
RGLN: ROBUST RESIDUAL GRAPH LEARNING NETWORKS VIA
SIMILARITY-PRESERVING MAPPING ON GRAPHS

Jiaxiang Tang, Xiang Gao, Wei Hu

Wangxuan Institute of Computer Technology, Peking University

ABSTRACT
Graph Convolutional Neural Networks (GCNNs) extend
CNNs to irregular graph data domain, such as brain net-
works, citation networks and 3D point clouds. It is critical
to identify an appropriate graph for basic operations in GC-
NNs. Existing methods often manually construct or learn
one fixed graph based on known connectivities, which may
be sub-optimal. To this end, we propose a residual graph
learning paradigm to infer edge connectivities and weights
in graphs, which is cast as distance metric learning under a
low-rank assumption and a similarity-preserving regulariza-
tion. In particular, we learn the underlying graph based on
similarity-preserving mapping on graphs, which keeps simi-
lar nodes close and pushes dissimilar nodes away. Extensive
experiments on semi-supervised learning of citation networks
and 3D point clouds show that we achieve the state-of-the-art
performance in terms of both accuracy and robustness.

Index Terms— Graph Learning, Graph Convolutional
Neural Networks, Semi-supervised Learning, Point Cloud
Classification

1. INTRODUCTION

Graph Convolutional Neural Networks (GCNNs) [1] have at-
tracted increasing attention as a powerful tool for learning ir-
regularly structured data on graphs, such as citation networks,
social networks and 3D point clouds. The construction of an
appropriate graph plays a critical role in GCNNs to guide ba-
sic operators such as graph convolution for accurate feature
learning. In many scenarios where the graph is incomplete,
inaccurate or even unavailable, it is crucial to learn a graph
topology that characterizes the intrinsic structure of data.

Some previous studies construct graphs from data empir-
ically, such as the commonly used k-Nearest-Neighbor (k-
NN) graphs [2, 3], where the choice of parameters such as k is
often empirical. Few methods exploit graph learning for opti-
mized representation learning, which either learn a fixed and
shared graph for all instances [4, 5], or an individual graph
for each instance [6]. However, they often only learn edge
weights assuming the availability of graph connectivities, and
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the learned graph is sometimes not robust to missing or noisy
labels for practical applications.

To this end, we propose a residual graph learning network
(RGLN), which learns a residual graph with both new con-
nectivities and edge weights. We propose to learn the un-
derlying graph from the perspective of similarity-preserving
mapping on graphs. Given an input graph data, the goal is
to learn an edge weight function between each pair of nodes
at each network layer, which not only captures the similar-
ity between learned features, but also keeps such similarity
consistent with the similarity within the input data. That is,
nodes similar in the input data space are also close in the fea-
ture space, while nodes dissimilar in the input data space are
pushed further away. This is achieved by minimizing our pro-
posed cross-space Graph Laplacian Regularizer, which en-
forces smoothness of the input data with respect to the graph
over the feature space and thus leads to a robust graph.

Further, we measure the similarity between nodes by a
distance function, and cast graph learning as a distance met-
ric learning problem [7]. We choose the Mahalanobis dis-
tance [8] that captures the correlations among features, and
assume a low-rank model of graph features to decompose
the distance metric into a lower-dimensional matrix for op-
timization, which is able to learn intrinsic representations. Fi-
nally, we unify the proposed graph learning and node fea-
ture learning in a joint learning framework. To validate the
effectiveness of the proposed RGLN, we apply it to semi-
supervised learning problems in citation networks and point
clouds, where the graph is incomplete in citation networks
and unavailable in point clouds. Experimental results demon-
strate we outperform state-of-the-art methods on three cita-
tion network benchmarks and one point cloud classification
benchmark.

