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Abstract
Contrastive learning relies on constructing a collection

of negative examples that are sufficiently hard to discrim-
inate against positive queries when their representations
are self-trained. Existing contrastive learning methods ei-
ther maintain a queue of negative samples over minibatch-
es while only a small portion of them are updated in an
iteration, or only use the other examples from the curren-
t minibatch as negatives. They could not closely track the
change of the learned representation over iterations by up-
dating the entire queue as a whole, or discard the useful
information from the past minibatches. Alternatively, we
present to directly learn a set of negative adversaries play-
ing against the self-trained representation. Two players, the
representation network and negative adversaries, are alter-
nately updated to obtain the most challenging negative ex-
amples against which the representation of positive queries
will be trained to discriminate. We further show that the
negative adversaries are updated towards a weighted com-
bination of positive queries by maximizing the adversari-
al contrastive loss, thereby allowing them to closely track
the change of representations over time. Experiment results
demonstrate the proposed Adversarial Contrastive (AdCo)
model not only achieves superior performances (a top-1 ac-
curacy of 73.2% over 200 epochs and 75.7% over 800 e-
pochs with linear evaluation on ImageNet), but also can be
pre-trained more efficiently with much shorter GPU time
and fewer epochs. The source code is available at https:
//github.com/maple-research-lab/AdCo.

1. Introduction
Learning visual representations in an unsupervised fash-

ion [1, 31, 10, 23, 24, 39] has attracted many attentions as
it greatly reduces the cost of collecting a large volume of
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labeled data to train deep networks. Significant progresses
have also been made to reduce the performance gap with the
fully supervised models. Among them are a family of con-
trastive learning methods [19, 7, 38, 21, 29, 3, 41, 36, 20]
that self-train deep networks by distinguishing the represen-
tation of positive queries from their negative counterparts.
Depending on how the negative samples are constructed, t-
wo large types of contrastive learning approaches have been
proposed in literature [19, 7]. These negative samples play
a critical role in contrastive learning since the success in
self-training deep networks relies on how positive queries
can be effectively distinguished from negative examples.

Specifically, one type of contrastive learning methods
explicitly maintains a queue of negative examples from the
past minibatches. For example, the Momentum Contrast
(MoCo) [19] iteratively updates an underlying queue with
the representations from the current minibatch in a First-In-
First-Out (FIFO) fashion. However, only a small portion
of oldest negative samples in the queue would be updated,
which could not continuously track the rapid change of the
feature representations over iterations. Even worse, the mo-
mentum update of key encoders, which is necessary to sta-
bilize the negative queue in MoCo, could further slow down
the track of the representations. Consequently, this would
inefficiently train the representation network, since partial-
ly updated negatives may not cover all critically challenging
samples thus far that ought to be distinguished from positive
queries to train the network.

Alternatively, another type of contrastive learning meth-
ods [7] abandons the use of such a separate queue of nega-
tive examples. Instead, all negative examples come from the
current minibatch, and a positive query would be retrieved
by distinguishing it from the other examples in the mini-
batch. However, it discards the negative examples from the
past minibatches, and often requires a much larger size of
minibatch so that a sufficient number of negative samples
are available to train the representation network by discrim-
inating against positive queries. This incurs heavy memory
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and computing burden to train over each minibatch for this
type of contrastive learning.

In this paper, we are motivated to address the aforemen-
tioned drawbacks, and the objective is twofold. First, we
wish to construct a set of negative examples that can contin-
uously track the change of the learned representation rather
than updating only a small portion of them. In particular, it
will update negative samples as a whole by making them
sufficiently challenging to train a representation network
more efficiently with fewer epochs. On the other hand, it
will retain the discriminative information from the past it-
erations without depending on a much larger size of mini-
batch to train the network [7]. We will show that in the pro-
posed model, the negative examples are directly trainable
so that they can be integrated as a part of the underlying
network and trained end-to-end together with the represen-
tation. Thus, the trainable negatives are analogous to the ad-
ditional network component in other self-supervised models
without involving negative examples, such as the prediction
MLP of the BYOL [17] that also needs to be trained end-
to-end. More discussions on whether we still need negative
examples can be found in Appendix C.

