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ABSTRACT

Face anti-spoofing plays a crucial role in protecting face
recognition systems from various attacks. Previous model-
based and deep learning approaches achieve satisfactory per-
formance for 2D face spoofs, but remain limited for more
advanced 3D attacks such as vivid masks. In this paper,
we address 3D face anti-spoofing via the proposed Hyper-
graph Convolutional Neural Networks (HGCNN). Firstly, we
construct a computation-efficient and posture-invariant face
representation with only a few key points on hypergraphs.
The hypergraph representation is then fed into the designed
HGCNN with hypergraph convolution for feature extraction,
while the depth auxiliary is also exploited for 3D mask
anti-spoofing. Further, we build a 3D face attack database
with color, depth and infrared light information to validate
the proposed paradigm and overcome the deficiency of 3D
face anti-spoofing data. Experiments show that our method
achieves the state-of-the-art performance over widely used
3D databases as well as the proposed one under various tests.

Index Terms— 3D face anti-spoofing, hypergraph repre-
sentation, hypergraph convolutional neural network

1. INTRODUCTION

Face recognition has been widely applied to a variety of areas,
including access control systems, online payment and user
authentication. Nevertheless, vulnerability exists in a large
amount of systems that they sometimes fail to recognize fake
faces, which may be used by attackers to hack the systems.
This is also referred to as face spoofing [3], an attempt to de-
ceive recognition systems with photos (print attack), videos
(replay attack) or 3D masks.

Various methods have been proposed to address these
attacks, i.e., face anti-spoofing. Previous model-based ap-
proaches make use of RGB images or sequences as the in-
put and feed hand-crafted features such as LBP features into
classifiers, which lack 3D information. With the development
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Fig. 1. Illustration of the proposed HGCNN architecture for
3D face anti-spoofing, which takes RGB and depth images as
the input and generates classification scores as the output.

of deep learning, Convolutional Neural Network (CNN) be-
comes a powerful tool for feature extraction, and is thus lever-
aged for face anti-spoofing [14]. Several approaches have
achieved promising performance via CNN and other tech-
niques such as optical flow analysis [3]. Depth is a kind of
remarkable cue for recognizing 2D attacks such as print and
replay attacks. Atoum et al. propose to estimate the depth of
a face image via a fully convolutional network, which is then
utilized for anti-spoofing [2]. However, both methods lever-
age depth for detecting 2D attacks, while 3D mask attacks
remain to be addressed [6]. 3D face anti-spoofing is challeng-
ing because 1) the color and texture of 3D masks are often so
vivid that it is difficult to detect from RGB information; 2)
the 3D structure is reasonable under non-front face postures,
which is nontrivial to detect from depth information.

To this end, we propose to exploit hypergraph represen-
tation of 3D faces with RGB-D information to detect 3D
mask attacks via Hypergraph Convolution Neural Networks
(HGCNN). As real-time anti-spoofing systems require algo-
rithms that are of low complexity and adapt to various Human
postures, we propose compact and posture-invariant hyper-
graph representation of faces. Specifically, we propose com-
pact face representation by only key points, including land-
marks and a few interpolated points, which leads to remark-
able reduction of both time and space complexity while re-
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taining most facial information. Because the key points tend
to reside on irregular grids, we propose to represent them on a
hypergraph, which models high-order relationship of samples
via hyperedges, each of which links multiple samples so as to
capture the high-level feature of a local facial region. Also,
as hypergraphs describe the relative relationship instead of the
absolute Euclidean distance among samples, the hypergraph
representation is invariant to postures, i.e., the relationship
remains the same no matter how one moves the face. Hence,
hypergraph-based facial representation is more robust to face
motions or emotions compared with traditional image repre-
sentation.

Thereafter, we take the hypergraph representation of faces
as the input, and design a framework of HGCNN based on
hypergraph convolution. As an extension to Graph Convolu-
tional Neural Networks (GCNN) [4, 10], we take both data
features and the aforementioned hypergraph instead of a sim-
ple graph as the input, and extract higher-order features via
hypergraph graph convolution similar to [8]. Further, we ex-
ploit the depth auxiliary for 3D mask anti-spoofing, where
depth maps share the same hypergraph representation as the
RGB cue and then go through hypergraph convolution for
feature learning. The extracted depth features are then con-
catenated with textural features as the final node features for
classification.