2. RELATED WORK

2.1. Graph Convolution Neural Networks

Spectral methods. This class of graph convolution is de-
fined on the spectral representation of graphs. [9] defines the
convolution in graph Fourier transform domain, which how-
ever requires the eigen-decomposition of the graph Laplacian.
[10] addresses this problem by leveraging Chebyshev poly-
nomials to approximate spectral filters and achieves localized



filtering. GCN [11] further simplifies [10] by employing only
first-order approximation of the filters. HGNN [12] exploits
more flexible hypergraph structure on complex data.
Spatial methods. This class of graph convolution is defined
directly on each node and its neighbors for feature propa-
gation. The mixture model network [13] provides a unified
generalization of CNN architecture on graphs. Graph atten-
tion networks (GATs) [14] employ self-attention mechanism
to solve the node classification problem. DGCNN [2] pro-
poses to aggregate local features with the graph updated at
each layer, which is applied to point cloud learning.

2.2. Graph Learning in GCNNs

Fixed-domain Graph Learning. This class of graph learn-
ing assumes there is a shared graph structure underlying all
instances with fixed nodes. GAT [14] leverages masked self-
attention layers to enable different weights for edges in the
provided graph. GLCN [4] learns a non-negative function that
represents the pairwise relationship between two nodes using
attention mechanism via a single-layer neural network, and
optimizes it by minimizing a graph learning loss. GLNN [15]
proposes graph learning from several constraints via maxi-
mum a posteriori estimation. [16] statistically learns the un-
derlying graph from multiple observations of spatio-temporal
frames for skeleton-based action recognition.
Varying-domain Graph Learning. Instances corresponding
to varying domains may require different graphs with possi-
bly arbitrary number of nodes. [16] is proposed to learn a
spatio-temporal graph on top of the provided skeleton graph
for each skeleton instance. Adaptive graph convolution net-
work (AGCN) [5] proposes to construct a unique residual
Laplacian matrix by learning Mahalanobis distance metric for
each instance. Different from the task-driven AGCN where
the Mahalanobis distance metric M is learned by minimizing
the cross-entropy only, we optimize M via the task-specific
loss as well as a data-adaptive similarity-preserving objective.
Further, instead of assuming a general M in AGCN, we as-
sume M is low rank to capture intrinsic features and reduce
number of parameters.

3. THE PROPOSED RESIDUAL GRAPH LEARNING

The problem of learning a graph is essentially learning each
edge weight wi,j for nodes i and j.

The edge weight wi,j often measures the similarity be-
tween nodes i and j. Hence, we employ the commonly used
Gaussian kernel over features to define an edge weight wi,j

as
wi,j = exp

{
−d2(fi, fj)

}
, (1)

where d(fi, fj) is a distance metric between fi and fj . The
smaller the distance is, the more similar fi and fj are, and
the larger the edge weight is. We propose to optimize edge
weights wi,j’s from the perspective of similarity-preserving
mapping on graphs, which will be discussed next.

3.1. Similarity-Preserving Mapping on Graphs

Given an input graph signal X ∈ RN×d with N nodes and a
d-dimensional feature vector on each node, a GCNN learns a
function f : Rd → RK , which maps the input graph signal
xi ∈ Rd on node i to a new feature space fi ∈ RK . The
learned features will be used for downstream tasks such as
node classification.

A similarity-preserving mapping on graphs keeps the sim-
ilarity between nodes when mapping nodes from the input
space to a new feature space.

Definition 1. Given a graph signal X ∈ RN×d defined on
the vertices V of a graph G, a mapping f : xi ∈ Rd → fi ∈
RK , i ∈ V is similarity-preserving if it satisfies: 1) nodes
with similar input data x (referred to as “similar nodes” in the
sequel) still stay close in the new feature space f(x); 2) nodes
with dissimilar input data x (“dissimilar nodes”) are pushed
further away from each other in the new feature space f(x).