Particularly, we will present an Adversarial Contrast
(AdCo) model consisting of two adversarial players. One
is a backbone representation network that encodes the rep-
resentation of input samples. The other is a collection of
negative adversaries that are used to discriminate against
positive queries over a minibatch. Two players are alter-
nately updated. With a fixed set of negative adversaries,
the network backbone is trained by minimizing the con-
trastive loss of mistakenly assigning positive queries to neg-
ative samples as in the conventional contrastive learning.
On the other hand, the negative adversaries are updated by
maximizing the contrastive loss, which pushes the negative
samples to closely track the positive queries over the cur-
rent minibatch. This results in a minimax problem to find
an equilibrium as its saddle point solution. Although there
is no theoretical guarantee of convergence, iterative gradi-
ent updates to the network backbone and the negative ad-
versaries work well in practice, which has been observed in
many other adversarial methods [16, 32, 35, 40]. We will
also show that the derivative of the contrastive loss wrt the
negative adversaries reveals how they are updated towards
a weighted combination of positive queries, and gives us an
insight into how the AdCo focuses on low-density queries
compared with an alternative model.

The experiment results not only demonstrate the AdCo
has the superior performance on downstream tasks, but also
verify that it can train the unsupervised networks with fewer
epochs by updating the negative adversaries more efficient-
ly. For example, with merely 10 epochs of pretraining, the
AdCo has a top-1 accuracy of 44.4%, which is almost 5%
higher than that of the MoCo v2 pretrained over the same

number of epochs with the linear evaluation on the ResNet-
50 backbone on ImageNet. It also greatly outperforms the
MoCHi [22] by 4.1% in top-1 accuracy over 800 epochs that
enhances the MoCo v2 with mixed hard negatives, showing
its effectiveness in constructing more challenging negative
adversaries in a principled fashion to pretrain the represen-
tation network.

Moreover, the AdCo achieves a record top-1 accuracy
of 75.7% over 800 epochs compared with the state-of-the-
art BYOL (74.3%) and SWAV (75.3%) models pretrained
for 800 ∼ 1, 000 epochs. This is obtained with the same
or even smaller amount of GPU time than the two top-
performing models. Indeed, the AdCo is computationally
efficient with a negligible cost of updating negative adver-
saries, making it an attractive paradigm of contrast mod-
el having higher accuracies over fewer epochs with no in-
crease in the computing cost.

The remainder of the paper is organized as follows. We
will review the related works in Section 2, and present the
proposed approach in Section 3. By comparing the pro-
posed AdCo with an alternative form of adversarial con-
trastive loss, we will reveal how AdCo focuses on low-
density queries whose representations have not been well
captured in Section 4. We will conduct experiments in Sec-
tion 5 to demonstrate its superior performance in multiple
tasks. Finally, we will conclude in Section 6.

2. Related Works
In this section, we review the related works on unsuper-

vised representation learning. In particular, we will review
two large families of unsupervised learning methods: the
contrastive learning that is directly related with the pro-
posed Adversarial Contrastive Learning (AdCo), and the
alternative approach that instead aims to learns the trans-
formation equivariant features without labeled data. We
will see that while the former explores the inter-instance
discrimination to self-supervise the training of deep net-
works, the latter leverages intra-instance variation to learn
transformation-equivariant representations.

2.1. Contrastive Learning

Originally, contrastive learning [29, 20] was proposed to
learn unsupervised representations by maximizing the mu-
tual information between the learned representation and a
particular context [3, 41, 36]. It usually uses the context of
the same instance to learn representations by discriminating
between positive queries and a collection of negative exam-
ples in an embedding feature space [38, 18, 7]. Among them
is the instance discrimination that has been used as a pretext
task by distinguishing augmented samples from each other
in a minimatch [7], over a memory bank [38], or a dynam-
ic queue [18] with a momentum update. The retrieval of a
given query is usually performed by matching it against an
augmentation of the same sample from a separate collection

2



of negative examples. These negative examples play a crit-
ical role to challenge the self-trained representation so that
it can become gradually more discriminative over iterations
to distinguish the presented queries from those hard nega-
tive examples. Recently, Grill et al. [17] propose to train
deep networks by predicting the representation of an im-
age from that of an different augmented view of the same
image. Kalantidis et al. [22] present a feature-level sample
mixing strategies to generate harder meaningful negatives
to further improve network pretraining. However, this dif-
fers from the proposed AdCo that aims to update negative
examples in a more principle way through an adversarial
self-training mechanism.