To validate the proposed paradigm, we further build a
3D face attack database containing color, depth and Infrared
ray (IR) data acquired from Intel RealSense SR300, which
embodies more subjects and variations than prior 3D face
databases. Extensive experiments demonstrate the superior-
ity and robustness of our method on existing 3D databases
and the proposed one.

2. RELATED WORK

Previous face anti-spoofing methods can be classified into
spatial methods, temporal methods and fusion methods.

Spatial methods. Texture is a good hint for discriminat-
ing between real faces and fake ones, since print or replay at-
tacks exhibit different textural characteristics from real faces.
Li et al. are the first to take frequency distribution into con-
sideration [12]. Other hand-crafted features are introduced to
tackle face anti-spoofing, such as LBP [12] and HoG [11].
CNN-based anti-spoofing methods regard the problem as bi-
nary classification and extract features from texture images by
traditional networks such as VGG [16].

Temporal methods. Several methods explore the poten-
tial of liveness detection from temporal sequences, including
head movements and facial expressions. Pan et al. propose
a straight-forward method that utilizes eye-blinking to detect
whether the facial motion is authentic [17]. Besides, optical
flow is introduced to analyze tiny expressions, which is essen-
tial to extract rigid movements of masks [3]. Edmunds et al.
extract low-level motion features such as eye gazing and head
pose from video clips to integrate high-level features [5].

Fusion methods. Leveraging on existing methods,
some approaches combine texture and temporal cues, which
achieve significant performance. Asim et al. propose a CNN-
based spatial-temporal feature extraction framework for clas-
sification [1]. In [7], Feng et al. propose a multi-cue integra-
tion framework, including image quality, optical flow map,
followed by a neural network classifying integrated features.
Furthermore, Liu et al. exploit remote photoplethysmography
(rPPG), a kind of signal reflecting facial liveness, and propose
a neural network combining CNN and RNN to generate rPPG
signals for liveness detection [14] [13].

3. BACKGROUND IN HYPERGRAPHS

A hypergraph G = {V, E ,W} consists of a vertex set V , a hy-
peredge set E where each hyperedge ei is assigned a weight
w(ei), and a diagonal matrix of the hyperedge weights W.
Further, G can be represented by a |V| × |E| matrix H, with
entries h(v, e) = 1 if a vertex v ∈ e and 0 otherwise, which is
referred to as the incidence matrix of G. Based on H, the de-
gree of each vertex v ∈ V is d(v) =

∑
e∈E w(e)H(v, e),

whereas the degree of each hyperedge e ∈ E is δ(e) =∑
v∈V H(v, e). For k-uniform hypergraphs considered in our

context, the degrees of all the hyperedges are the same, i.e.,
δ(ei) = k, ∀ei ∈ E . We then let Dv and De denote the di-
agonal matrices containing the vertex and hyperedge degrees,
respectively.

In the context of graph convolutional neural networks, we
employ the normalized Laplacian in [18] because of its nor-
malization property to avoid numerical instabilities, which is
defined as

L = I−D
− 1

2
v HWD−1e H>D

− 1
2

v . (1)

4. APPROACH
4.1. HGCNN Architecture

Fig. 2 illustrates the pipeline of the proposed framework. The
input consists of RGB and depth images. Firstly, we extract
landmarks from the RGB image and then augment the ex-
tracted landmarks for the purpose of denser point sets, which
conduces to learning local features, as demonstrated in Fig. 3.
Secondly, we construct a k-uniform hypergraph over the land-
marks according to Euclidean distance of point pairs and
compute the hypergraph Laplacian, which is shared by the
input depth map. Then we feed the RGB and depth features
of the landmarks into separate branches of hypergraph con-
volution, along with the computed hypergraph Laplacian for
learning high-order textural and depth features respectively.
Finally, we concatenate the extracted features and employ
Multi-Layer Perceptron (MLP) to acquire the output classi-
fication scores.

