Dynamic Point Cloud Inpainting via
Spatial-Temporal Graph Learning

Zeqing Fu, Student Member, IEEE, Wei Hu, Member, IEEE

Abstract—The maturity of depth sensors and laser scanning
techniques has enabled the convenient acquisition of 3D dynamic
point clouds—one natural representation of 3D objects/scenes
in motion, leading to a wide range of applications such as
immersive tele-presence, autonomous driving, augmented and
virtual reality. Nevertheless, dynamic point clouds usually exhibit
holes of missing data, thus inpainting is crucial to the subsequent
rendering or downstream understanding tasks. Dynamic point
cloud inpainting has been largely overlooked so far, which is also
quite challenging due to the irregular sampling patterns both in
the spatial domain and temporal domain. To this end, we propose
an efficient dynamic point cloud inpainting method based on a
learnable spatial-temporal graph representation, exploiting both
the second-order inter-frame coherence and the intra-frame self-
similarity. The key is the second-order inter-frame coherence that
enforces the consistent flow in 3D motion over time, for which
we search the temporal correspondence in consecutive frames
for the same underlying surface by the point-to-plane distance
and represent the correlation between them via temporal edge
weights in the graph. Based on the second-order inter-frame
coherence and intra-frame self-similarity, we formulate dynamic
point cloud inpainting as a joint optimization problem of the
desired point cloud and underlying spatial-temporal graph, which
is regularized by consistency in the temporal edge weights and
smoothness in the spatial domain. We analyze and reformulate
the optimization, leading to an efficient alternating minimization
algorithm. Experimental results show that the proposed approach
outperforms several competing methods significantly, both on
synthetic holes and real holes.

Index Terms—3D dynamic point clouds, inpainting, spatial-
temporal graph, inter-frame coherence.

I. INTRODUCTION

3D dynamic point cloud has received increasing attention
as an efficient representation of arbitrarily-shaped 3D objects
or scenes in motion. It consists of a sequence of point clouds,
each of which is a set of discrete points sampled from the
continuous surface of objects or scenes. Each point in a point
cloud corresponds to a measurement point and contains most
original information of the point, including the 3D coordinates
representing the geometric information and possibly attribute
information such as color and normal. The development of
depth sensing and laser scanning techniques' has enabled

Z. Fu (e-mail: zeqing_fu@pku.edu.cn) and W. Hu (e-mail:
forhuwei@pku.edu.cn) are with Wangxuan Institute of Computer Technology,
Peking University, No. 128, Zhongguancun North Street, Beijing, China.

Corresponding author: Wei Hu (forhuwei@pku.edu.cn). This work was sup-
ported in part by the National Key R&D project of China under contract No.
2019YFF0302903, in part by Beijing Natural Science Foundation [19L.2053],
and in part by National Natural Science Foundation of China [61972009].

ICommercial products include Microsoft Kinect (2010-2014), Intel Re-
alSense (2015-), Velodyne LiDAR (2007-2020), LiDAR scanner of Apple
iPad Pro (2020), etc.

Fig. 1. Several consecutive frames of the 3D dynamic point cloud Long-
dress [2] with holes.

the convenient acquisition of dynamic point clouds, with a
wide range of applications such as immersive tele-presence,
autonomous driving, augmented and virtual reality [1].

Nevertheless, 3D dynamic point clouds often exhibit several
holes of missing data inevitably, as shown in Fig. 1. This
is mainly due to incomplete scanning views, fast object
motion and inherent limitations of the acquisition equipments?.
Besides, there may lack some regions in the data itself (e.g.,
dilapidated heritage). Therefore, it is necessary to inpaint
incomplete point clouds prior to the subsequent applications.
Nevertheless, dynamic point cloud inpainting is quite challeng-
ing, because each point cloud frame is irregularly sampled and
different frames have varying sampling patterns with possibly
different numbers of points, which means there is no explicit
temporal correspondence between points over time.

However, the direct inpainting of dynamic point clouds has
been largely overlooked so far in the literature, while many ap-
proaches have been proposed for static point clouds [3]-[18].
If we apply them to point cloud sequences frame by frame, the
inpainting process of each frame is independent to each other,
which neglects the inter-frame correlation and thus is sub-
optimal. Fu et al. proposed dynamic point cloud inpainting
by exploiting the inter-frame consistency and the intra-frame
self-similarity [19]. However, the inter-frame consistency is
only enforced between each pair of adjacent point cloud
frames, which may not capture the consistent change of 3D
motion over several consecutive frames—consistent motion
flow. Also, the graph representation in [19] is empirically
constructed, and the search for temporally corresponding cubes
of points could be further improved.

2For example, laser scanning is less sensitive to the objects in dark colors.
This is because the darker it is, the more wavelengths of light the surface
absorbs and the less light it reflects. Thus the laser scanning devices are
unable to receive enough reflected light for dark objects to recognize.

To this end, we propose to inpaint the geometry of dy-
namic point clouds by exploiting the second-order inter-
frame coherence and the intra-frame self-similarity, based on
a learnable spatial-temporal graph representation to capture
the underlying structure of irregular point cloud frames. The
key is the second-order inter-frame coherence based on the
observation that the flow in 3D motion is often consistent over
time. It is meanwhile challenging, since there is no explicit
point-to-point correspondence between adjacent point cloud
frames as mentioned. To address this issue, given consecutive
frames, we propose to search local cubes of points among
the frames that correspond to the same underlying surface—
referred to as corresponding cubes via a point-to-plane metric,
which captures the temporal distance between the surfaces in
cubes better than [19]. We then learn the correlation between
them as the temporal edge weights in the spatial-temporal
graph. Further, the temporal edge weights between each pair
of corresponding cubes are constrained to be similar over
different pairs so as to exploit the temporally consistent motion
flow, i.e., the second-order inter-frame coherence.

Based on the second-order inter-frame coherence and our
previously proposed intra-frame self-similarity [17] that ex-
ploits regions with similar geometry, we formulate dynamic
point cloud inpainting as a joint optimization problem of the
desired point cloud and the underlying spatial-temporal graph.
The optimization is regularized by 1) the second-order inter-
frame coherence, formulated as the [; norm of the difference
in the temporal edge weights among consecutive frames and
2) intra-frame self-similarity, formulated as a graph-signal
smoothness prior [20] in the spatial domain. To solve the
optimization, we analyze and reformulate the objective, and
then optimize the desired point cloud, the temporal edge
weights and the spatial edge weights alternately. Experimental
results show that the proposed approach outperforms several
competing methods significantly on both synthetic holes and
real holes.

Our contributions can be summarized as follows:

o We propose dynamic point cloud inpainting by exploiting
the second-order inter-frame coherence and the intra-frame
self-similarity, based on a learnable spatial-temporal graph
representation for adaptive structural description.

e We propose the second-order inter-frame coherence to
capture the consistent motion flow between corresponding
cubes among consecutive frames, and formulate it as the
1 norm of the difference in the temporal edge weights of
the underlying spatial-temporal graph.

e We cast dynamic point cloud inpainting as the joint op-
timization of the desired point cloud and the underlying
spatial-temporal graph, regularized by the second-order
inter-frame coherence and the intra-frame self-similarity.

o We analyze and reformulate the optimization problem, and
present an algorithm to solve it efficiently. Experimental
results demonstrate the superiority of the proposed method.

The outline of the paper is as follows. We first discuss
previous methods in Section II. Then we review relevant con-
cepts and tools in graph signal processing in Section III. Next,
we elaborate on the problem formulation in Section IV, and

present the algorithm development in Section V. Experimental
results and conclusions are presented in Section VI and VII,
respectively.

II. RELATED WORK

We review previous works on point cloud inpainting and
spatial-temporal graph learning, respectively.

A. Point Cloud Inpainting

While few methods [19] study the direct inpainting of
dynamic point clouds, we focus on the review of previous
inpainting works on static point clouds.