2.2. Other Unsupervised Methods

An alternative approach to unsupervised representation
learning is based on transformation prediction [39, 15].
On contrary to contrastive learning that focuses on inter-
instance discrimination, it attempts to learn the represen-
tations equivarying to various transformations on 2D ple-
nary images and 3D cloud points [34, 31, 13]. These
transformations are applied to augment training examples
and learn their representations from which the transfor-
mations can be predicted from the captured visual struc-
tures. It focuses on modeling the intra-instance variations
from which transformation-equivariant representations can
be leveraged on downstream tasks such as image classi-
fication [39, 31, 15], object detection [15, 31], semantic
segmentations [15, 30] and 3D cloud points [13]. This
category of methods can be viewed as orthogonal to con-
trastive learning approaches that are based on inter-instance
discrimination. More comprehensive review of recent ad-
vances on unsupervised methods can be found in [33].

3. The Proposed Approach
In this section, we will first briefly review the prelimi-

nary work on contrastive learning and discuss its drawbacks
that motivate the proposed approach in Section 3.1. Then,
we will present the proposed method in Section 3.2 to joint-
ly train the representation network and negative adversaries.
The insight into the proposed approach can be better re-
vealed from the derivative of the adversarial contrastive loss
leading to the update rule for the negative samples in Sec-
tion 3.3.

3.1. Preliminaries and Motivations

We begin by briefly revisiting contrastive learning and its
variants, and discuss their limitations that motivate the pro-
posed work. In a typical contrastive learning method, we
seek to learn an unsupervised representation by minimizing
a contrastive loss L. Specifically, in a minibatch B of N
samples, consider a given query xi and the embedding qi
of its augmentation through a backbone network with the
parametric weights θ. The contrastive learning aims to train

the network θ such that the query q can be distinguished
from a set N = {nk|k = 1, · · · ,K} of the representation-
s of negative samples. Formally, the following contrastive
loss is presented in InfoNCE [29] in a soft-max form,

L(θ) = −1
N

N∑
i=1

log
exp(qᵀ

i q
′
i/τ)

exp(qᵀ
i q
′
i/τ) +

∑K
k=1 exp(q

ᵀ
ink/τ)

(1)

where q′i is the embedding of another augmentation of the
same instance xi, which is considered as the positive exam-
ple for the query qi; and τ is a positive value of temperature.
Then the network can be updated in each minibatch by min-
imizing this loss over θ. Note that the representations of
both queries and negative samples are `2 normalized such
that the dot product results in a cosine similarity between
them.

There are two main categories of methods about how to
construct the set of negative samples N in contrast to pos-
itive queries. These negative samples play a critical role
in self-training unsupervised representations, and deserve a
careful investigation. The first category of contrastive learn-
ing approaches maintain a queue of negative representation-
s that are iteratively updated in a First-In-First-Out (FIFO)
fashion over minibatches [18], while the alternative type of
approaches only adopt the other samples as negatives from
the current minibatch [7].

However, both types suffer some drawbacks. For the first
type of approaches, in each iteration over a minibatch, on-
ly a small portion of negative representations in the queue
are updated, and this results in an under-represented set that
fails to cover the most critical negative samples to train the
representation network, since not all of them have been up-
dated timely to track the change of unsupervised represen-
tations. On the other hand, the other type completely a-
bandons the negative samples from the past minibatches,
which forces them to adopt a much larger size of minibatch
to construct a sufficient number of negative representation-
s. Moreover, only using the other samples from the current
minibatch as negatives discards rich information from the
past.

To address these drawbacks, we propose to actively train
a set of negative examples as a whole in an adversarial fash-
ion, in contrast to passively queueing the negative samples
over minibatches or simply using the other samples from the
current minibatch as negatives. Its advantages are twofold.
First, the entire set rather than only a small portion of neg-
ative representations will be updated as a whole. This en-
ables the learned negative adversaries to not only closely
track the change of the learned representation but also keep
the accumulative information from the past minibatches.