To enforce these conditions in Definition 1, we formulate
the similarity-preserving objective as

min
f ,d

N∑
i=1

N∑
j=1

exp
{
−d2(fi, fj)

}︸ ︷︷ ︸
wi,j

‖xi − xj‖22. (2)

During the minimization, on one hand, when nodes i and j are
similar in the input space, i.e., ‖xi−xj‖22 is small, wi,j could
be large, i.e., the distance in the new feature space d(fi, fj)
tends to be small as well. On the other hand, when nodes
i and j are dissimilar in the input space, i.e., ‖xi − xj‖22 is
large, wi,j has to be a small number for minimizing the ob-
jective, i.e., the distance in the new feature space d(fi, fj) will
be enforced to be large.

Further, the similarity-preserving objective in (2) can be
rewritten as

1

2

N∑
i=1

N∑
j=1

wi,j‖xi − xj‖22 = tr
(
X>L(f)X

)
, (3)

which is a graph Laplacian regularizer (GLR) [17] reweighted
by the similarity in the feature space f instead of the input
data X. We thus refer to it as the cross-space GLR, which
will be adopted in the loss function.

3.2. The Proposed Graph Learning

In order to acquire the edge weights in G, we need to learn
the distance function d(fi, fj). We cast the graph learning
problem as distance metric learning given a feature vector
fi ∈ RK per node i, i.e., learning a distance function for each
pair of features {fi, fj} for similarity calculation.

While there exist various definitions of distance metrics,
such as Euclidean distance and bilateral filtering distance, we
choose the Mahalanobis distance that captures correlations
among features. It is defined as

dM(fi, fj) =
√
(fi − fj)>M(fi − fj), (4)
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Fig. 1: The proposed RGLN network architecture for node classification and graph classification tasks.

where M ∈ RK×K is a symmetric and positive semi-definite
(PSD) matrix that encodes the feature correlations. Since M
is PSD and symmetric, we can decompose it into M = RR>,
where R ∈ RK×S . Since many real-world graphs naturally
have low-rank features, we assume M is low rank to capture
intrinsic representations, and thus S � K. The number of
parameters to learn is also significantly reduced.

Then the Mahalanobis distance in (4) becomes

dM(fi, fj) =
√

(fi − fj)>RR>(fi − fj)

= ‖R>(fi − fj)‖2,
(5)

which is essentially a linear transformation of the Euclidean
distance by R. So each edge weight can be computed as

wi,j = exp
{
−‖R>(fi − fj)‖22

}
. (6)

Hence, we convert the graph learning problem to the opti-
mization of a low-rank R, which leads to the following graph
learning loss function:

LGL =

L∑
l=1

∑
{i,j}

exp
{
−‖R(l)>(f

(l)
i − f

(l)
j )‖22

}
‖xi − xj‖22,

(7)
where L is the number of graph learning layers and also the
number of learned graphs. The superscript (l) denotes a vari-
able at the l-th layer. (7) is convex and differentiable, which
is thus a tractable loss in GCNNs. By optimizing the distance
metric R(l) at each layer, we are able to compute the edge
weights from (5), leading to the adjacency matrix of a learned
residual graph A∗(l).

3.3. Joint Learning of Node Feature and Graph

Among a variety of GCNNs, we choose the GCN [11] as an
instance to discuss our node feature learning. The layer-wise
graph convolution in the GCN is defined as:

F(l+1) = σ
(
Λ−

1
2 (A + I)Λ−

1
2 F(l)Θ(l)

)
, (8)

where F(l) ∈ RN×K is the node feature matrix at the l-th
layer, σ(·) is the activation function, A is the adjacency ma-
trix of the provided graph, I is an identity matrix that adds

self-loop to the graph, Λ is the degree matrix to normalize
A+ I and Θ(l) is the trainable weight matrix at the l-th layer.

In our setting, given the learned residual graph A∗(l) and
the available graph A(l) at the l-th layer, we compute the final
graph as

A(l+1) = A(l) + A∗(l). (9)

Then, we define the convolution as:

F(l+1) = σ
(
Λ̃−

1
2 A(l+1)Λ̃−

1
2 F(l)Θ(l)

)
, (10)

where Λ̃ is the updated degree matrix with the i-th diagonal
entry computed from A(l+1) as Λ̃i,i =

∑
j a

(l+1)
i,j . In cases

where there is no initial graph, we assume A(0) = I is an
identity matrix.