1) Static Point Cloud Inpainting: According to the cause of
holes, we divide static point cloud inpainting into two classes:
1) inpainting holes in the object itself such as heritage and
sculptures [3]-[9], which is often large, and 2) inpainting holes
caused by the limitation of scanning devices [10]-[18], which
is comparatively small and fragmented.

For the first class of methods, the main hole-filling data
source is online database, as the holes are often large. Sahay et
al. [5] propose a gradient map and dictionary learning-based
method to harness the geometric prior. They project the point
cloud to a depth map, search a similar one from an online
depth database via dictionary learning, and then minimize
the error in the known region to ensure the smoothness in
the formulation. However, the projection process inevitably
introduces geometric loss. Instead, Dinesh et al. [8], [9] fill
this kind of holes with the data in the object itself. In particular,
they determine the inpainting order by giving priority to the
points along the hole boundary, and search best matching
regions based on the smallest rotation difference in order to
fill the missing area. The results still suffer from geometric
distortion due to the simple data source.

The second class of methods focus on holes generated
due to the limitations of scanning devices. This kind of
holes is smaller than the aforementioned ones in general,
thus the information of the data itself is often enough for
inpainting. Wang et al. [10] and Quinsat et al. [11] create a
triangle mesh from the input point cloud, identify the vicinity
of the hole to build the mesh over the hole, and finally
interpolate the missing area. These methods rely on the quality
of mesh construction though. Lozes ef al. [12], [13] deploy
partial difference operators to solve an optimization problem
on the point cloud, which only refers to the neighborhood
of the hole to compute the geometric structure. Muraki et
al. [15] generate a surface to fit the vicinity of the hole and
interpolate the surface for inpainting. Due to the reference
information from the local neighborhood only, the results of
these methods tend to be more planar than the ground truth.
Also, artifacts are likely to occur around the boundary when
the geometric structure is complicated. Fu, Hu er al. [16],
[17] exploit the non-local similarity in the point cloud, which
searches the most similar region to the missing region based
on the normals of points, and fills the hole by formulating
an optimization problem based on the similar region and a
graph-signal smoothness prior.

Besides, some works for static point clouds deal with
particular point cloud data such as geometrically regular point
clouds of buildings in [21], flattened bar-shaped holes in the
human body data in [22], and dynamic holes with static objects
in [23], which are unsuitable for general cases though.

2) Dynamic Point Cloud Inpainting: Fu et al. [19] propose
the geometry inpainting of dynamic point clouds, exploiting
the inter-frame consistency and the intra-frame self-similarity
based on a spatial-temporal graph representation. We extend
this work from the following three aspects: 1) instead of con-
sidering only the first-order inter-frame consistency enforced
between each pair of adjacent point cloud frames, we further
exploit the second-order temporal coherence, which captures
the consistency in changes/flows of 3D motion over several
consecutive frames; 2) instead of empirical graph construction,
we propose to learn the underlying spatial-temporal graph
adaptively from the data and the regularization of the second-
order temporal coherence; 3) we improve the search for
temporally corresponding cubes of points by leveraging a
point-to-plane metric instead of a point-to-point metric, which
measures the distance between the underlying surfaces more
accurately.

B. Spatial-Temporal Graph Learning

While many efforts have been made for graph learning [24]—
[26], few attempts explore spatial-temporal graph learning.
Hallac et al. [27] address spatial-temporal graph learning
by time-varying graphical Lasso, which combines graphical
Lasso with a temporal regularization and acquires the solution
using alternating direction method of multipliers. The graphs
estimated by this approach often have negative edge weights,
whereas edge weights in our problem formulation are con-
strained to be non-negative in the context of point clouds.
Kalofolias et al. [28] and Yamada et al. [29] learn spatial-
temporal graphs by penalizing fast changes of the adjacency
matrices to enforce smoothly varying edge weights over time.
Different from their prior that graph edges at each time
change smoothly over time, we assume the change in graph
edges between adjacent point cloud frames varies consistently
over time, i.e., the second-order temporal coherence, which
characterizes dynamic point clouds better. Also, we learn the
edge weights between adjacent point clouds to capture the
temporal correlation in addition to edge weights at each time.
Besides, [30]-[34] learn spatial-temporal graphs in graph
convolutional neural networks from multiple observations,
while our method learns the graph from the input single
observation. In addition, Baingana et al. [35] aim to learn
the time-varying graphs to capture causal relationships in the
network. This model focuses on the learning of directed graphs
by considering the spread process on networks along the time
dimension, while our method focuses on learning undirected
graphs for point clouds. Compared with deep learning based
spatial-temporal graph learning, the proposed method is ad-
vantageous in the following three aspects: 1) The proposed
method learns the graph from the input single observation
in an unsupervised manner; in contrast, deep learning based
methods often require a large amount of training data and the

supervision of ground truth graphs. 2) The proposed method is
more generalizable to various point clouds than deep learning
based methods. 3) The proposed method is interpretable based
on the second-order inter-frame coherence and the intra-frame
self-similarity, while deep learning based methods often lack
interpretability.

III. SPECTRAL GRAPH THEORY

We first provide a review on basic concepts in spectral graph
theory [36] and graph signal processing [37]-[39], including
graph, graph Laplacian and graph-signal smoothness prior,
which will be leveraged in the proposed dynamic point cloud
inpainting.

A. Graph and Graph Laplacian

We consider an undirected graph G = {V, £, W} composed
of a vertex set V of cardinality |[V| = N, an edge set &
connecting vertices, and a weighted adjacency matrix W. W
is a real symmetric N x N matrix, where w; ; is the weight
assigned to the edge (i,7) connecting vertices ¢ and j. We
assume non-negative weights, i.e., w;; > 0. For example,
the K -Nearest Neighbor (K-NN) graph is a commonly used
undirected graph, which is constructed by connecting each
point with its nearest K neighbors.

The Laplacian matrix is defined from the adjacency matrix
[36]. Among different variants of Laplacian matrices, the
commonly used combinatorial graph Laplacian [40]-[42] is
defined as £ := D — W, where D is the degree matrix—a
diagonal matrix where d; ; = Zjvzl W; .

Graph signal
(Coordinate)

Vertex
(Point)

Fig. 2. A K-NN graph constructed when K = 3 with graph signal (red
arrows). The connections of boundary vertices are omitted.

B. Graph-Signal Smoothness Prior

Graph signal refers to data residing on the vertices of a
graph. For example, if we construct a K-NN graph on the
point cloud, then the normal or the coordinate of each point
can be treated as graph signal defined on the K-NN graph, as
shown in Fig. 2. In our context, the graph signal is the normal
in the intra-source cube searching approach in Section IV-B,
while it refers to the coordinates of points in the problem
formulation in Section IV-E.

A graph signal z defined on a graph G is smooth with respect
to the topology of G if

> wij(zi— %) < e Vij, (1)

]

where € is a small positive scalar, and ¢ ~ j denotes two
vertices ¢ and j are one-hop neighbors in the graph. In order
to satisfy Eq. (1), z; and z; have to be similar for a large
edge weight w; j, and could be quite different for a small
w; ;. Hence, Eq. (1) enforces z to adapt to the topology of
G, which is thus called graph-signal smoothness prior. This
prior also possesses an interpretation in the frequency domain
as low-pass filtering, as well as a continuous interpretation as a
smoothness functional defined on the underlying Riemannian
manifold [43].

As z' Lz = Y w; (2 — z;)? [44], Eq. (1) is concisely

inj

written as z'Lz < ¢ in the sequel. This prior will be
deployed in our problem formulation of point cloud inpainting
as a regularization term for spatial-temporal smoothness, as
detailed in Section IV-E and Section V-A.

