
3D DYNAMIC POINT CLOUD INPAINTING VIA TEMPORAL CONSISTENCY ON GRAPHS

Zeqing Fu, Wei Hu ∗, Zongming Guo

Wangxuan Institute of Computer Technology, Peking University

ABSTRACT

With the development of 3D laser scanning techniques and

depth sensors, 3D dynamic point clouds have attracted in-

creasing attention as a representation of 3D objects in mo-

tion, enabling various applications such as 3D immersive tele-

presence, gaming and navigation. However, dynamic point

clouds usually exhibit holes of missing data, mainly due to

the fast motion, the limitation of acquisition and compli-

cated structure. Leveraging on graph signal processing tools,

we represent irregular point clouds on graphs and propose

a novel inpainting method exploiting both intra-frame self-

similarity and inter-frame consistency in 3D dynamic point

clouds. Specifically, for each missing region in every frame

of the point cloud sequence, we search for its self-similar re-

gions in the current frame and corresponding ones in adjacent

frames as references. Then we formulate dynamic point cloud

inpainting as an optimization problem based on the two types

of references, which is regularized by a graph-signal smooth-

ness prior. Experimental results show the proposed approach

outperforms three competing methods significantly, both in

objective and subjective quality.

Index Terms— 3D dynamic point clouds, inpainting,

inter-frame consistency, graph-signal smoothness prior

1. INTRODUCTION

3D dynamic point cloud is a natural representation of

arbitrarily-shaped 3D objects in motion. It consists of a se-

quence of point clouds, each of which is a set of points. Each

point corresponds to a measurement point, which contains 3D

geometric coordinates and possibly attributes such as color

and normal. The acquisition of dynamic point clouds be-

comes convenient with the development of depth sensing and

3D laser scanning techniques1, thus enabling a variety of ap-

plications such as navigation in autonomous driving, anima-

tion, gaming and virtual reality [2].

Nevertheless, 3D dynamic point clouds often exhibit

holes of missing data inevitably, as shown in Fig. 1. This

is mainly due to complicated object structure, fast object mo-

tion, inherent limitations of the acquisition equipments and

incomplete scanning views. Besides, the object itself may

Corresponding author: Wei Hu (forhuwei@pku.edu.cn). This work was

supported by National Natural Science Foundation of China [61972009] and

Beijing Natural Science Foundation [4194080].
1Examples include Microsoft Kinect, Intel RealSense, LiDAR, arrays of

color plus depth (RGBD) video cameras [1], etc.

Fig. 1. Several frames of the 3D dynamic point cloud Long-

dress with holes, captured at different moments.

have some missing regions (e.g., dilapidated heritage). There-

fore, it is necessary to inpaint incomplete point clouds prior

to the subsequent applications. Nevertheless, 3D dynamic

point cloud inpainting is challenging to address, because each

frame is irregularly sampled with possibly different numbers

of points. Further, there is no explicit temporal correspon-

dence between points over time.

However, the direct inpainting of 3D dynamic point cloud

has been largely overlooked so far in the literature, while sev-

eral approaches have been proposed for static point clouds.

These methods mainly include two categories according to

the cause of holes: 1) restore holes in the object itself such

as heritage and sculptures [3–9], and 2) inpaint holes caused

by the limitation of scanning devices [10–17]. For the first

class, the main hole-filling data source is online database, as

the holes are often large. Sahay et al. [5] project the point

cloud to a depth map, search a similar one from an online

depth database via dictionary learning for inpainting, while

the projection process inevitably introduces geometric loss.

Instead, Dinesh et al. [8, 9] search best matching regions in

the object itself based on the smallest rotation difference to

fill the missing area. The results still suffer from geometric

distortion due to the simple data source.

The other class of methods focus on holes generated due

to the limitations of scanning devices, which is smaller and

more fragmentary than the aforementioned ones in general.

