â>out − Âout‖22
+ λ3‖Âout1− 1‖22 + λ4|tr(Âout)|2.

(17)

This function is differentiable because all the three terms are
l2 norms.

4. THE PROPOSED GLNN

Having discussed the proposed graph learning, we elabo-
rate on its integration with GCN, which leads to the pro-
posed GLNN architecture. As shown in Fig. 1, given graph-
structured networks as the input, GLNN consists of two major
procedures: graph learning and graph convolution. The graph
learning layer aims to produce an optimal adjacency matrix
for the subsequent graph convolution. The graph convolution
has two layers, with the same parameter settings as in [2].

4.1. Graph Learning Layer

The graph learning layer aims to construct an optimal graph
structure from the input graph signals. In this layer, we first
randomly initialize the adjacency matrix before training the
network, and then train the graph using gradient descent from
the backward propagation of the proposed loss function intro-
duced in (14).

In order to further simplify the implementation, we per-
form the following symmetrization on the adjacency matrix
Â before the output of the graph learning layer, which aims
to ensure the symmetry property:

Âout =
1

2

(
Â> + Â

)
, (18)

where Âout ∈ RN×N is the final output adjacency matrix of
the graph learning layer at each epoch. It is a real symmetric
matrix by definition. Thus, we can remove the symmetric
term in (17).

The graph obtained from the graph learning layer is
then fed into the GCN architecture for the subsequent semi-
supervised node classification task.

4.2. Graph Convolution and Feature Transfer
We consider a two-layer GCN with the learned adjacency ma-
trix Âout. The forward model takes the form [2]:

Z = f(X, Âout)

= softmax
(
Âout ReLU

(
ÂoutXW(0)

)
W(1)

)
,

(19)

where W(0) ∈ RC×H is an input-to-hidden weight matrix
for a hidden graph convolutional layer with H output feature
channels, and W(1) ∈ RH×F is a hidden-to-output weight
matrix for an output layer with F classes. The softmax(·) and
ReLU(·) are two activation functions.

4.3. The Overall Loss Function
In semi-supervised node classification tasks, we need to eval-
uate the cross-entropy loss (the Classification Loss in Fig. 1)
over the labeled data:

LGCN = −
∑
l∈YL

F∑
f=1

Ylf lnZlf , (20)

where YL is a set of labeled nodes, Yl· denotes the label for
the lth labeled node, and Zl· is the predicted label for the lth

node.
Further, in cases where the ground truth graph of training

samples is available, we add the following loss function to
ensure the learned graph is closer to the ground truth:

Lgt = ‖Âout −Agt‖22, (21)
where Agt is a ground truth adjacency matrix.

Hence, the overall loss function of our proposed GLNN
framework is

Loverall = LGCN + LGL + αLgt. (22)
where α is a weighting parameter.

5. EXPERIMENTAL RESULTS
5.1. Datasets
We consider two social networks: TerroristRel and Ter-
ror Attack [19], and three citation networks: Citeseer,
Cora, and Pubmed [20]. The five datasets are available at
https://linqs.soe.ucsc.edu/data. We represent the relationship
between terrorists and citation links as undirected edges, and
construct a binary and symmetric matrix as introduced in [2]
as the ground truth adjacency matrix.

We employ 160 nodes as labeled data to train our model
and leave 150 nodes for testing in the TerroristRel dataset,
while in the Terror Attack dataset we deploy 120 nodes for
training and leave 200 nodes for testing. In the Pubmed
dataset, we sample 3,000 nodes to evaluate our model, among
which we select 60 nodes as labeled data to train each model
and test the performance on 1,000 nodes. For the Citeseer and
Cora dataset, we follow the experimental setup in [21].

5.2. Implementation Details
We implemented the proposed model with the TensorFlow
framework, and empolyed Adam to train the entire network

4

Table 1. Results of node classification in terms of accuracy
(%). The asterisk indicates a sampled dataset.