IV. PROBLEM FORMULATION

We now introduce the proposed point cloud inpainting
method, leveraging on the spectral graph theory in Section III.
The input data is a point cloud sequence denoted by S =
{P1,Py,...,P,}, where Py, f = 1,..., ¢ denotes each frame
of point cloud in the sequence. As shown in Fig. 3, we process
each target frame P; with holes in order with the following
steps:

1) We split P into cubes of fixed size as units to be processed
in the subsequent steps.

2) We choose the target cube with missing area manually.

3) We search for the most similar cube to the target cube in
Py, which is referred to as the intra-source cube, based
on the variation in normals of points as in our previous
work [17].

4) We search for the corresponding cubes to the target cube
both in P;_; and P, which is referred to as the inter-
source cubes. The idea is to search the cube with the most
nearest neighbors of the points in the target cube, in which
the distance measure between two points is point-to-plane
for capturing surface structures.

5) We formulate the inpainting problem into an optimization
problem, which leverages the intra- and inter-source cubes,
the graph-signal smoothness prior of the spatial-temporal
graph as well as a second-order temporal coherence term
in the temporal edge weights. We analyze and reformulate
the objective, and then solve the optimization problem
iteratively, leading to the resulting cube.

6) We replace the target cube with the resulting cube as the
output.

A. Preprocessing

Given a target frame of point cloud Py = {p1, p2, ...} with
pi € R? meaning the coordinates of the i-th point in the point
cloud, we first split Py into overlapping cubes {ci,ca,... }
with ¢; € RM °x3 (M is the size of the cube), as the processing
unit of the proposed inpainting algorithm. M is empirically
set according to the coordinate range of Py (M = 20 in our
experiments), while the overlapping step is empirically set as
%. This is a trade-off between the computational complexity
and ensuring enough geometry information available to search
for source cubes.

Having obtained the cubes, we choose the cube with missing
data as the target cube c; manually. In order to ensure there
is enough known information available in c; for similar cube
search, we constrain that the percentage of the hole in a cube

(Target frame of)

the input sequence

a Split into cubes\ a Search forthe\

intra-source cube

Choose
the target cube

.
N

= _/

4 Search for the inter-source cubes \ 4 Output frame N

Optimization

=

Fig. 3. The framework of the proposed 3D dynamic point cloud inpainting method.

should cover less than 50% of the total points when projected
to a 2D depth map. Besides, in the presence of a hole larger
than the cube size, we will divide the hole into several small
holes, and then inpaint the small holes in the inward order.

In addition, in order to save the computation complexity
and increase the accuracy of the subsequent cube matching,
we choose candidate cubes c. for intra-source cube searching
by filtering out cubes with the number of points less than 80%
of that of c;. We test that, around 67.96% of cubes are filtered
out on average, which reduces the computation complexity
of the intra-source cube matching significantly, given that the
running time for each cube matching takes about 0.12 second.
Also, we augment the candidates by mirroring these cubes
with respect to the x-y plane, which has been validated to be
useful in the previous work [17] and will be employed in the
next step.

B. Intra-frame Self-Similar Cube Matching

In order to search for the most similar cube to c; in Py, we
first define the geometric similarity metric d(c¢, c.) between
the target cube c; and each candidate cube c. as in [16], [17],
by the difference in Direct Component (DC) and Anisotropic
Graph Total Variation (AGTV) of normals between c¢; and c:

d(cr; ce) = exp{—[|{d(cs), d(ec)) |+[v(er)—v(ee)|]}, (2)

where d(c;) and d(c..) are the DC of cube ¢; and c., while
v(cy) and v(c,.) are the AGTV of ¢; and c..

Specifically, as defined in [17], the DC is essentially an
average of the normals, which presents the prominent geometry
direction of the cube. The AGTV is a variant of graph total
variation, which describes the variation of normals in the cube
with respect to the underlying graph structure.

Having computed the similarity metric in Eq. (2) between
the target cube and all candidate cubes in P, we choose the
candidate cube with the largest similarity as the intra-source
cube c,. However, c, cannot be directly adopted for inpainting,
because it is just the most similar to c; in the geometric
structure, but not in the relative location in the cube. Hence,
we further perform structure matching (i.e., coarse registration)
for ¢, and c; so as to match the relative locations as in [17],
which includes both translation and rotation as a simplified
Iterative Closest Points (ICP) algorithm [45], [46]. This leads
to the final intra-source cube, denoted as ¢,, which will be
adopted in the final inpainting step.

C. Inter-frame Corresponding Cube Matching

Considering that the inpainted results of dynamic point
clouds should be coherent among consecutive frames, it is
necessary to search the temporal corresponding cubes between
neighboring frames in a point cloud sequence, which corre-
spond to the same local underlying surface in the 3D object
or scene. Unlike videos, dynamic point clouds are irregular,
thus the temporal correspondence is challenging to search. Few
methods explore this problem for the compression of dynamic
point clouds [47]-[49], which compare the difference of the
octree data structure [47], the local features of each point
based on spectral graph wavelets [48], or 2D patches projected

from 3D dynamic point clouds [49]. However, there exist the
limitations of the octree structure, the expensive computation
complexity, or the projection loss.

In order to efficiently explore the temporal coherence in
dynamic point clouds, we propose to find corresponding cubes
for c¢; both in P;y_; and Py, which describe the same
underlying surface as c; at different time and are denoted by
c{ ~! and c{ 1 respectively as the inter-source cubes. This
is realized by searching the nearest neighbor of each point
in terms of a point-to-plane distance metric, which is simple
yet effective. Note that, the inter-frame coherence can be
generalized to several previous and subsequent frames, instead
of one forward and one backward as in our method.

Specifically, inspired by the observation that a set of points
representing the same region have little variation in the con-
secutive frames, we find the temporal coherence via searching
the nearest neighbor of each point in the target cube in terms
of a point-to-plane distance metric. As shown in Fig. 4, we
first find the cube c, € RM X3 in P f—1 (one green cube in
Fig. 4) as

s(c}) = s(cy), (3)

where s(c}) denotes the coordinate of the centering point of
c;, and s(c;) denotes the coordinate of the center of c¢;. This
means c; is collocated as c, in the relative location.

Then we create a bounding box btf 1 e RE’*3 (H is the
size of the bounding box) around c; as

s(b{ ") =s(c}), 4)

where s(b{ 71) is the coordinate of the centering point of
bf ~!. Then, in b{ ~!, we search the nearest neighbor of each
point in c; in terms of a point-to-plane metric, as illustrated
with yellow lines in Fig. 4. In particular, the point-to-plane
distance dis; ; between the point q; ; in c; and the point qtf_ ;1
in &/ 7! is defined as in [50]:

disg, = [|(qe,k — q,{fl) ‘g ll3, &)

where the distance vector between two points is calculated as
the difference of their coordinates, and the unit normal vector
n; . is the normal vector of the point q;; in c;. Thus the
point-to-plane distance is the projection of the point-to-point

Fig. 4. The inter-source cube searching. The green cubes in Py and Py_
are c¢ and c;, respectively. The red cube is the searching box b{ _1, the
yellow lines connect the nearest neighbors in relative location to each point
in c¢, and the black dotted cube is the sliding cubic window c,, to find the
inter-source cube c{ ~1 in black.

distance along the normal of the point in c;, which reflects the
distance to the tangent plane for structural characterization.
. g . . 13 .
Next, we create a sliding cubic window c,, € R™" >3 in the

bounding box b{ ~!. The inter-source cube cf e RM*x3 ip
P;_; is found by

cf_l = argmax V(cy), (6)

Cw

where V(c,,) is the number of the nearest neighbors of c,
in c,, in terms of the point-to-plane distance. That is, ctf -1
contains the most structurally nearest neighbors of c;.