4.2. Hypergraph Representation

Different from existing methods, our network takes graphs
rather than images as the input, which means the hypergraph
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Fig. 2. The framework of our proposed HGCNN given a pair of RGB and depth images for 3D face anti-spoofing.
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Fig. 3. Landmark-based hypergraph construction from a
given RGB image.

structure is the key to the subsequent neural network. In
graph-based image representation, a pixel is often treated as
a vertex in the graph, and similar pixels are connected via
edges. Due to the enormous amount of pixels in an image,
it is extremely time-consuming to take every pixel as the in-
put. Instead, we propose to construct a hypergraph based on
limited number of facial landmarks, as illustrated in Fig. 2.

Landmark detection and augmentation. There are
plenty of methods for face landmark extraction. In order to
extract landmarks rapidly and robustly, we employ 68 land-
marks for representation. If the landmarks are out of box or
not detected, the current frame is neglected. Since the number
of landmarks is not enough for feature extraction from neural
networks, point augmentation is necessary. We thus propose
to augment points by interpolation of the detected landmarks.

We firstly calculate k-nearest-neighbors of each land-
mark, and add the midpoint of each neighboring pair to the
point set as augmentation. The distance metric between a
pair of points {i, j} is defined as the Euclidean distance, i.e.,
ai,j = ‖pi − pj‖22, where pi and pj are the coordinates of
point i and j respectively. As some midpoints might be over-
lapping, we eliminate redundant points, resulting in 250 inter-
polated points. Together with the original landmarks, we fi-
nally extract a total of 318 points with RGB and depth cues to
represent each face for the subsequent processing. Note that,
as the detected landmarks reside on irregular grids in general,
all the extracted points are also irregular, which is nontrivial
to represent via traditional signal representation.

Hypergraph Construction. In order to describe the high-
order relationship of the extracted irregular landmarks, we

propose to construct a hypergraph over each face. Specifi-
cally, we treat the extracted points as vertices on the hyper-
graph, and connect each point with its k-nearest-neighbors
using a hyperedge, which leads to a (k + 1)-uniform hyper-
graph. The weight of each hyperedge is assigned 1, as we
assume all the hyperedges are of equal importance to charac-
terize local facial regions.

4.3. Hypergraph Convolution

The core of HGCNN is hypergraph convolution, which is an
extension to graph convolution. Unlike Euclidean data (e.g.,
images or videos), it is difficult to define convolution over
graphs/hypergraphs in the vertex domain, because a mean-
ingful translation operator in the vertex domain is nontrivial
to define due to the irregularity of vertices. As in [8], we
start from filtering of hypergraph signals in the spectral do-
main, and then deploy Chebyshev approximation to reduce
the computational complexity.

Spectral filtering of hypergraph signals. The convolu-
tion operator on a graph ∗G is first defined in the spectral do-
main [4], specifically in the Graph Fourier Transform (GFT)
[9] domain. The GFT basis is the eigenvector matrix of the
graph Laplacian matrix. We extend traditional GFT to hyper-
graphs. Specifically, different from the Laplacian of a sim-
ple graph, the Laplacian of a hypergraph originates from the
characterization of the total variation in a graph signal f with
respect to the hypergraph [19]:

∑
e∈E

∑
{u,v}∈E

w(e)

δ(e)

(
f(u)√
d(u)

− f(v)√
d(v)

)2

= 2f>Lf , (2)

where L = I − D
− 1

2
v HWD−1e H>D

− 1
2

v is the normalized
hypergraph Laplacian as in (1). (2) describes the variation
between vertices that belong to the same hyperedge, which
is weighted by the corresponding hyperedge weight and de-
gree. As an extension to GFT, the goal of Hypergraph Fourier
Transform (HGFT) is to build an orthogonal basis from the
Laplacian so as to minimize the total variation. It can be de-
rived that the eigenvectors of the Hypergraph Laplacian form
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Fig. 4. The architecture of the proposed HGCNN. Both RGB and depth channels are fed into two hypergraph convolution layers
of (64, 128) hidden nodes. Multi-level features are concatenated and average pooled, resulting in a 768-dimensional vector.

such a set, therefore the HGFT basis U is exactly the eigen-
vector set of the Laplacian matrix. The HGFT of a graph
signal x is thus defined as x̂ = U>x, and the inverse HGFT
follows as x = Ux̂.