Moreover, the set of negative samples will act as adver-
saries to the representation network θ by maximizing the
contrastive loss, which will result in a minimax problem
to self-train the network. As known in literature, a self-
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supervisory objective ought to be sufficiently challenging
to prevent the learned representation from overfitting to the
objective or finding a bypassing solution that could be trivial
to downstream tasks. In this sense, the adversarially learned
negative set can improve the generalizability of the learned
representation as an explicit adversary to challenge the up-
dated network by engaging the most challenging negative
samples over epochs.

3.2. Adversarial Training of Representation Net-
works and Negative Samples

In this section, we formally present the proposed Adver-
sarial Contrastive Learning (AdCo) of unsupervised repre-
sentations. It consists of two mutually interacted players: a
deep representation network θ embedding input examples
into feature vectors, and a set N of negative adversaries
closely tracking the change of the learned representation.
While negative adversaries contain the most critical exam-
ples that are supposed to be confused with given queries to
challenge the representation network, the network is self-
trained to continuously improve its discrimination ability to
distinguish positive queries from those challenging nega-
tive adversaries. Eventually, we hope an equilibrium can
be reached where the learned representation can achieve a
maximized performance.

Formally, this results in the following minimax problem
to train both players jointly with the adversarial contrastive
loss L as in (1),

θ?,N ? = argmin
θ

max
N
L(θ,N ) (2)

where the embedding qi of each query in the current mini-
batch are a function of network weights θ, and thus we op-
timize over θ through them; the negative adversaries in N
are treated as free variables directly, which are unit-norm
vectors subject to `2-normalization.

As in many existing adversarial training algorithms, it is
hard to find a saddle point (θ?,N ?) solution to the above
minimax problem. Usually, a pair of gradient descent and
ascent are applied to update them, respectively

θ ←− θ − ηθ
∂L(θ,N )

∂θ
(3)

nk ←− nk + ηN
∂L(θ,N )

∂nk
1 (4)

for k = 1, · · · ,K, where ηθ and ηN are the positive learn-
ing rates for updating the network and negative adversaries.
Although no theory guarantees the convergence to the sad-
dle point, it works well in our experiments by alternately
updating θ and N .

1Strictly speaking, the update of nk ought to be performed by taking
the derivative of L wrt the one prior to `2-normalized. However, to ease
the exposition later, we simply adopt the derivative wrt the normalized
embedding without the loss of generality.

Before we take an insight into the updated nk’s, an in-
tuitive explanation can be given by noticing that the co-
sine similarities between the negative samples nk’s and the
queries qi in the denominator of (1) are maximized when
L(θ,N ) is maximized for the adversarial training of N . In
other words, this tends to push the negative samples closer
towards the queries from the current minibatch, thus result-
ing in challenging negatives closely tracking the change of
the updated network.

3.3. Derivatives of The AdCo Loss

Let us look into the update rule (4) for the negative sam-
ples nk, k = 1, · · · ,K. It is not hard to show that the
derivative of the adversarial loss in updating a negative sam-
ple nk is

∂L
∂nk

=
1

Nτ

N∑
i=1

exp(qᵀ
ink/τ) · qi

exp(qᵀ
i q
′
i/τ) +

∑K
k=1 exp(q

ᵀ
ink/τ)

(5)

where the first factor can be viewed as the conditional prob-
ability of assigning the query qi to a negative sample nk,

p(nk|qi) ,
exp(qᵀ

i nk/τ)

exp(qᵀ
i q
′
i/τ) +

∑K
k=1 exp(q

ᵀ
i nk/τ)

This is a valid probability because it is always nonnegative
and the sum of all such conditional probabilities is one, i.e.,

p(q′i|qi) +
K∑
k=1

p(nk|qi) = 1.

Now the derivative (5) can be rewritten as

∂L
∂nk

=
1

Nτ

N∑
i=1

p(nk|qi) qi. (6)

This reveals the physical meaning by updating each neg-
ative sample nk along the direction given by a p(nk|qi)-
weighted combination of all the queries qi over the current
minibatch. The more likely a negative sample is assigned to
a query, the closer the sample is pushed towards the query.
This will force the negative samples to continuously track
the queries that are most difficult to distinguish, and thus
give rise to a challenging set of adversarial negative sam-
ples to more critically train the underlying representation.
Moreover, this adversarial update also tends to cover low-
density queries that have not been well captured by the cur-
rent set of negative samples, which we will discuss in the
next section.