However, c{ 1 just the most relevant cube in Py_;
to c; in the temporal correlation. There may exist a rigid
transformation between c{ ! and c; due to the motion. Thus,
we perform the same structure matching on c{ ~! as the way
we deal with ¢, in Section IV-B, which leads to the final inter-
source cube in Ps_;, denoted as &/~'. The final inter-source
cube in Py, denoted by étf *1 is searched in the same way
as in Py_;. Thus we obtain two source cubes as the temporal
reference, which will be adopted in the graph initialization and
the problem formulation as follows.

D. Spatial-Temporal Graph Initialization

In order to exploit the spatial-temporal correlation, we
. . a3 -
propose to build a triple-cube g € R*M"*3 from the target
cube c; and its inter-frame corresponding cubes as

g = Ct) (7)

and construct a spatial-temporal graph G, = {Vy, &5, W}
over g as an initial representation of the desired cube c,., which
will be updated during the optimization. We discuss the con-
struction of spatial connectivities and temporal connectivities
in order.

1) Spatial Graph Initialization: Due to the hole in c;, the
spatial correlation within c; is incomplete from the observa-
tion. Instead, we approximate such spatial correlation with that
of its intra-frame self-similar cube ¢,.

As in [19], we choose to build a K-NN graph as mentioned
in Section III-A, based on the affinity of geometric distance
among points in ¢s. The edge weight wy; between nodes k
and [in ¢ is assigned as a thresholded Gaussian function of
the distance between points:

exp{— Hpk;f};z”g bk~

0, otherwise

W,1 = (8)
where o is a weighting parameter (empirically ¢ = 1 in our
experiments). This is based on the assumption that geometri-
cally closer points are more similar in general.

2) Temporal Graph Initialization: We connect points in
each pair of corresponding cubes as the temporal edges. Due
to the hole in c;, we approximate the connectivity associated
with the unknown region of c; by the corresponding region in
Cs. Whereas there is no explicit point-to-point correspondence
in the temporal domain, we connect points that are close in
terms of the projection distance. In particular, inspired by the

method in [51], we compare the distance from each point in the
corresponding cubes to the tangent plane at one (pseudo) cube
center, which captures the similarity in geometric curvature of
cubes.

Taking the connectivity between c; and é{ “lasan example,
we first construct a reference plane at the pseudo center of
c;—the nearest point q; . to the center of c;. The reference
plane is tangent to q; . and perpendicular to the normal n; .
at q; .. Secondly, we project each point in c; and é{ ~* onto
the reference plane. For each point q;j in c;, we search a
point q{ ;1 in é{ ~! whose projection on the tangent plane is
closest to that of d:,%. If the nearest neighbor of q; j in terms
of projection is too far, we take its three nearest neighbors
in éf ~! to compute a nearest plane for q.x, and take the
intersection point of the plane and the projection perpendicular
at q; ; as the nearest point qtjl.

Having connected points between c; and é{ ~1, we set the
weight of each temporal edge as 1 or 0 for simplicity:

-1
L Qe ~ q,{l
0, otherwise

€))

Wk, =

It is the same for the connectivity between c; and é{ +

Thus, we initialize the spatial-temporal graph G, over c; as
an initial graph representation of the desired cube c,, which
incorporates information from both intra-frame and inter-frame
source cubes. Next, we discuss the problem formulation based
on g and G,.

E. Problem Formulation

Based on the triple-cube g and the intra-frame source cube
Cs, we cast the inpainting problem as an optimization problem,
which is regularized by the graph-signal smoothness prior
mentioned in Section III-B with respect to G, and the /; norm
of the difference in the temporal edge weights for keeping the
second-order temporal coherence. This problem is formulated
as

min

Qc, — Qcil|% + a||Qc, —
e Wiy_1,5,Wyi1,5,Lg If2e, el Is2e,

e,

+ Btr(g" Lgg) +YIWr_1,p — Weiazlh,

(10)

where:

e C, € RM°*3 i the desired resulting cube.

o Qisa M3 x M?3 diagonal matrix with 2; ; € {0, 1}, where
0 indicates known points and 1 indicates missing points.
Thus Qc, and €2¢, represent the missing region in ¢, and
¢, respectively. Q is complementary to €2, which extracts
the known region.

e W,_ s is the weight matrix of the temporal graph edges
we construct between ¢/ ' and cr, and Wy ¢ is the
weight matrix between é{ 1 and c,. These two matrices
will be discussed in detail later.

o« Ly € R3M*x3M® g the graph Laplacian matrix of the
spatial-temporal graph constructed over g. The graph-
signal smoothness prior gTﬁgg will be analyzed in Sec-
tion V-A in detail.

e a, f and ~ are three positive weighting parameters (we
empirically set « = 1, § = 0.5 and v = 5 in the
experiments).

The first term in Eq. (10) is a data fidelity term, which
ensures the desired cube to be close to the observed c; in the
known region by minimizing the Frobenius norm of the differ-
ence between them. The second term constraints the missing
region of c, to be similar to that of its self-similar cube Cg4
by minimizing the Frobenius norm of the difference between
them in the missing region. The third term is the graph-signal
smoothness prior with respect to the spatial-temporal graph,
which enforces the spatial-temporal smoothness. Note that, we
take the trace to compute the sum of the prior in the x-, y-,
and z-coordinate. Further, the last term is the regularization
for the second-order inter-frame coherence, which keeps the
motion flow among consecutive frames temporally consistent.
That is, by enforcing the temporal edges between {é{ 71, c-}
and those between {c,, &/ T} to be similar, we constrain the
change in 3D motion to be smooth over time.

To solve Eq. (10) efficiently, we unfold the third term
with some analysis, and reformulate Eq. (10) to develop an
algorithm in the next section.

V. FORMULATION ANALYSIS AND ALGORITHM
DEVELOPMENT

In this section, we first expand and analyze the spatial-
temporal graph-signal smoothness prior gTﬁgg. Based on
the analysis, we simplify and reformulate the optimization in
Eq. (10). Finally, we present an efficient algorithm to optimize
the desired point cloud, the temporal edge weights and the
spatial edge weights alternately.

A. Analysis of the Spatial-Temporal Smoothness Prior

The spatial-temporal smoothness prior gTﬁgg in Eq. (10)
enforces the structure of the triple-cube g to be smooth with
respect to the spatial-temporal graph G,. We unfold it and
analyze its function for simplification as follows.

As defined in IV-D, g consists of three cubes:
¢/ ! e, ¢l ™, so the weighted adjacency matrix W, of G,
can be written as:

Wi -1 Wiroy Wieoirn
Wo=1| Wygpa Wep Wee o, (D
Witip—1 Weip Weppa

where the submatrix W_; r_; is composed of edge weights
between points in é{ - W,_q ¢ denotes edge weights be-
tween the points of é{ ! and c,, and the other submatrices
are composed similarly. Note that W is symmetric, so we
have Wfflﬁf = W;‘l—,f—l’ Wffl’erl = W}—-&-l,f—l and
Wi = W}r+1,f

As mentioned in Section III-A, the degree matrix D, of G,
is a diagonal matrix. We rewrite it as:

D;y 0 0
D,=| 0 D; 0
0 0 Dy

12)

Then we can write the graph Laplacian matrix £, of G,
according to the definition as

Df1—Wya51 Wiy —Wii 511
Ly = “Wyr Dy —Wy; -Wy
~Wiii o1 Wiy Dppn —Weppn

13)
Therefore, the spatial-temporal smoothness term gTﬁgg can
be expanded as

L f1
& L= (167)7 @)]e €
é{+1
= (&) Dy =Wy pa)ef !
— () "Wy 518
— @) Wi €
— (&)W se, (9
+(c,) (Df — W)
— (&[T TW 4 se,
— &)Wy pel T
—(c,) Wy ppelt
+ (@ (Dysr = Wy pi)el