Wang et al. [10] and Quinsat et al. [11] create a triangle mesh

from the input point cloud and fill holes in the mesh for fi-

nal interpolation. These methods rely on the quality of mesh

construction though. Lozes et al. [12,13] deploy partial differ-

ence operaters to solve an optimization problem on the point

cloud. Muraki et al. [15] generate a surface to fit the vicin-

ity of the hole and interpolate the surface for inpainting. Due

978-1-7281-1331-9/20/$31.00 c©2020 IEEE

to the reference from local neighborhood only, their results

tend to be more planar than the ground truth, and artifacts are

likely to occur around the boundary in complicated structure.

Fu et al. [16, 17] exploit the non-local similarity in the point

cloud, which inpaints holes from their most similar regions

based on normals of points.

Nevertheless, all above methods are not tailored for dy-

namic point clouds. If we apply them to a point cloud se-

quence frame by frame, the inpainting process of each frame

is independent to each other, which neglects the inter-frame

correlation and is thus sub-optimal. To this end, as an exten-

sion to the inpainting method in [17], we exploit both intra-

frame self-similarity and inter-frame consistency in the ge-

ometry for dynamic point cloud inpainting. For each target

region which contains a hole in the target frame, our key idea

is to search its most similar region in the target frame as well

as its corresponding regions in the adjacent frames as source

regions, and then inpaint the hole from these source regions.

Due to the irregularity of point clouds, it is difficult to

search similar regions and fill holes according to the source

regions. Hence, we resort to Graph Signal Processing [18],

and represent point clouds on graphs naturally. In particu-

lar, for each target frame in the input point cloud sequence

with holes, we first segment it into cubes of the same size

and choose the target cube with missing area. Secondly, we

search the most similar cube to the target cube in the target

frame as the intra-source cube as in [17]. Thirdly, we search

the corresponding cubes of the target cube in the previous and

subsequent frames as the inter-source cubes. The correspon-

dence is set based on searching for a cube that contains the

most nearest neighbors of the points in the target cube in the

relative location. Next, we formulate the hole-filling step as

an optimization problem, which is based on both intra- and

inter-source cubes and regularized by a graph-signal smooth-

ness prior [19–21] for the target cube. Finally, we acquire the

closed-form solution of the optimization problem, leading to

the inpainted result. Experimental results show that we out-

perform separate inpainting from state-of-the-art methods.

2. SPECTRAL GRAPH THEORY

We consider an undirected graph G = {V, E ,W} composed

of a vertex set V of cardinality |V| = N , an edge set E con-

necting vertices, and a weighted adjacency matrix W. W

is a real symmetric N × N matrix, where wi,j is the weight

assigned to the edge (i, j) connecting vertices i and j. For

example, K-Nearest Neighbor (K-NN) graph is a commonly

used undirected graph, which is constructed by connecting

each point with its nearest K neighbors.

The Laplacian matrix is defined from the adjacency ma-

trix [22]. Among different variants of Laplacian matrices, the

combinatorial graph Laplacian used in [23–25] is defined as

L := D − W, where D is the degree matrix—a diagonal

matrix where di,i =
∑N

j=1
wi,j .

Graph signal refers to data residing on the vertices of a

graph. For example, if we construct a K-NN graph on the

point cloud, then the normal or the coordinate of each point

can be treated as graph signal defined on the K-NN graph.

This will be discussed further in the proposed spatio-temporal

graph construction in Section 3.3. A graph signal z defined

on a graph G is smooth with respect to the topology of G if
∑

i∼j

wi,j(zi − zj)
2 < ǫ, ∀i, j, (1)

where ǫ is a small positive scalar, and i ∼ j denotes two

vertices i and j are one-hop neighbors in the graph. In order to

satisfy (1), zi and zj have to be similar for a large edge weight

wi,j , and could be quite different for a small wi,j . Hence, (1)

enforces z to adapt to the topology of G, which is thus coined

graph-signal smoothness prior.

Choose

the target cube

Search for the

intra-source cube

Split into cubes Output frameSearch for the inter-source cubes

Optimization

Target frame of

the input sequence

Fig. 2. The framework of the proposed 3D dynamic point cloud inpainting method.

2

As zTLz =
∑

i∼j

wi,j(zi − zj)
2 [26], (1) is concisely writ-

ten as zTLz < ǫ in the sequel. This prior will be deployed in

our problem formulation of point cloud inpainting as a regu-

larization term, as discussed in Section 3.4.