Hence, the convolution between two hypergraph signals x
and y can be defined as the multiplication of the correspond-
ing HGFT coefficients, followed by the inverse HGFT, i.e.,

x ∗G y = U(U>x)� (U>y), (3)

where � is the element-wise Hadamard product. Then the
spectral filtering of a graph signal x by gθ is

y = gθ(L)x = gθ(UΛU>)x = Ugθ(Λ)U>x, (4)

where Λ is a diagonal matrix of the eigenvalues of L.
Chebyshev approximation for fast filtering. Inspired by

the truncated Chebyshev polynomials for the approximation
of spectral filtering, we employ the first-order Chebyshev ap-
proximation of hypergraph convolution similar to [8], which
is formulated as:

Y = (I−D
− 1

2
v HWD−1e H>D

− 1
2

v )XΘ, (5)

where X ∈ Rn×F1 is the input F1-dimensional data feature
of n points. Θ ∈ RF1×F2 is a matrix of learnable weight
parameters, and F2 is the dimension of the output feature. We
then obtain the learned features with respect to each vertex by
employing a bias b and ReLU activation:

X′ = ReLU((I−D
− 1

2
v HWD−1e H>D

− 1
2

v )XΘ + b). (6)

The architecture of the proposed HGCNN is demonstrated in
Fig. 4.

5. THE PROPOSED DATASET

In order to overcome the deficiency of 3D face data, we col-
lect a 3D face anti-spoofing database, referred to as FA3D,
with color, depth and IR information. The database contains
285 videos of 19 subjects recorded by Intel RealSense SR300.

The videos include RGB videos of resolution 1920×1080, the
corresponding aligned depth videos and IR videos of the same
resolution. For each subject, we collect five sections, each
corresponding to a different posture. In section 1, the subject
blinks several times; in section 2 the subject moves horizon-
tally and vertically; in section 3 the subject moves back and
forth; in section 4 people are asked to make expressions such
as smile; in section 5 the subject yaws within -15◦ to 15◦.
The attacks include all the aforementioned categories we aim
to address: print attacks, replay attacks and 3D mask attacks.
Print attacks are based on high-resolution photos printed by
Canon LBP7100. Replay attacks originate from real video
clips, replayed by Macbook Pro under the same environment.
For mask attacks, we employ a unique 3D latex mask and let
different people wear the mask and record videos.

6. EXPERIMENTS
6.1. Experimental Setup

We evaluate the proposed framework on multiple attack
databases for generalizability, including 3DMAD [6] and the
proposed FA3D. 3DMAD is the only existing publicly avail-
able 3D spoofing database, containing 17 subjects and 255
video clips with 3D masks from Thatsmyface.com. Each
video is recorded by Kinect with resolution 640 × 480. For
each database, we follow the training-validation-test protocol
as described. In our experiments, we deploy the commonly
used metrics, which are presented in [11].

6.2. Experimental Results

6.2.1. Ablation Study

In order to study advantages of different modules of the pro-
posed HGCNN comprehensively, we design the following in-
complete models. Model 1 is the model without hypergraphs,
which is equivalent to the original model except the number of
vertices in each hyperedge k = 0. Model 2 is our model with
the depth channel removed, i.e., only the RGB cue is taken
as the input. In Model 3, we replace the hypergraph repre-
sentation with simple complete graphs, where the weight of
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Table 1. Ablation study of different models on 3DMAD

TDR
FDR 1% 5% 10% 20%

Model 1 54.8% 58.4% 69.9% 88.4%
Model 2 75.7% 80.5% 84.6% 93.3%
Model 3 86.3% 93.6% 97.8% 98.2%
Model 4 97.8% 100% 100% 100%

Table 2. Comparison with different methods on 3DMAD

Method HTER

Erdogmus et al. (LBP) [6] 0.95%
Feng et al. (OFM) [7] 4%
Edmunds et al. (Motion) [5] 3.53%
Liu et al. (rPPG) [13] 4.22%
Menotti et al. (CNN) [16] 0%
HGCNN 0%

each edge is assigned as the exponential function of the Eu-
clidean distance between two connected vertices i and j, i.e.,
wi,j = exp{−‖ci − cj‖22}, with ci and cj denoting the coor-
dinates of i and j respectively. The hypergraph Laplacian is
then replaced with the simple graph Laplacian accordingly as
used in [10]. Model 4 is the proposed complete model.