In Eq. (14), we observe that some terms of gTﬁgg are
independent of the inpainting task, such as the l1st, 3rd, 7th
and 9th term. These terms are only related to cf Land & o +1,
but irrelevant to the unknown variable c,.. So we can treat them
as constants in the optimization objective. Besides, some pairs
of terms are equivalent. For example, the 2nd and 4th terms
are transposed to each other, so their trace are equal. It is the
same for the 6th and 8th terms, which can be combined into

one term. Hence, gTﬁgg is simplified as

gTﬁgg =C+ (CT)TEICT - Q(égil)TWffl-,fCT

A (15)
- 2(th+1)TWf+1,fcra

where C' is a constant. £’ = Dy — Wy ¢ is a generalized
Laplacian, because the degree Dy in Eq. (12) includes not
only the sum of the edge weights in the current cube c, but
also the sum of the temporal edge weights with the previous
and subsequent corresponding cubes. As generally defined
in [52], a generalized Laplacian is a symmetric matrix with
non-positive off-diagonal entries, which can be constructed as
L' = L+ P, where L is the combinatorial graph Laplacian
matrix and P is a diagonal matrix. Here P provides the addi-
tional degree contributed by temporal edge weights associated
with éf ' and éf *1 Hence, the second term in Eq. (15) is the
graph-signal smoothness prior for the desired cube c,, which
enforces its internal structure to be smooth when merging
information from both intra- and inter-source cubes.

The third term of Eq. (15) is actually a dot product between
¢/™! and Wi,_qirc.. As Wy_; ; contains temporal edge
weights between corresponding cubes in the current frame and
the previous frame, ¢, = W_; fc, can be interpreted as the
diffusion from the desired cube c, to its temporal correspon-
dence in the previous frame, which makes the distribution of

the points in ¢, approach that in &/™!. Therefore, when we

minimize the third term of Eq. (15), the operation follows as

min — 2tr[(&/ ") 7¢] = max 2tr[(&fHTE]. (16)

Thus, the smaller the third term of Eq. (15) is, the larger the
dot product between é{ ! and C, is, and the more similar
they are. Hence, this term enforces the structure of ¢, to be
similar with é{ ~1 thus ensuring the temporal consistency with
étf ~! The fourth term is a similar function, which ensures the
temporal consistency with é{ +

Now we have simplified the spatial-temporal smoothness
term gTL’gg, and have analyzed the functionality of each
simplified term. Next, we simplify and reformulate the op-
timization in Eq. (10).

B. Reformulation

According to Eq. (15), Eq. (10) is simplified and reformu-
lated as

1Q2¢, — QeI + al|Qe, — Qe|7

min
cr \Wys_1,7 Wy g, L/

+ ptr](c,) " L'e,]
—26tr[(&/ ") "Wy se/]
—2pte(&]) TW i1 se)]
FWi—1p = Wil
s.t. 0< Wy r-1<1,
0< Wy p-1<1,
Li;=Lji <0,i#j,
L£'-1>0,

tr(L") = m(K + 2), (17)

where 1 is a vector with all the elements as 1.

Here we add some constraints for the variables. The first and
second constraints enforce the sum of each row in Wy_ ¢
and Wy, 5 to be within the range (0,1] so as to constrain
the sum of temporal weights for each point. As 5 > 0, this
minimization problem will not lead to a pathological solution
of Wy_q ¢y or Wy as a zero matrix.

The last three constraints are set for a valid generalized
Laplacian £’. According to the definition, the constraint £ ; =
L;; < 0 enforces L' to be symmetric with non-positive off-
diagonal entries (corresponding to non-negative edge weights

Fig. 5. The schematic figure for the reformulation.

in the graph). Also, the sum of each row in £’ should be
larger than 0 as a generalized Laplacian. Besides, as discussed
in V-A | L’ has extra degrees from its temporal connectivities
as a generalized graph Laplacian. The degree of each point
should be K + 2, since a point is expected to be connected
to K neighbors in the spatial domain and 2 neighbors in the
previous and subsequent frames in the temporal domain. m
denotes the number of the points in c,, thus the trace of £’
should be m(K + 2), which prevents a pathological solution
of £'—a zero matrix that corresponds to a fully disconnected
graph.

C. The Proposed Algorithm

As there are multiple variables in the formulation, we
optimize each variable alternately as follows.

1) The optimization of c,: We first initialize the spatial-
temporal graph encoded in Wy_; s, Wy s and L' as
introduced in Section IV-D, which leads to the following
optimization for c,.:

ngin 19, — Qci||% + | Qec, — Q&% + Btr[(c,) " L'c,]

—28tr[(e]) TW o1 pe,] — 268tr[(&] T TW i s

(18)

This is a quadratic programming problem. Taking derivative

of Eq. (18) with respect to c, and setting the derivative to 0,
we have the closed-form solution of c,.:

P =@ +aQ? + 5L
=2 . - .
(Qc+ e+ FWy 18" + Wy el ™).
(19)
2) The optimization of L': With the initialized W_q ,
W15 and the updated c,, we optimize the generalized
graph Laplacian L'
Iréi,n tr[(cr)T[,/cr],

S.t. ACZ‘J = ﬁj’i <0,1 75 7,
L -1>0,
tr(L) = m(K + 2).

This is a convex optimization problem, which can be ef-
ficiently solved via off-the-shelf tools such as the convex
optimization toolbox of MATLAB [53].

3) The optimization of Wy_1 ¢y and Wy y: With the
updated ¢, and £’, we then further optimize the temporal edge
weights in Wy_q r and Wy, ¢. When we fix Wy ¢ and
optimize Wy_; ¢, the formulation follows as

(20)

‘la

whin — 2Btr[(e] ") TW 1 pe,] + Y[Wyo1p — Wiy
-
s.t. 0< Wf—lvf -1 <1

2D
Similarly, with the updated W;_; ¢, we can optimize
WerLf via
Jmin =28t [(&) TW i e] + 7 [Wioi = W gl
FH1LS
s.t. 0K Wf+17f -1 <1
(22)

Both Eq. (21) and Eq. (22) consist of a convex and
differentiable term as well as an [;-norm. As the Orthant-
Wise Limited-memory Quasi-Newton (OWL-QN) method has
been demonstrated to be very effective in solving such ;-
regularized optimization problem [54], we employ OWL-
QN to our formulation with a matrix variable, in which
the quadrant of the objective function is limited to guar-
antee the continuity and differentiability of the [;-norm.
Specifically, taking the objective function F(Wy ;1) =
—28tr[(&] ") TW 1 pe,] +7[Wio1 g — W gl in Eq.
(21) as an example, the Newton iterative formula is defined
as:

: . F(Wis1)
Wit =W, — LI, (23)
frf—1 frf=1 F/(Wlf,f—l)

where W§7f_1 and W;J_rfl_l are Wy ;1 in the i-th and (i +
1)-th iteration, respectively. F’ (W;c s—1) is the first derivative
of the objective function with respect to Wy ¢_; in the i-th
iteration.

F(Wy ;1) is not continuously differentiable, so we limit
the quadrant of Wy ¢_; to compute the pseudo-gradient as
F/(W;”,f—l) in the iterations. Firstly, for each wy; in Wy 51,
we constrain the iteration direction by

i+1 i1y _ i
i+l _ wlk,l) O’(wzk,l)_U(wltc,l) 24
wkl = .) ()
’ 0, otherwise

where the sign function o takes values in {—1,0, 1} according
to whether a real value is negative, zero, or positive. Then we
define the pseudo-gradient of F(Wy 1) at W5, | as in
OWL-QN [54]:

8_F(W}7f,1)a a_F(W},ffl) >0,
OTF(Wi), OTF(Wh,) <0,
otherwise

F(Wi, 1) =
OO?