Method Terrorists
Rel

Terror
Attack Citeseer Cora Pubmed*

Planetoid [21] - - 64.7 75.7 74.5
ChebNet [3] 60.1 66.5 69.6 81.2 71.6
MoNet [22] 59.2 62.4 - 81.7 73.5

LoNGAE [23] 63.5 66.0 71.8 79.0 74.7
GAT [24] 63.5 65.5 71.0 82.3 72.3
DGI [25] 52.7 61.5 71.8 82.3 74.6

GWNN [26] 65.5 65.0 71.7 82.8 72.4
GCN [2] 62.2 68.0 70.3 81.5 73.8

GLNN 70.9 76.5 72.4 83.4 76.7

with the learning rate 0.01. Before the first epoch of the train-
ing step in the graph learning layer, we generate a random
matrix that follows a uniform distribution, which serves as
the initial graph representation. This matrix is then optimized
in the subsequent training epochs. In the graph learning loss
function, we set λ1 = 0.1, λ3 = 0.1, and λ4 = 0.001. Note
that λ2 is set to 0 with the symmetrization operation intro-
duced in (18). In the overall loss function (22), we set α = 10.
The settings of λ0 are adaptive to each dataset, as will be dis-
cussed in Section 5.5. In the graph convolutional layers, we
follow the same experimental settings in [2], i.e., two graph
convolutional layers with 16 hidden units.

5.3. Node Classification Results

Table 1 lists the comparison results on the five datasets. Re-
ported numbers denote the classification accuracy in percent-
age. Note that the underlying graphs of TerroristsRel and Ter-
ror Attack datasets are disconnected, so the Planetoid [21]
cannot be executed properly.

We outperform all the competing methods significantly.
In particular, our GLNN outperforms the baseline method
GCN [2] on all the datasets, thus validating the effectiveness
of the proposed graph learning for semi-supervised classifica-
tion. Further, GLNN outperforms the recently proposed net-
work GWNN [26], which indicates the benefit of GLNN on
graph representation learning.

Table 2. Results of node classification in terms of accuracy
with different λ0.

Dataset Values of λ0
1.0 10−1 10−2 10−3 10−4 0.0

TerroristsRel 52.0 70.9 70.9 63.5 63.5 62.8
Terror Attack 76.5 76.5 67.5 51.5 57.5 57.0

Citeseer 72.4 71.2 72.2 70.4 70.4 69.8
Cora 76.7 80.0 83.4 82.0 82.1 82.1

Pubmed* 76.7 74.8 73.0 73.0 72.9 72.9

5.4. Robustness Test

We test the robustness of our model on citation networks at
low label rates. We adopt five different label rates in {0.005,
0.010, 0.015, 0.020, 0.025} to train our model and compare
with three representative methods: ChebNet [3], GCN [2] and
GWNN [26]. Fig. 2 presents the classification accuracy at the

five different label rates on the Citeseer and Cora datasets re-
spectively. While the performance of the other methods drops
quickly with decreasing label rate, the proposed GLNN is
much more robust, with the classification accuracy of 51.8%
and 58.0% on the Citeseer and Cora datasets even when the
label rate is lower than 0.01.

Further, to validate the necessity and effectiveness of our
proposed GLR loss, we also compare with a Baseline scheme
of our model, where the GLR loss termLGLR is removed from
(14). As shown in Fig. 2, we outperform the Baseline scheme
by a large margin, which validates the superiority of our pro-
posed structure-adaptive regularization—GLR loss function.

5.5. GLR Analysis
We evaluate the contribution of GLR via different as-
signments of the GLR weighting parameter λ0. Table 2
lists the classification results of five datasets with λ0 ∈
{1.0, 10−1, 10−2, 10−3, 10−4, 0.0}. We see that when λ0 is
set to a small value, GLNN can produce reasonable results.
The performance keeps improving with increasing value of
λ0 in general, finally achieving state-of-the-art performance.
This shows that the GLR loss term with higher weights
makes significant contribution to classification results, which
demonstrates the superiority of GLR-based graph learning.

30

45

60

75

0.025 0.020 0.015 0.010 0.005

ChebNet GCN GWNN GLNN (Baseline) GLNN

(a) Citeseer dataset.

35

50

65

80

0.025 0.020 0.015 0.010 0.005

ChebNet GCN GWNN GLNN (Baseline) GLNN

(b) Cora dataset.

Fig. 2. Comparison of classification accuracy from competing
methods at different label rates.

6. CONCLUSION
In this paper, we propose a novel Graph Learning Neu-
ral Network (GLNN), aiming to learn an optimal graph in
both structure-adaptive and task-driven manners for robust
semi-supervised classification. Our GLNN model exploits
structure-adaptive graph learning based on graph Laplacian

5

Gao Xiang

regularizer (GLR), which enforces the graph to characterize
pairwise similarities within data. We also pose the sparsity
constraint and properties of a valid adjacency matrix, which
formulates the graph learning loss function along with GLR
in a GCNN. Experimental results on widely adopted citation
network datasets and social network datasets validate the su-
periority and robustness of the proposed GLNN especially at
low label rates.

7. REFERENCES

[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun, “Spectral networks and locally connected networks on
graphs,” Computer Science, 2013.