3. THE PROPOSED INPAINTING METHOD

Leveraging on spectral graph theory, we introduce the pro-

posed point cloud inpainting method from both intra-frame

self-similarity and inter-frame consistency. The input is

a point cloud sequence of q frames denoted by S =
{P1,P2, ...,Pq}, where Pf , f = 1, ..., q denotes each frame

of point cloud in the sequence. As shown in Fig. 2, we in-

paint each target frame Pf with holes in order. Firstly, we

split Pf into fixed-sized cubes as processing units in the sub-

sequent steps and choose the target cube with missing area.

Secondly, we search for the most similar cube to the target

cube in Pf as the intra-source cube. Thirdly, we search for

the corresponding cubes to the target cube in Pf−1 and Pf+1,

which are referred to as the inter-source cubes. Fourthly, we

formulate dynamic point cloud inpainting as an optimization

problem, which poses the graph-signal smoothness prior via

the intra-source cube and enforces consistency with the inter-

source cubes. We derive the closed-form solution of the opti-

mization problem, leading to the resulting cube. Finally, we

replace the target cube with the resulting cube as the output.

3.1. Preprocessing

For each target frame of point cloud Pf = {p1,p2, ...} with

pi ∈ R
3 meaning the coordinates of the i-th point in the point

cloud, we first split Pf into overlapping cubes {c1, c2, ... }

with ci ∈ R
M3×3 (M is the size of the cube), as the pro-

cessing unit of the proposed inpainting algorithm. Then we

choose the cube with missing data as the target cube ct. Next,

we obtained the intra-source cube cs as in [17] based on the

direct component (DC) and the anistropic graph total varia-

tion (AGTV) of the normals of points in the cube. Further,

we also perform structure matching (i.e., coarse registration)

for cs and ct so as to match the relative locations as in [17],

which includes both translation and rotation as a simplified

Iterative Closest Points (ICP) operation [27, 28]. This leads

to the final intra-source cube, denoted as ĉs, which will be

adopted in the final inpainting step.

3.2. Inter-frame Cube Matching

nearest neighbor

𝐏𝐏𝑓𝑓−1 𝐏𝐏𝑓𝑓
𝐜𝐜𝑤𝑤
𝐛𝐛𝑡𝑡𝑓𝑓−1𝐜𝐜𝑡𝑡 , 𝐜𝐜𝑡𝑡′
𝐜𝐜𝑡𝑡𝑓𝑓−1

Fig. 3. The inter-source cube searching.

Considering that the inpainted results of dynamic point

clouds should be coherent among consecutive frames, it is

necessary to explore the temporal correspondence between

neighboring frames in a point cloud sequence. Unlike videos,

dynamic point clouds are irregular, thus the temporal corre-

spondence is challenging to define.

In order to efficiently explore the temporal correspon-

dence in dynamic point clouds for coherent inpainting, we

propose to find corresponding cubes for ct both in Pf−1 and

Pf+1, which are denoted by c
f−1

t and c
f+1

t respectively as

the inter-source cubes. Note that, the inter-frame consistency

can be generalized to several previous and subsequent frames,

instead of one forward and one backward as in our method.

Specifically, inspired by the observation that a set of

points representing the same region have little variation in

consecutive frames, we find the temporal correspondence via

searching the nearest neighbor of each point in the target

cube. As shown in Fig. 3, we first find a co-located cube

c′t ∈ R
M3×3 in Pf−1 as s(c′t) = s(ct), where s(·) denotes

the coordinate of the centering point of a cube.

Then we construct a bounding box b
f−1

t ∈ R
H3×3 (H

is the size of the box) around c′t as s(bf−1

t) = s(c′t), which

serves as the search range. Next, we search the nearest neigh-

bor in b
f−1

t of each point in ct in terms of the relative loca-

tion. Then we employ a sliding cubic window cw ∈ R
M3×3

with stride 1 in the bounding box b
f−1

t to search for the inter-

source cube c
f−1

t ∈ R
M3×3 in Pf−1:

c
f−1

t = argmax
cw

V (cw), (2)

where V (cw) is the number of the nearest neighbors of ct in

cw in terms of the relative location. That is, c
f−1

t contains the

most nearest neighbors of points in ct.