(25)

where 9~ F(WY ;) and 9" F(W/ ;) are the left and
right partial derivatives of F'(W s ;_1) respectively, which are
given by

where l(W§7f_1) = —2Btr[(éf_1)TWf,1’fcr] is the linear
term of the objective function in Eq. (21), and 9% (} F-1)
is the left and right partial derivatives of the l/;-norm of the
objective function in Eq. (21). Each element 9%o(wy,;) in
6iU(W}7f_1) is a function of wy, ;:

3i0(wk,l) = {Wa(wk’l%
+7,

W,1 75 0

. 27
otherwise

Thus we can solve Eq. (21) by the enhanced Newton-
Raphson method via pseudo-gradient. Eq. (22) is solved in
the same way.

Hence, Eq. (17) is solved optimally by iteratively solving
each variable. Finally, we replace the target cube with the
resulting cube in the target frame Py, which serves as the
output. After each hole is inpainted, the candidate cubes and
the target frame will be updated, which will be considered
in the inpainting of the subsequent holes and subsequent
frames. This provides more opportunities to find more similar
cubes for the subsequent holes as well as more accurate
temporal correspondence for the subsequent frames, which is
thus beneficial to performance improvement.

VI. EXPERIMENTAL RESULTS
A. Experimental Setup

We evaluate the proposed method by testing on several 3D
dynamic point cloud datasets from MPEG [2], [56] and Mi-
crosoft [57], including Longdress, Loot, Maria, Phili, Queen,
Redandblack, Sarah, Skiing, Soldier, and UlliWegner, each
with 40 frames. We test on two types of holes: 1) real holes
generated during the capturing process, which have no ground
truth; 2) synthetic holes on point clouds so as to compare with
the ground truth. In particular, the number of nearest neighbors
K is considered to be related to m, the number of existing
points in the cube. Empirically, K = y/m in our experiments.
Besides, the size H of the searching box in Section IV-C
is considered to be related to M, the size of the unit cube.
Empirically, H = 2.5M in our experiments.

Further, we compare our method with 1) three compet-
ing algorithms for static 3D geometry inpainting, including
Meshlab [55], Lozes et al. [13] and Hu et al. [17]. To test

8iF(}f_l) _ 0 l(Wj‘,f—l) I 8i0(j"f—l)v 26) on dynamic point clouds, we perform them frame by frame
’ 3W3(’ Fo1 ’ independently. As Meshlab is based on meshes, we convert
TABLE I
PERFORMANCE COMPARISON IN GPSNR (DB)
Meshlab [55] Lozes [13] Hu [17] Fu [19] Spatial-ours Proposed
Longdress 11.7926 30.3883 41.5686 43.1301 43.8497 44.5519
Loot 16.4451 27.3715 40.1546 47.5648 48.0212 48.7913
Maria 12.2943 28.4910 34.9747 40.5228 40.9791 41.1820
Phili 9.9593 19.4861 35.4972 38.8930 40.4547 41.6200
Queen 14.0248 22.4650 29.6086 37.0174 38.4851 39.1679
Redandblack 13.1772 24.4810 33.9921 39.0103 40.4571 41.8005
Sarah 14.5581 26.4108 30.2719 34.9186 38.1165 39.4186
Skiing 20.1247 29.9233 36.0379 42.4754 44.4520 45.9341
Soldier 17.4697 23.1571 34.5062 42.2980 43.4823 44.9148
UlliWegner 24.9424 31.5455 41.3037 45.8411 46.3179 48.1035

10

TABLE II
PERFORMANCE COMPARISON IN NSHD (x10~7)

Meshlab [55] Lozes [13] Hu [17] Fu [19] Spatial-ours Proposed

Longdress 24.8631 7.1362 29174 0.9131 1.0962 0.8450
Loot 14.1925 8.9410 3.1102 0.3549 1.5650 0.7944
Maria 21.3481 11.0980 4.2009 2.5187 2.6485 2.0812
Phili 25.3014 16.4119 7.9063 3.4920 2.7526 2.1810
Queen 23.1001 13.2545 6.0290 2.8429 2.6613 1.9334
Redandblack 22.8300 9.6233 5.9856 1.9324 1.8681 1.0352
Sarah 17.3732 11.4299 2.0854 1.2461 1.0590 0.9941
Skiing 19.5847 10.6713 3.5294 1.9145 1.6002 1.3903
Soldier 17.1376 10.0044 5.2145 1.2057 1.1623 1.0851
UlliWegner 11.2509 6.7370 1.9658 0.6362 0.6588 0.5696

point clouds to meshes via the Meshlab software [55] prior
to testing the method, and then convert the inpainted meshes
back to point clouds as the final output; 2) our previous
work on dynamic point cloud inpainting [19], which is our
baseline method since we extend it by learning the spatial
correlation as well as the temporal correlation via the second-
order inter-frame coherence as mentioned in Section II; 3) an
ablation study—"Spatial-ours”, where we consider only the
spatial graph learning of £’ while removing the temporal graph
learning so as to evaluate its effectiveness.

B. Results on Point Cloud Inpainting

Objective results. It is nontrivial to measure the geometric
difference of point clouds objectively. We apply the geometric
distortion metrics in [58] and [8], referred to as GPSNR and
NSHD respectively. NSHD is a point-to-point distance metric
that directly measures the original error between points in the
reconstructed point cloud and the ground truth, while GPSNR

‘[P nyg [39 $9z0] euiSQ

pasodoag

is a point-to-plane distance metric that measures projected
error vectors along normal directions for surface structural
description. The higher GPSNR is and the lower NSHD is,
the smaller the difference between two point clouds is.

Table I and Table II present the average objective results of
the frames for each sequence with synthetic holes in GPSNR
and NSHD respectively. We see that our scheme outperforms
all the competing methods in GPSNR and NSHD significantly.
Specifically, in comparison with methods for static point cloud
inpainting, we achieve 28.07 dB gain in GPSNR on average
over Meshlab, 17.18 dB over [13], and 7.76 dB over [17],
as well as much lower NSHD than the other methods. Note
that, the NSHD measurement of the proposed method on Loot
is a bit higher than that of [19], because of the limitation of
the point-to-point NSHD metric and the sparsity of the point
cloud Loot. Nevertheless, our performance improves in terms
of the GPSNR metric, which captures the geometric structure
better.

Fig. 6. Some consecutive frames of the inpainting results from different methods for Longdress with the real holes magnified.

pasodoag ‘[e1@ nyg ‘[39 $9z0] reuSQ

YNy, punoir)

Fig. 7.

In comparison with our previous method [19] for dynamic
point cloud inpainting without spatial-temporal graph learning,
we achieve 2.38 dB gain in GPSNR on average and reduce
0.41x10~7 in NSHD on average, thus validating the impor-
tance of the spatial-temporal graph learning. Further, when
compared to Spatial-ours with the temporal graph learning
removed, i.e., when we only learn the spatial graph and keep
the initialized temporal graph fixed, we achieve 1.09 dB gain
in GPSNR on average and reduce 0.42x10~7 in NSHD on
average. This validates the effectiveness of the temporal graph
learning for dynamic point cloud inpainting.

Subjective results. Further, Fig. 6 and Fig. 7 demonstrate
the subjective inpainting results for real holes and synthetic
holes respectively. Due to the page limit, we show several rep-
resentative frames compared with Lozes’ method [13] and our
previous method [19]. For the real holes in consecutive frames,
as shown in the first row of Fig. 6, which are fragmentary, the
results of [13] in the second row show artificial contours of
the original holes, since it attempts to connect the boundary
of the hole region with planar structures without smoothing.
Also, their inpainted results are not consistent among consec-
utive frames. The results of our previous method [19] in the
third row are not very coherent among consecutive frames,
because only the first-order temporal coherence is considered
and the spatial-temporal graph is empirically constructed. In
comparison, our results shown in the last row of Fig. 6

Some frames of the inpainting results from different methods for Soldier with the synthetic holes magnified.

demonstrate that the proposed method is able to inpaint holes
with reasonable geometry structure and smoothness over the
hole region. Besides, since we leverage the second-order inter-
frame coherence, our inpainted regions show good consistency
among consecutive frames.