4. Further Discussions
In this section, first we will present an alternative of

the proposed AdCo in Section 4.1. Then, based on it, we
will review the derivative of the AdCo loss in Section 4.2,
and show that it seeks to adapt negative adversaries to low-
density queries, thereby allowing more efficient adversarial
training of the representation network.
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4.1. An Alternative of AdCo

An alternative adversarial loss can be motivated from (6).
One can adopt another form of conditional probability as
the weighting factor by constructing a new adversarial loss
J (θ,N ) to train the negative adversaries. In particular, we
may consider the conditional probability p(qi|nk) in place
of p(nk|qi) used in (6). This turns out to be a more natural
choice since the derivative becomes the conditional expec-
tation of the query qi’s, i.e.,

∂J (θ,N )

∂nk
=

N∑
i=1

p(qi|nk) qi , Ep(qi|nk) [qi|nk] . (7)

In this case, it is not hard to verify that the corresponding
adversarial loss J satisfying the above derivative relation
can be defined as

max
N
J (θ,N ) , −τ ·

K∑
k=1

log
1∑N

i=1 exp(q
ᵀ
i nk/τ)

with the following conditional probability of assigning the
negative sample nk to a target query qi

p(qi|nk) =
exp(qᵀ

i nk/τ)∑N
i=1 exp(q

ᵀ
i nk/τ)

Similarly, it is not hard to show that this is a valid condition-
al probability by verifying it is nonnegative and satisfies its
sum being one. Then, the negative samples are updated by
gradient ascent on J (θ,N) over nk’s.

4.2. Adapting to Low-Density Queries

Although the derivative of this adversarial loss J em-
bodies a more explicit meaning as in (7), our preliminary
experiments with this loss to update negative samples per-
form worse than that of the AdCo in (2). This probably
is due to the fact that the loss J does not directly adverse
against the contrastive loss L used to train the embedding
network θ. Thus, the generated negative samples may not
provide sufficiently hard negative samples as direct adver-
saries to the contrastive loss (2) used to train the represen-
tation network.

Indeed, by applying the Bayesian rule to p(nk|qi), the
derivative in (6) can be rewritten as

∂L
∂nk

∝
N∑
i=1

p(qi|nk)p(nk)
p(qi)

qi = p(nk)Ep(qi|nk) [q̃i|nk]

where q̃i ,
qi

p(qi)
is the embedded query qi normalized by

p(qi), and we put p(nk) outside the conditional expectation
by viewing nk as a constant in the condition.

It is not hard to see that for a low-density query qi with
a smaller value of p(qi), it has a larger value of the nor-
malized query q̃i. Thus, the resultant derivatives will push

negative adversaries closer to such low-density queries that
have not been well represented by the negative examples 2.
This will enable more efficient training of the representa-
tion network with the negative adversaries updated to cover
these under-represented queries.

For this reason, we will still use the AdCo loss (2) to
jointly train the negative adversaries and the network in our
experiments. However, the loss (7) derived from the condi-
tional expectation provides an insight into some future di-
rection to alterative forms of adversarial loss to train nega-
tive samples. While this gives us an alternative explanation
of the proposed method, it could have some theoretical val-
ue that deserves further study in future.

5. Experiments
In this section, we conduct experiments on the proposed

AdCo model and compare it with the other existing unsu-
pervised methods.

5.1. Training Details

For the sake of fair and direct comparison with the exist-
ing models [18, 7], we adopt the ResNet-50 as the backbone
for unsupervised pretraining on ImageNet. The output fea-
ture map from the top ResNet-50 block is average-pooled
and projects to a 128-D feature vector through two-layer
MLP (2048-D hidden lyaer with the ReLU) [7]. The re-
sultant vector is `2 normalized to calculate the cosine sim-
ilarity. We apply the same augmentation proposed in the
SimCLR [7] and adopted by the other methods [18, 8] to
augment the images over each minibatch. Although it was
reported in literature that carefully tuning the augmenta-
tion may improve the performance, we do not adopt it for a
fair comparison with the other unsupervised methods while
avoiding over-tuning the image augmentation strategy on
the dataset.