We further perform the same structure matching on c
f−1

t

as the way we deal with cs in Section 3.1, which leads to the

final inter-source cube in Pf−1, denoted as ĉ
f−1

t . The final

inter-source cube in Pf+1, denoted by ĉ
f+1

t , is searched in

the same way as in Pf−1. Thus we obtain two source cubes

as the temporal reference, which will be adopted in the final

inpainting step.

3.3. Spatio-Temporal Graph Construction

To take advantage of both intra-frame self-similarity and

inter-frame consistency, we construct a spatial-temporal

graph on the target cube ct as the following.

We first build spatial connectivities within ct. As there

exists a hole in ct, we approximate the connectivities via the

similarities in its intra-source cube ĉs. We choose to build a

K-NN graph mentioned in Section 2, based on the affinity of

geometric distance among points in ĉs. Specifically, the edge

weight wk,l between nodes k and l in ĉs is assigned as

wk,l =

{

exp{−
‖pk−pl‖

2

2

2σ2 }, k ∼ l

0, otherwise
(3)

where k ∼ l means nodes k and l are K nearest neighbors

and thus connected. σ is a weighting parameter (empirically

3

σ = 1 in our experiments). This is based on the assumption

that geometrically closer points are more similar in general.

We then construct temporal connectivities between ct and

its previous frame ĉ
f−1

t , as well as temporal connectivities

between ct and its subsequent frame ĉ
f+1

t . Due to the hole in

ct, the connectivities for known points and unknown points

in ct are linked in different manners. Specifically, we link

each known point in ct with its corresponding point in ĉ
f−1

t .

To circumvent the unavailability of unknown points in ct, we

approximate the temporal connectivities by the similarities

between their corresponding points in the intra-source cube

ĉs and their corresponding points in the inter-source cube

ĉ
f−1

t . The temporal correspondence is based on the the near-

est neighbor in the relative location in the cube.

Further, we define a weight matrix Wf−1 ∈ M3×M3 to

encode the temporal connectivities between ct and ĉ
f−1

t . The

rows of Wf−1 correspond to points in ct and columns corre-

spond to points in ĉ
f−1

t . Specifically, the weight in Wf−1

between nodes k and l is assigned as

wk,l =

{

1, k ∼ l

0, otherwise
(4)

where k ∼ l means nodes k and l are temporally correspond-

ing points and thus connected. We set weight 1 to each pair

of temporally connected points as the temporal correlation is

strong for corresponding points.

It is the same for the construction of temporal connec-

tivities between ct and ĉ
f+1

t . Similarly, we define a weight

matrix Wf+1 to describe the temporal connections.

3.4. Problem Formulation

Finally, we cast dynamic point cloud inpainting as an opti-

mization problem, which is regularized by the graph-signal

smoothness prior as mentioned in Section 2 and temporal con-

sistency. It is formulated as

min
cr

‖Ωcr −Ωct‖
2
2 + α‖Ωcr −Ωĉs‖

2
2 + γcTr Lcr+

β‖cr −Wf−1ĉ
f−1

t ‖22 + β‖cr −Wf+1ĉ
f+1

t ‖22

(5)

where cr ∈ R
M3×3 is the desired resulting cube. Ω is a M3×

M3 diagonal matrix with Ωi,i ∈ {0, 1}, where 0 indicates

known points and 1 indicates missing points. Thus Ωcr and

Ωĉs represent the missing region in cr and ĉs respectively. Ω

is complementary to Ω, which extracts the known region. L
is the Laplacian matrix of the spatial graph constructed over

ct as described in Section 3.3. α, β and γ are three weighting

parameters (we empirically set α = 1, β = 0.5 and γ = 0.5
in the experiments).

The first term in (5) is a data fidelity term, which ensures

the desired cube to be close to ct in the known region. The

second term constraints the missing region of cr to be similar

to that of ĉs. The last two terms aim to make the structure

of cr mimic that of ĉ
f−1

t and ĉ
f+1

t , which enforces the tem-

poral consistency. Further, the third term is the graph-signal

smoothness prior, which enforces the internal structure of cr
to be smooth with respect to the constructed spatial graph

when merging information from three source cubes.