[2] Thomas N Kipf and Max Welling, “Semi-supervised classi-
fication with graph convolutional networks,” in International
Conference on Learning Representations (ICLR), 2017.

[3] Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst, “Convolutional neural networks on graphs with
fast localized spectral filtering,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2016, pp. 3844–3852.

[4] Marco Gori, Gabriele Monfardini, and Franco Scarselli, “A
new model for learning in graph domains,” in IEEE Interna-
tional Joint Conference on Neural Networks (IJCNN), 2005,
vol. 2, pp. 729–734.

[5] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre,
Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik, and
Ryan P Adams, “Convolutional networks on graphs for learn-
ing molecular fingerprints,” in Advances in Neural Information
Processing Systems (NIPS), 2015, pp. 2224–2232.

[6] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov,
“Learning convolutional neural networks for graphs,” in Inter-
national Conference on Machine Learning (ICML), 2016, pp.
2014–2023.

[7] Arthur P Dempster, “Covariance selection,” Biometrics, pp.
157–175, 1972.

[8] Jerome Friedman, Trevor Hastie, and Robert Tibshirani,
“Sparse inverse covariance estimation with the graphical
lasso,” Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

[9] F. K. Chung, “Spectral graph theory,” American Mathematical
Society, 1997.

[10] Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre
Vandergheynst, “Learning laplacian matrix in smooth graph
signal representations,” IEEE Transactions on Signal Process-
ing (TSP), vol. 64, no. 23, pp. 6160–6173, 2016.

[11] Hilmi E Egilmez, Eduardo Pavez, and Antonio Ortega, “Graph
learning from data under Laplacian and structural constraints,”
IEEE Journal of Selected Topics in Signal Processing, vol. 11,
no. 6, pp. 825–841, 2017.

[12] Xiang Gao, Wei Hu, Jiaxiang Tang, Jiaying Liu, and Zongming
Guo, “Optimized skeleton-based action recognition via spar-
sified graph regression,” in ACM International Conference on
Multimedia (ACM MM), 2019, pp. 601–610.

[13] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang,
“Adaptive graph convolutional neural networks,” in Thirty-
Second AAAI Conference on Artificial Intelligence (AAAI),
2018.

[14] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo,
“Semi-supervised learning with graph learning-convolutional

networks,” in IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019, pp. 11313–11320.

[15] Bin Li, Xi Li, Zhongfei Zhang, and Fei Wu, “Spatio-temporal
graph routing for skeleton-based action recognition,” in Thirty-
Third AAAI Conference on Artificial Intelligence (AAAI), 2019.

[16] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu, “Two-
stream adaptive graph convolutional networks for skeleton-
based action recognition,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019, pp. 12026–
12035.

[17] David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio
Ortega, and Pierre Vandergheynst, “The emerging field of sig-
nal processing on graphs: Extending high-dimensional data
analysis to networks and other irregular domains,” IEEE Signal
Processing Magazine, vol. 30, pp. 83–98, 2013.

[18] Fan RK Chung, “Spectral graph theory,” in Conference Board
of the Mathematical Sciences. 1997, number 92, American
Mathematical Society.

[19] Bin Zhao, Prithviraj Sen, and Lise Getoor, “Entity and rela-
tionship labeling in affiliation networks,” in International Con-
ference on Machine Learning Workshop on Statistical Network
Analysis, 2006.

[20] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor,
Brian Galligher, and Tina Eliassi-Rad, “Collective classifica-
tion in network data,” AI magazine, vol. 29, no. 3, pp. 93–93,
2008.

[21] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov,
“Revisiting semi-supervised learning with graph embeddings,”
arXiv preprint arXiv:1603.08861, 2016.

[22] Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele
Rodola, Jan Svoboda, and Michael M Bronstein, “Geometric
deep learning on graphs and manifolds using mixture model
cnns,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 5115–5124.

[23] Phi Vu Tran, “Learning to make predictions on graphs with
autoencoders,” in IEEE International Conference on Data Sci-
ence and Advanced Analytics (DSAA), 2018, pp. 237–245.

[24] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adri-
ana Romero, Pietro Lio, and Yoshua Bengio, “Graph attention
networks,” in International Conference on Learning Represen-
tations (ICLR), 2018.

[25] Petar Veličković, William Fedus, William L. Hamilton, Pietro
Liò, Yoshua Bengio, and R Devon Hjelm, “Deep graph info-
max,” in International Conference on Learning Representa-
tions (ICLR), 2019.

[26] Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi
Cheng, “Graph wavelet neural network,” in International Con-
ference on Learning Representations (ICLR), 2019.

6