For the unsupervised pretraining on ImageNet, we use
the SGD optimizer ([4]) with an initial learning rate of 0.03
and 3.0 for updating the backbone network and the nega-
tive adversaries, respectively, where a weight decay of 10−4

and a momentum of 0.9 are also applied. Cosine sched-
uler ([27]) is used to gradually decay the learning rate. We
also choose a lower temperate (τ = 0.02) to update the neg-
ative adversaries than that (τ = 0.12) used for updating the
backbone network. This makes the updated negative adver-
saries sharper in distinguishing themselves from the posi-
tive images, and thus they will be nontrivially challenging
examples in training the network.

The batch size is set to 256. When multiple GPU server-
s are used, the batch size will be multiplied by the num-

2From p(qi) =
∑K

k=1 p(qi|nk)p(nk), a low-density query qi

should have a small value of p(qi|nk) for high-density negative adver-
saries nk’s, which means the query should be far apart from the dense
negative examples in the embedding space.
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Table 1: Top-1 accuracy under the linear evaluation on ImageNet
with the ResNet-50 backbone. The table compares the methods
over 200 epochs of pretraining.

Method Batch size Top-1

InstDisc [38] 256 58.5
LocalAgg [41] 128 58.8
MoCo [19] 256 60.8
SimCLR [7] 256 61.9
CPC v2 [20] 512 63.8
PCL v2 [25] 256 67.6
MoCo v2 [8] 256 67.5
MoCHi [22] 512 68.0
PIC [5] 512 67.6
SWAV* [6] 256 72.7

AdCo 256 68.6
AdCo* 256 73.2

∗ with multi-crop augmentations.

Table 2: Running time (in hours) for different methods. The last
column shows the total GPU time per epoch.

Method Epoch GPU (GPU·Time)/Epoch

MoCo v2 [8] 200 8×V100 2.12
BYOL [17] 1000 512×TPU 4.10
SWAV* [6] 200 64×V100 4.06

AdCo 200 8×V100 2.26
AdCo* 200 8×V100 4.39

∗ with multi-crop augmentations.

ber of servers by convention. The number of negative ad-
versaries is set to 65, 536, which is the same as the queue
length of negative examples in MoCo [18]. All negative ad-
versaries are also `2-normalized in each iteration to have an
unit norm after they are updated by the SGD optimizer. The
backbone network is first initialized, and its output feature
vectors over randomly drawn training images are used to
initialize the set of negative examples. Once the initializa-
tion is done, both the representation network and negative
adversaries will be alternately updated by the AdCo.

5.2. Experiment Results

After the backbone network is pretrained, the resultant
network will be evaluated on several downstream tasks.

5.2.1 Linear Classification on ImageNet

First, we compare the proposed AdCo with the other meth-
ods in terms of top-1 accuracy. A linear fully connected
classifier is fine-tuned on top of the frozen 2048-D feature
vector out of the pretrained ResNet-50 backbone. The lin-

Table 3: Top-1 accuracy under the linear evaluation on ImageNet
with the ResNet-50 backbone. The table compares the methods
with more epochs of network pretraining.

Method Epoch Batch size Top-1

Supervised - - 76.5
BigBiGAN[11] - 2048 56.6
SeLa[2] 400 256 61.5
PIRL[28] 800 1024 63.6
CMC[36] 240 128 66.2
SimCLR[7] 800 4096 69.3
PIC[5] 1600 512 70.8
MoCo v2[8] 800 256 71.1
MoCHi [22] 800 512 68.7
BYOL **[17] 1000 4096 74.3
SWAV*[6] 800 4096 75.3

AdCo 800 256 72.8
AdCo* 800 1024 75.7

∗ with multi-crop augmentations.
∗∗ fine-tuned with a batch size of 1024 over 80 epochs.

ear layer is trained for 100 epochs, with a learning rate of
10 with the cosine learning rate decay and a batch size of
256.