(5) is a quadratic programming problem. Taking deriva-

tive of (5) with respect to cr and setting the derivative to 0,

we have the closed-form solution:

copt
r =(Ω

2
+ αΩ2 + 2βI+ γL)−1

(Ω
2
ct + αΩ2ĉs + βWf−1ĉ

f−1

t + βWf+1ĉ
f+1

t).

(6)

(5) is thus solved optimally and efficiently. We replace

the target cube with the resulting cube in the target frame Pf ,

which serves as the output.

4. EXPERIMENTS

4.1. Experimental Setup

We evaluate the proposed method by testing on several 3D

dynamic point cloud datasets from MPEG [29] and JPEG

Pleno [30], including Longdress, Loot, Redandblack, Soldier,

and UlliWegner. We test on two types of holes: 1) real holes

generated during the capturing process, which have no ground

O
rig

in
al

L
o
zes

et al.
P

ro
p
o
sed

(a) f=4 (b) f=5 (c) f=6 (d) f=7 (e) f=8 (f) f=9 (g) f=10 (h) f=11 (i) f=12

Fig. 4. Several frames of the inpainting results from different methods for Longdress with the real holes magnified.

4

O
rig

in
al

L
o

zes
et al.

P
ro

p
o

sed
G

ro
u

n
d

 T
ru

th

(a) f=2 (b) f=4 (c) f=5 (d) f=9 (e) f=11 (f) f=13 (g) f=16 (h) f=18 (i) f=21

Fig. 5. Several frames of the inpainting results from different methods for Soldier with the synthetic holes magnified.

truth; 2) synthetic holes on point clouds so as to compare with

the ground truth.

Further, we compare our method with three competing al-

gorithms for static 3D geometry inpainting, including Mesh-

lab [31], Lozes et al. [13] and Hu et al. [17]. We test the static

methods by performing them on each frame separately. Be-

sides, as Meshlab is based on meshes, we convert point clouds

to meshes via the Meshlab software [31] prior to testing the

method, and then convert the inpainted meshes back to point

clouds as the final output.

4.2. Results on Point Cloud Inpainting

Objective results. It is nontrivial to measure the geometry

difference of point clouds objectively. We apply the geomet-

ric distortion metrics in [32] and [8], referred to as GPSNR

and NSHD, respectively, as the metric for evaluation. The

higher GPSNR is and the lower NSHD is, the smaller the dif-

ference between two point clouds is.

Table 1 and Table 2 show the average objective results

of the frames for each sequence with synthetic holes in GP-

SNR and NSHD, respectively. We see that our scheme out-

performs all the competing methods in GPSNR and NSHD

significantly. Specifically, in Table 1 we achieve 26.80 dB

gain in GPSNR on average over Meshlab, 16.18 dB over [13]

and 5.26 dB over [17]. In Table 2, we produce much lower

NSHD than the other methods, at least three times lower com-

pared to the next best method [17].

Subjective results. Further, Fig. 4 and Fig. 5 demonstrate

the subjective inpainting results for real and synthetic holes,

respectively. Due to the page limit, we show several repre-

sentative frames compared with one competitive method [13].

Table 1. Performance Comparison in GPSNR (dB)

Meshlab [31] Lozes [13] Hu [17] Proposed

Longdress 11.7926 30.3883 41.5686 43.1301

Loot 16.4451 27.3715 40.1546 47.5648

Redandblack 13.1772 24.4810 33.9921 39.0103

Soldier 17.4697 23.1571 34.5062 42.2980

UlliWegner 24.9424 31.5455 41.3037 45.8411

Table 2. Performance Comparison in NSHD (×10−7)

Meshlab [31] Lozes [13] Hu [17] Proposed

Longdress 24.8631 7.1362 2.9174 0.9131

Loot 14.1925 8.9410 3.1102 0.3549

Redandblack 22.8300 9.6233 5.9856 1.9324

Soldier 17.1376 10.0044 5.2145 1.2057

UlliWegner 11.2509 6.7370 1.9658 0.6362

For the real holes in Fig. 4 (a), which are fragmentary, the re-

sults of [13] exhibit artificial contours, since it attempts to

connect the boundary of the hole region with planar struc-

tures without smoothing. However, the inpainted results are

not smooth in the local region, which indicates the tempo-

ral inconsistency to some extent. In comparison, our results

shown in row 3 of Fig. 4 demonstrate that our method is

able to inpaint holes with appropriate geometry structure and

smoothness over the hole region. Besides, since we leverage

the inter-frame correlation, our inpainted regions show good

consistency across neighboring frames.