In Fig. 7, we synthesize holes in the point cloud sequence
Soldier, with more complex and larger holes than the real
holes in Fig. 6. We observe that [13] covers the missing area
with curt ribbed geometry, which introduces wrong geometry
around the holes compared to the ground truth. Also, the
contents look incoherent among the consecutive frames. The
results of [19] are a little bumpy, and exhibit some geometric
distortion as in the red circles. In comparison, our results
shown in the fourth row of Fig. 7 are almost the same as
the ground truth, and exhibit coherence among neighboring
frames. This gives credits to the spatial-temporal graph learn-
ing and the second-order temporal coherence.

Analysis. Further, we discuss and analyze the robustness
of the proposed method to the complexity of holes. The
visual results in Fig. 6 and Fig. 7 demonstrate holes with
high frequencies in both the spatial domain and the temporal
domain. We see that, our results reconstruct the complex
geometric structure well with consistency in the temporal
domain, while the results from comparison methods exhibit
blurred geometric details or artifacts. This shows that the
proposed method is able to address challenging holes with

high frequencies and is insensitive to the placement of the
inpainting volume. This is because we exploit the second-order
inter-frame coherence and the intra-frame self-similarity along
with spatial-temporal graph learning, leading to abundant ref-
erences in both the temporal and spatial domain for inpainting.
Further, the graph-signal smoothness prior in the formulation
enforces the signal to adapt to the topology of the graph. If the
signal contains high frequencies, e.g., with a sharp boundary
inside, such high-frequency structure will be preserved with
the graph-signal smoothness regularization, as it is encoded
in the graph topology learned from self-similar regions in the
spatial domain or the corresponding regions in the temporal
domain.

VII. CONCLUSION

We propose to address 3D dynamic point cloud inpainting
via spatial-temporal graph learning, exploiting the second-
order inter-frame coherence and the intra-frame self-similarity.
The key idea is to characterize the consistent motion flow
among corresponding local cubes in consecutive frames—
the second-order inter-frame coherence, where the temporal
correspondence is searched based on the point-to-plane dis-
tance for structural description. We formulate dynamic point
cloud inpainting as the joint optimization of the desired
complete point cloud and the underlying spatial-temporal
graph, regularized by the difference in temporal edge weights
of the underlying spatial-temporal graph (the second-order
inter-frame coherence) and smoothness in the spatial graph
(the intra-frame self-similarity). We further provide analysis
and reformulation of the optimization problem, and present
an efficient algorithm. Experimental results demonstrate the
superiority of the proposed method on both synthetic and real
holes. Future works include the extension to inpainting the
color attribute of dynamic point clouds.

REFERENCES

[1] C. Tulvan, R. Mekuria, and Z. Li, “Use cases for point cloud compres-
sion (pcc),” in ISO/IEC JTC1/SC29/WGI11 (MPEG) output document
N16331, June 2016.

[2] T. Ebner, I. Feldmann, O. Schreer, P. Kauff, and T. Unger, “Hhi
point cloud dataset of a boxing trainer,” in ISO/IEC JTC1/SC29/WG11
(MPEG2018) input document M42921, July 2018.

[3] P. Chalmoviansky and B. lJiittler, “Filling holes in point clouds,” in
Mathematics of Surfaces. Springer Berlin Heidelberg, 2003, pp. 196—
212.

[4] P. Sahay and A. N. Rajagopalan, “Harnessing self-similarity for re-
construction of large missing regions in 3D models,” in International
Conference on Pattern Recognition, 2012, pp. 101-104.

[5] ——, “Geometric inpainting of 3D structures,” in Computer Vision and
Pattern Recognition Workshops, 2015, pp. 1-7.

[6] S. Shankar, S. A. Ganihar, and U. Mudenagudi, “Framework for 3D
object hole filling,” in Fifth National Conference on Computer Vision,
Pattern Recognition, Image Processing and Graphics, 2015, pp. 1-4.

[7]1 S. Shankar and U. Mudenagudi, “Example-based 3d inpainting of point
clouds using metric tensor and christoffel symbols,” Machine Vision and
Applications, vol. 29, pp. 329-343, 2018.

[8] C. Dinesh, I. V. Bajic, and G. Cheung, “Exemplar-based framework for
3D point cloud hole filling,” in IEEE International Conference on Visual
Communications and Image Processing, May 2017.

[9] ——, “Adaptive nonrigid inpainting of three-dimensional point cloud

geometry,” IEEE Signal Processing Letters, vol. 25, no. 6, pp. 878-882,

2018.

J. Wang, M. M. Oliveira, M. Garr, and M. Levoy, “Filling holes on

locally smooth surfaces reconstructed from point clouds,” Image &

Vision Computing, vol. 25, no. 1, pp. 103-113, 2007.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

(271

(28]

[29]

[30]

[31]

[32]

[33]

[34]

Y. Quinsat and C. Lartigue, “Filling holes in digitized point cloud
using a morphing-based approach to preserve volume characteristics,”
International Journal of Advanced Manufacturing Technology, vol. 81,
no. 1-4, pp. 411-421, 2015.

F. Lozes, A. Elmoataz, and O. Lézoray, “Partial difference operators on
weighted graphs for image processing on surfaces and point clouds,”
IEEE Transactions on Image Processing, vol. 23, no. 9, pp. 3896-909,
2014.

——, “PDE-based graph signal processing for 3-D color point clouds :
opportunities for cultural heritage,” IEEE Signal Processing Magazine,
vol. 32, no. 4, pp. 103-111, 2015.

H. Lin and W. Wang, “Feature preserving holes filling of scattered point
cloud based on tensor voting,” in IEEE International Conference on
Signal and Image Processing, 2017, pp. 402—406.

Y. Muraki, K. Nishio, and T. Kanaya, “An automatic hole filling method
of point cloud for 3d scanning,” 2017.

Z. Fu, W. Hu, and Z. Guo, “Point cloud inpainting on graphs from
non-local self-similarity,” in IEEE International Conference on Image
Processing, Athens, Greece, 2018.

W. Hu, Z. Fu, and Z. Guo, “Local frequency interpretation and non-local
self-similarity on graph for point cloud inpainting,” IEEE Transactions
on Image Processing, vol. 28, no. 8, pp. 40874100, 2019.

J. He, Z. Fu, W. Hu, and Z. Guo, “Point cloud attribute inpainting in
graph spectral domain,” in IEEE International Conference on Image
Processing, 2019.

Z. Fu, W. Hu, and Z. Guo, “3D dynamic point cloud inpainting via
temporal consistency on graphs,” in IEEE International Conference on
Multimedia & Expo, London, United Kingdom, 2020.

J. Pang and G. Cheung, “Graph Laplacian regularization for image
denoising: Analysis in the continuous domain,” IEEE Transactions on
Image Processing, vol. 26, no. 6, pp. 1770-1785, 2017.

S. Friedman and I. Stamos, “Online facade reconstruction from dominant
frequencies in structured point clouds,” in Computer Vision and Pattern
Recognition Workshops, 2012, pp. 1-8.

X. Wu and W. Chen, “A scattered point set hole-filling method based
on boundary extension and convergence,” in Intelligent Control and
Automation, 2015, pp. 5329-5334.

C. Chen and B. Yang, “Dynamic occlusion detection and inpainting of
in situ captured terrestrial laser scanning point clouds sequence,” Isprs
Journal of Photogrammetry Remote Sensing, vol. 119, pp. 90-107,
2016.

X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Processing
Magazine, vol. 36, no. 3, pp. 44-63, 2019.

G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the
dots: Identifying network structure via graph signal processing,” IEEE
Signal Processing Magazine, vol. 36, no. 3, pp. 1643, 2019.