Table 1 reports experiment results with the backbone net-
work pretrained for 200 epochs. We note that the state-of-
the-art SWAV model has applied multi-crop augmentations
to pretrain the model. Thus for the sake of a fair compari-
son, in addition to the single-crop model, we also report the
result by applying five crops (224x224, 192x192, 160x160,
128x128, and 96x96) over minibatch images during the pre-
training. The result shows the proposed AdCo achieves the
best performance among the compared models. It not only
outperforms the SOTA SWAV model in the top-1 accuracy
over 200 epochs, but also has a computing time on par with
the top-performing contrast models in terms of GPU·Time
per epoch as shown in Table 2. It is not surprising since the
computing overhead for updating the negative adversaries
is negligible compared with that for updating the backbone
network.

Note that some methods such as the BYOL [17] and the
SimCLR [7] used symmetric losses by swapping pairs of
augmented images to improve the performance. For a fair
comparison, we also symmetrize the AdCo loss, and show
in Appendix A that it obtains a competitive top-1 accura-
cy of 70.6% over 200 epochs of pre-training based only on
single-crop augmentation with much shorter GPU time and
a smaller batch size. We refer the readers to the appendix
for more details. In Appendix C, we also seek the answer to
an emerging question – do we still need negative samples to
pre-train deep networks while the BYOL does not? .

We also compare the results over more epochs in Table 3.
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While the AdCo* has the running time on par with the other
top-2 best models (SWAV and BYOL) during the pretrain-
ing (see Table 2), it has achieved a record top-1 accuracy
of 75.7% with linear evaluation on the ImageNet after 800
epochs of pretraining. Even without multi-crop augmenta-
tions, the AdCo also outperforms the top-performing MoCo
v2 [8] (72.8% vs. 71.1%) and the variant MoCHi (72.8%
vs. 68.7%) [22] that enhances the MoCo v2 with mixed
hard negative examples. This demonstrates that the AdCo
is much more effective in constructing challenging negative
examples to pre-train the representation network than not
only the typical contrast model like the MoCo v2 but also
its variant explicitly mining hard samples.

5.2.2 Transfer Learning and Object Detection

We also evaluate the ResNet-50 pretrained on ImageNet
for two downstream tasks – cross-dataset transfer learning
and object detection. For the transfer learning on the VOC
dataset [12], we keep the pretrained ResNet-50 backbone
frozen, fine-tune the linear classifier on VOC07trainval, and
test on the VOC07test. We also train a linear classifier with
the pretrained ResNet-50 on the Places dataset by following
the previous evaluation protocol in literature [7, 8, 6].

For object detection, we adopt the same protocol in [19]
to fine-tune the pretrained ResNet-50 backbone based on
detectron2 [37] for a direct comparison with the other meth-
ods. On the VOC dataset [12], the detection network is
fine-tuned with VOC07+12 trainval dataset and tested on
VOC07 test set. On the COCO dataset [26], the detection
network is fine-tuned on the train2017 dataset with 118k
images, and is evaluated on the val2017 dataset.

Table 4 shows the proposed AdCo achieves much com-
petitive results on both tasks, suggesting the AdCo has bet-
ter generalizability to the downstream tasks than many com-
pared methods. For example, it has achieved a much higher
accuracy of 93.1% for the VOC07 classification task than
the SWAV (88.9%) based on the linear evaluation on the
pretrained network, even without multi-crop augmentation-
s. Moreover, the COCO dataset is well known for its chal-
lenging small object detection task measured by APS , and
the result shows that the AdCo can significantly improve the
APS by 3.3%−3.6% no matter if multi-crop augmentations
are applied. This is a striking result as the SWAV with the
multi-crop augmentations is even worse than the MoCo v2.
This implies that the negative adversaries constructed by the
AdCo may correspond to small objects, which in turn push-
es the associated network to learn the representation highly
discriminative in recognizing these challenging objects.