5

In Fig. 5, we synthesize holes in the point cloud sequence

Soldier, with more complex and bigger holes than the real

holes in Fig. 4. We observe that [13] covers the missing

area with stripy geometry, which introduces wrong geome-

try around the holes compared to the ground truth. Also,

the contents look incoherent among the consecutive frames.

In comparison, our results shown in row 3 of Fig. 5 are al-

most the same as the ground truth, and exhibit consistency

between neighboring frames. This gives credits to the intra-

frame self-similarity, the inter-frame consistency and graph-

signal smoothness prior.

5. CONCLUSION

We propose a novel 3D dynamic point cloud inpainting

method. The key idea is to enforce both intra-frame self-

similarity and inter-frame consistency in point cloud se-

quences. Given a target cube with holes inside, we propose

to efficiently search for its intra-frame self-similar cube and

inter-frame corresponding cubes. We then cast dynamic point

cloud inpainting as a quadratic programming problem, based

on the searched source cubes and regularized by the graph-

signal smoothness prior. Experimental results show that our

algorithm significantly outperforms three competing meth-

ods. Future works include the extension to inpainting the at-

tributes of dynamic point clouds.

6. REFERENCES

[1] C. Loop, C. Zhang, and Z. Zhang, “Real-time high-resolution sparse
voxelization with application to image-based modeling,” in High-
performance Graphics Conference, 2013.

[2] C. Tulvan, R. Mekuria, and Z. Li, “Use cases for point cloud compres-
sion (pcc),” in ISO/IEC JTC1/SC29/WG11 (MPEG) output document
N16331, June 2016.

[3] P. Chalmovianský and B. Jüttler, “Filling holes in point clouds,” in
Mathematics of Surfaces. 2003, pp. 196–212, Springer Berlin Heidel-
berg.

[4] P. Sahay and A. N. Rajagopalan, “Harnessing self-similarity for re-
construction of large missing regions in 3D models,” in International
Conference on Pattern Recognition, 2012, pp. 101–104.

[5] P. Sahay and A. N. Rajagopalan, “Geometric inpainting of 3D struc-
tures,” in Computer Vision and Pattern Recognition Workshops, 2015,
pp. 1–7.

[6] S. Shankar, S. A. Ganihar, and U. Mudenagudi, “Framework for 3D
object hole filling,” in Fifth National Conference on Computer Vision,
Pattern Recognition, Image Processing and Graphics, 2015, pp. 1–4.

[7] S. Shankar and U. Mudenagudi, “Example-based 3d inpainting of point
clouds using metric tensor and christoffel symbols,” Machine Vision
and Applications, vol. 29, pp. 329–343, 2018.

[8] C. Dinesh, I. V. Bajic, and G. Cheung, “Exemplar-based framework
for 3D point cloud hole filling,” in IEEE International Conference on
Visual Communications and Image Processing, May 2017.

[9] C. Dinesh, I. V. Bajic, and G. Cheung, “Adaptive non-rigid inpainting
of 3d point cloud geometry,” IEEE Signal Processing Letters, vol. 25,
no. 6, pp. 878–882, 2018.

[10] J. Wang, M. M. Oliveira, M. Garr, and M. Levoy, “Filling holes on
locally smooth surfaces reconstructed from point clouds,” Image &
Vision Computing, vol. 25, no. 1, pp. 103–113, 2007.

[11] Y. Quinsat and C. Lartigue, “Filling holes in digitized point cloud using
a morphing-based approach to preserve volume characteristics,” Inter-
national Journal of Advanced Manufacturing Technology, vol. 81, no.
1-4, pp. 411–421, 2015.