W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for
3D point cloud denoising,” IEEE Transactions on Signal Processing,
vol. 68, pp. 2841-2856, 2020.

D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Network inference via the
time-varying graphical lasso,” in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2017, pp. 205-213.

V. Kalofolias, A. Loukas, D. Thanou, and P. Frossard, “Learning time
varying graphs,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, 2017, pp. 2826-2830.
K. Yamada, Y. Tanaka, and A. Ortega,
learning with constraints on graph
https://arxiv.org/abs/2001.03346, 2020.

S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph
convolutional networks for skeleton-based action recognition,”
https://arxiv.org/abs/1801.07455, 2018.

C. C. de Amorim, D. Macédo, A. G. Marques, and C. Zanchettin,
“Spatial-temporal graph convolutional networks for sign language recog-
nition,” in International Conference on Artificial Neural Networks, 2019,
pp. 646-657.

S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
no. 1, 2019, pp. 922-929.

X. Gao, W. Hu, J. Tang, J. Liu, and Z. Guo, “Optimized skeleton-based
action recognition via sparsified graph regression,” in Proceedings of the
27th ACM International Conference on Multimedia, 2019, pp. 601-610.
C. Song, Y. Lin, S. Guo, N. Feng, and H. Wan, “Spatial-temporal
synchronous graph convolutional networks: A new framework for

“Time-varying graph
temporal variation,”

[35]

(36]

(371

(38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]

[54]

[55]

[56]

[57]

[58]

spatial-temporal network data forecasting,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, no. 1, 2020, pp. 914-921.
B. Baingana and G. B. Giannakis, “Tracking switched dynamic network
topologies from information cascades,” IEEE Transactions on Signal
Processing, vol. 65, no. 4, pp. 985-997, 2016.

F. K. Chung, “Spectral graph theory,” vol. 92, no. 6, p. 212, 1996.

D. 1. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” IEEE Signal Processing Magazine, vol. 30, no. 3, pp. 83-98,
2013.

A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on
graphs,” IEEE Transactions on Signal Processing, vol. 61, no. 7, pp.
1644-1656, 2013.

A. Ortega, P. Frossard, J. Kovacevi¢, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing,” IEEE Journal of Selected Topics
in Signal Processing, vol. 11, no. 6, pp. 771-773, 2017.

G. Shen, W.-S. Kim, S. K. Narang, A. Ortega, J. Lee, and H. Wey,
“Edge-adaptive transforms for efficient depth map coding,” in [EEE
Picture Coding Symposium, Nagoya, Japan, December 2010, pp. 566—
569.

W. Hu, G. Cheung, X. Li, and O. C. Au, “Depth map compression
using multi-resolution graph-based transform for depth-image-based
rendering,” in [EEE International Conference on Image Processing,
Orlando, FL, September 2012, pp. 1297-1300.

W. Hu, G. Cheung, A. Ortega, and O. C. Au, “Multi-resolution graph
fourier transform for compression of piecewise smooth images,” in [EEE
Transactions on Image Processing, vol. 24, no. 1, January 2015, pp.
419-33.

W. Hu, J. Pang, X. Liu, D. Tian, C. Lin, and A. Vetro, “Graph signal
processing for geometric data and beyond: Theory and applications,”
https://arxiv.org/abs/2008.01918, 2020.

D. A. Spielman, “Lecture 2 of spectral graph theory and its applications,”
September 2004.

P. J. Besl and N. D. Mckay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis & Machine Intelligence, vol. 14,
no. 2, pp. 239-256, 2002.

D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The trimmed
iterative closest point algorithm,” in International Conference on Pattern
Recognition, 2002. Proceedings, vol. 3, 2002, pp. 545-548.

K. Julius, B. Nico, R. R. Bogdan, B. Michael, S. Eckehard, and G. Suat,
“Real-time compression of point cloud streams,” in IEEE International
Conference on Robotics & Automation, 2012.

D. Thanou, P. A. Chou, and P. Frossard, “Graph-based compression
of dynamic 3d point cloud sequences,” IEEE Transactions on Image
Processing, vol. 25, no. 4, pp. 1765-1778, 2016.

L. Li, Z. Li, S. Liu, and H. Li, “Efficient projected frame padding for
video-based point cloud compression,” IEEE Transactions on Multime-
dia, pp. 1-1, 2020.

A. Javaheri, C. Brites, S. Guo, F. Pereira, and J. Ascenso, “Subjective
and objective quality evaluation of 3d point cloud denoising algorithms,”
in IEEE International Conference on Multimedia Expo Workshops
(ICMEW), 2017.

J. Zeng, G. Cheung, M. Ng, J. Pang, and Y. Cheng, “3D point cloud
denoising using graph Laplacian regularization of a low dimensional
manifold model,” IEEE Transactions on Image Processing, vol. 29, pp.
3474-3489, December 2019.

T. Biyikogu, J. Leydold, and P. F. Stadler, “Laplacian eigenvectors of
graphs,” Lecture Notes in Mathematics, vol. 1915, 2007.

M. Grant and S. Boyd, “Cvx users’ guide,”
http:/fwww.stanford.edu/ boyd/cvx, 2011.

G. Andrew and J. Gao, “Scalable training of 11-regularized log-linear
models,” in Proceedings of the 24th International Conference on Ma-
chine Learning, no. 8, 2007, pp. 33-40.

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and
G. Ranzuglia, “Meshlab: an open-source mesh processing tool,” in
Eurographics Italian Chapter Conference, S. Vittorio, D. C. Rosario,
and F. Ugo, Eds. The Eurographics Association, 2008.

E. d’Eon, B. Harrison, T. Myers, and P. A. Chou, “8i voxelized
full bodies, version 2 - a voxelized point cloud dataset,” in ISO/IEC
JTC1/SC29/WG11 (MPEG2017) input document M40059, January 2017.
Q. Cai and P. A. Chou, “Microsoft voxelized upper bodies a vox-
elized point cloud dataset,” in ISO/IEC JTCI1/SC29 WGII ISO/IEC
JTC1/SC29/WGI input document m38673/M72012, May 2016.

D. Tian, H. Ochimizu, C. Feng, R. Cohen, and A. Vetro, “Geometric
distortion metrics for point cloud compression,” in IEEE International
Conference on Image Processing, Beijing, China, September 2017.

Zeqing Fu (Student Member, IEEE) received the

B.S. degree in computer science from Beijing Nor-

mal University, Beijing, China, in 2018. She is cur-

rently pursuing the Master degree in Wangxuan In-
§\ stitute of Computer Technology, Peking University.
Her current research interests include graph signal
processing, 3D data representation and processing.
She has published in top journals and applied for
several patents. She is the first author of the Best
Student Paper Runner Up Award in IEEE ICME
2020.

Wei Hu (Member, IEEE) received the B.S. degree
in Electrical Engineering from the University of
Science and Technology of China in 2010, and the
Ph.D. degree in Electronic and Computer Engineer-
ing from the Hong Kong University of Science and
Technology in 2015. She was a Researcher with
Technicolor, Rennes, France, from 2015 to 2017.
She is currently an Assistant Professor and Peking
University Boya Young Fellow with Wangxuan In-
stitute of Computer Technology, Peking University.
Her research interests include graph signal process-
ing, graph-based machine learning and 3D visual computing. She has authored
over 40 international journal and conference publications, including top IEEE
journal publications. She served as an area chair of ACM MM 2020 and ICME
2020, and will serve as an Open Source Chair for ICME 2021. She is the
recipient of the Best Student Paper Runner Up Award in IEEE ICME 2020.
She is a TC member of IEEE MSA, and has served as a regular reviewer for
IEEE Trans. on Image Processing, IEEE Trans. on Signal Processing, IEEE
Trans. on Circuits and Systems for Video Technology, etc.