5.3. Analysis and Visualization of Results

First, we perform a comparative study of how the top-1
accuracy of AdCo and MoCo v2 changes over epochs. As

Figure 1: Top-1 accuracy of AdCo and MoCo V2 on ImageNet
fine-tuned with a single fully connected layer upon the backbone
ResNet-50 networks pretrained over up to 200 epochs. For a fair
comparison, the AdCo maintains the same size (K = 65, 536) of
negative samples as in MoCo v2 so that both models are directly
compared under various numbers of epochs. With an extremely
small number of 10 epochs, the AdCo performs much better than
the MoCo v2 by more than 5% in top-1 accuracy. As the epoch
increases, the AdCo usually achieves the performance comparable
to that of the MoCo v2 with about 30 ∼ 50 fewer epochs. This
shows the AdCo is more efficient in constructing a more critical
collection of negative adversaries to improve network pretraining.

the state-of-the-art contrast model, the MoCo v2 also main-
tains a set of negative examples that play a critical role to
train the representation network. As illustrated in Figure 1,
we plot the curve of their top-1 accuracies on ImageNet with
a linear evaluation on the pretrained backbone under vari-
ous numbers of epochs. The same number of K = 65, 536
negative examples are used in both models to ensure a fair
comparison.

With an extreme small number of epochs, the result
shows that the AdCo greatly outperforms the MoCo v2 by
a significant margin. With 10 epochs the top-1 accuracy of
the AdCo is 5% higher than that of the MoCo v2. With
more epochs, the AdCo can reach the same level of accu-
racy with about 30 ∼ 50 fewer epochs than the MoCo v2.
This shows the AdCo can serve as an efficient paradigm of
contrast model with fewer epochs of pretraining that does
not increasing the computing cost as shown in Table 2.

We also compare the obtained negative examples by the
AdCo and MoCo v2 by plotting t-SNE visualization in Fig-
ure 2. We note that the MoCo v2 has more outliers of nega-
tive examples than the AdCo. These negative outliers form
many small clusters that are isolated from most of batch
examples in the learned representation space. Thus, they
have little contributions to the contrastive training of the
representation network as it is much easier to distinguish
these negative outliers from positive batch examples. On the
contrary, with fewer negative outliers, the AdCo can more
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Table 4: Transfer learning results on cross-dataset classification and object detection tasks.

Classification Object Detection

VOC07 Places205 VOC07+12 COCO
Method Epoch mAP Top-1 AP50 AP APS

Supervised - 87.5 53.2 81.3 40.8 20.1
NPID++ [38] 200 76.6 46.4 79.1 - -
MoCo [19] 800 79.8 46.9 81.5 - -
PIRL [28] 800 81.1 49.8 80.7 - -
PCLv2 [25] 200 85.4 50.3 78.5 - -
BoWNet [14] 280 79.3 51.1 81.3 - -
SimCLR [7] 800 86.4 53.3 - - -
MoCo v2 [8] 800 87.1 52.9 82.5 42.0 20.8
SWAV* [6] 800 88.9 56.7 82.6 42.1 19.7

AdCo 800 93.1 53.7 83.1 41.8 24.1
AdCo* 800 92.4 56.0 83.0 42.2 24.5

∗ with multi-crop augmentations.

(a) AdCo (b) MoCo v2

Figure 2: t-SNE visualization of negative representations obtained by the AdCo and the MoCo in the 2D representation
plane, alongside positive examples from the most recent six minibatches after 200 epochs of pretraininig on the ImageNet.
The figure shows that the AdCo has fewer outliers of negative examples than the MoCo v2, and thus more closely tracks the
representation of positive samples over epochs.

closely track the representation of batch examples over iter-
ations, and thus efficiently train the representation network
with more challenging negative adversaries.

More experiment results on the impact of various model
designations and hyperparameters are presented in the ap-
pendix of this paper.

6. Conclusions

This paper presents an Adversarial Contrast (AdCo)
model by learning challenging negative adversaries that can
be used to criticize and further improve the representation
of deep networks. Compared with existing methods accu-
mulating negative examples over the past minibatches and

the other queries from the current minibatch, these nega-
tive adversaries in the AdCo are obtained by maximizing
the adversarial contrastive loss of mis-assigning each pos-
itive query to negative samples. This updates the negative
examples as a whole to closely track the changing repre-
sentation, thus making it more challenging to distinguish
them from positive queries. Consequently, the representa-
tion network must be efficiently updated to produce more
discriminate representation. By analyzing the derivative of
the adversarial objective, we show that each negative adver-
sary is pushed towards a weighted combination of positive
queries. Experiment results on multiple downstream tasks
demonstrate its superior performances and the efficiency in
pretraining the representation network.
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