We test these models on the 3DMAD database and fol-
low the protocol in [6]. Specifically, since the documentation
doesn’t define the index of validation, we follow the leave-
one-out-cross-validation (LOOCV) settings and calculate the
average value. The results are reported in Tab. 1, where we
calculate TDR at different FDR, the higher the better. The re-
sults validate the importance of the hypergraph representation
and the depth cue.

6.2.2. Results on 3D datasets

3DMAD We test on 3DMAD evaluated by HTER, with re-
sults reported in Tab. 2. We follow the test protocol in [6],
i.e., selecting 8 subjects for training, 5 for validation, and
5 for testing. From the results we observe that our model
achieves competitive performance compared with model-
driven [7, 5, 13] and CNN-based methods [16]. The model-
driven methods exploit motion (optical flow map (OFM),
rPPG), texture (LBP) or multi-cue integration (HOOF), while
the CNN-based one deploys the VGG-16 model and fine-
tuning.

FA3D In order to evaluate more comprehensive perfor-
mance on our dataset, we design different protocols for test.
Protocol 1 is designed to test the generality in terms of un-
seen subjects, which means subjects appearing in the training
data are absent in the testing and vice versa. Specifically, we
randomly select 10 subjects as training data and 7 subjects for
test. In protocol 2, we test the robustness to different postures
in order to validate the posture-invariance of the proposed
representation. We extract one posture from each subject in
the training stage, and employ the other postures for testing.

Table 3. Comparison with different methods on FA3D

Method APCER BPCER ACER ACC

LBP+SVM [6] 10.1% 65.4% 38.1% 66.5%
FASNet [15] 0.7% 9.2% 4.5% 97.6%
Patch-based [2] 0.1% 0.3% 0.2% 99.6%
HGCNN 0.1% 1.6% 0.7% 99.6%

Table 4. Our results under different protocols on FA3D

Variation HTER ACER ACC

Subjects 0.5% 0.7% 99.6%
Posture 0.6% 0.9% 99.3%

Attack Types 0.3% 0.2% 99.9%

In protocol 3, we exemplify the efficiency of depth data by
splitting attack types. As listed in Tab. 4, our accuracy is high
for all the protocols. In particular, with the depth auxiliary
our model only misclassifies 46 out of 12000 true frames, i.e.,
resulting in BPCER of 0.4%.

Furthermore, in order to compare our method with CNN-
based methods on 3D datasets, we implement the state-of-
the-art CNN-based method FASNet [15] and patch-based
method [2] with RGB-only input, and conduct experiments
on FA3D of protocol 1. As reported in Tab. 3, our method
achieves competitive results over all the metrics. Also, note
that BPCER is higher compared with APCER, which is due to
the data skew—fake samples are 4 times more than real ones,
i.e., it is aimed to minimize false acceptance rate.
6.2.3. Visualization and Analysis

To interpret the graph structure more vividly, we visualize the
latent feature space of different layers in Fig. 5, where darker
colors represent smaller distance. We observe that point fea-
tures in the input are not quite distinguished from each other,
but after hypergraph convolution points tend to keep similar
features with adjacent ones, especially in certain regions like
the mouth, nose and eyes. Further, we list the time cost in
Tab. 5 to validate our computation efficiency. Although our
preprocessing is a bit time-consuming due to the keypoint ex-
traction, the forward time is much less than FASNet, leading
to less total time.

7. CONCLUSION

We exploit hypergraph representation of 3D faces with
RGB-D information to detect 3D mask attacks via the pre-

Table 5. Time complexity of our method and FASNet

Method Forward Preprocessing Total

HGCNN 23ms 56ms 79ms
FASNet [15] 67ms 32ms 97ms
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(a) Layer 0 (Input) (b) Layer 1 (c) Layer 2

Fig. 5. Euclidean distance among 68 landmarks. Darker col-
ors denote smaller distance.

sented first-order Hypergraph Convolutional Neural Net-
works, which provides computation-efficient and posture-
invariant face representation and enables learning of high-
order relationship among samples via hypergraph convolu-
tion. Also, we exploit fusion of RGB and depth cues by shar-
ing the hypergraph convolution operator. We further collect a
3D face attack database that contains more subjects and vari-
ations than prior 3D face attack databases for evaluation. Ex-
perimental results demonstrate the superiority of our method.
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