[12] F. Lozes, A. Elmoataz, and O. Lézoray, “Partial difference operators on
weighted graphs for image processing on surfaces and point clouds,”
IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 3896–909,
2014.

[13] F. Lozes, A. Elmoataz, and O. Lézoray, “PDE-based graph signal pro-
cessing for 3-D color point clouds : opportunities for cultural heritage,”
IEEE Signal Processing Magazine, vol. 32, no. 4, pp. 103–111, 2015.

[14] H. Lin and W. Wang, “Feature preserving holes filling of scattered
point cloud based on tensor voting,” in IEEE International Conference
on Signal and Image Processing, 2017, pp. 402–406.

[15] Y. Muraki, K. Nishio, and T. Kanaya, “An automatic hole filling method
of point cloud for 3d scanning,” 2017.

[16] Z. Fu, W. Hu, and Z. Guo, “Point cloud inpainting on graphs from
non-local self-similarity,” in IEEE International Conference on Image
Processing, Athens, Greece, 2018.

[17] W. Hu, Z. Fu, and Z. Guo, “Local frequency interpretation and non-
local self-similarity on graph for point cloud inpainting,” IEEE Trans-
actions on Image Processing, vol. 28, no. 8, pp. 4087–4100, 2019.

[18] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83–98,
2013.

[19] X. Liu, G. Cheung, X. Wu, and D. Zhao, “Inter-block consistent soft
decoding of jpeg images with sparsity and graph-signal smoothness pri-
ors,” in IEEE International Conference on Image Processing, 2015, pp.
1628–1632.

[20] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst, “Over- and
under-exposure reconstruction of a single plenoptic capture,” IEEE
Transactions on Signal Processing, vol. 64, no. 23, pp. 6160–6173,
Dec. 2016.

[21] W. Hu, M. Seifi, and E. Reinhard, “Over- and under-exposure recon-
struction of a single plenoptic capture,” ACM Transaction on Multi-
media Computer Communication Application, vol. 14, no. 2, pp. 52:1–
52:21, May 2018.

[22] F. K. Chung, “Spectral graph theory,” vol. 92, no. 6, pp. 212, 1996.

[23] G. Shen, W.-S. Kim, S. K. Narang, A. Ortega, J. Lee, and H. Wey,
“Edge-adaptive transforms for efficient depth map coding,” in IEEE
Picture Coding Symposium, Nagoya, Japan, December 2010, pp. 566–
569.

[24] W. Hu, G. Cheung, X. Li, and O. C. Au, “Depth map compression using
multi-resolution graph-based transform for depth-image-based render-
ing,” in IEEE International Conference on Image Processing, Orlando,
FL, September 2012, pp. 1297–1300.

[25] W. Hu, G. Cheung, A. Ortega, and O. C. Au, “Multi-resolution graph
fourier transform for compression of piecewise smooth images,” in
IEEE Transactions on Image Processing, January 2015, vol. 24, pp.
419–33.

[26] D. A. Spielman, “Lecture 2 of spectral graph theory and its applica-
tions,” September 2004.

[27] P. J. Besl and N. D. Mckay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.
14, no. 2, pp. 239–256, 2002.

[28] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed it-
erative closest point algorithm,” in International Conference on Pattern
Recognition, 2002. Proceedings, 2002, vol. 3, pp. 545–548.

[29] T. Ebner, I. Feldmann, O. Schreer, P. Kauff, and T. Unger, “Hhi
point cloud dataset of a boxing trainer,” in ISO/IEC JTC1/SC29/WG11
(MPEG2018) input document M42921, July 2018.

[30] E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i voxelized
full bodies, version 2 - a voxelized point cloud dataset,” in ISO/IEC
JTC1/SC29/WG11 (MPEG2017) input document M40059, January
2017.

[31] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “Meshlab: an open-source mesh processing tool,” in
Eurographics Italian Chapter Conference, S. Vittorio, D. C. Rosario,
and F. Ugo, Eds. 2008, The Eurographics Association.

[32] D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in IEEE International
Conference on Image Processing, Beijing, China, September 2017.

6