The objective of node feature learning is to minimize the
cross entropy between predicted labels and ground truth la-
bels:

LGCNN = −
N∑
i=1

C∑
c=1

Yic log(Ŷic), (11)

where N is the number of input instances, C is the number
of classes, Y denotes the ground truth label matrix and Ŷ de-
notes the predicted probability matrix. Along with the graph
learning loss in (7), our network is trained end-to-end by min-
imizing the following loss function:

L = LGCNN + λLGL, (12)

where λ is a balancing hyper-parameter.
To implement our network, we design a RGLN layer,

which consists of two modules: the graph learning module
and the node feature learning module. The graph learning
module learns a residual graph encoded by an adjacency ma-
trix A∗ from input node features. A∗ is then employed by the
node feature learning module to propagate node features via
our proposed graph convolution in (10). The entire network
architecture is illustrated in Fig. 1.

4. EXPERIMENTAL RESULTS

In order to evaluate the performance of the RGLN, we apply
it to semi-supervised node classification on citation networks
and point clouds, which are discussed in order as follows.



4.1. Node Classification on Citation Networks

Experimental settings. We test our method on three citation
network datasets, i.e., Citeseer, Cora and Pubmed [18]. We
follow the experimental setup of previous works [19, 11, 14],
and employ the same data partition as in [19]. The features
are L2-normalized before fed into the network. We apply a
RGLN layer followed by a regular GCN layer. The number of
hidden units in each layer is 16. We set S = 16 to reduce the
number of parameters. We train our RGLN for a maximum
of 500 epochs using ADAM optimizer with a learning rate of
0.1 and weight decay of 5e-4.
Baselines. We compare our RGLN with the baseline of
GCN [11], Planetoid [19], and other semi-supervised learn-
ing methods based on graph neural networks, including GAT
[14], GLCN [4], AGCN [5] and GMNN [20].
Experimental Results. Tab. 1 shows the comparison results
on three citation network datasets. Overall, we note that 1)
RGLN outperforms the GCN baseline on all datasets signifi-
cantly by adding a graph learning module. This demonstrates
the superiority of learning new edge connectivities and ac-
curate weights. 2) RGLN also outperforms all of the other
methods on three datasets, which demonstrates the effective-
ness of RGLN in learning graphs.

Algorithm Citeseer Cora Pubmed
Planetoid [19] 64.7 75.7 77.2
GCN [11] 70.3 81.5 79.0
GMNN [20] 73.1 83.7 81.8
GLCN [4] 72.2 ± 0.8 82.1 ± 0.3 77.8 ± 0.3
AGCN [5] 71.1 ± 0.8 83.1 ± 0.4 81.2 ± 0.6
GAT [14] 72.5 ± 0.7 83.0 ± 0.7 79.0 ± 0.3
RGLN 74.6 ± 0.5 84.7 ± 0.3 82.0 ± 0.4

Table 1: Results of semi-supervised node classification.

4.2. Point cloud classification

Furthermore, we test our model on point cloud classification.
We follow the experimental setting in [12], using extracted
features to represent each point cloud.
Datasets. We test on ModelNet40 dataset [21] for point cloud
classification. We extract features of each point cloud using
Multi-View Convolutional Neural Network (MVCNN) [22]
and Group-View Convolutional Neural Network (GVCNN)
[23]. Features from two networks are concatenated together,
generating features shaped 12311×7044 as input to GCNNs.
Experimental settings. Since there is no initial graph avail-
able in this task, we initialize it as an identity matrix. We stack
3 RGLN layers to learn the residual graphs. The dimension of
hidden layers and S are set to 64. We train the network with
a learning rate of 0.001 for 150 epochs and decay it by 0.1 at
the 100th epoch with ADAM optimizer.
Baselines. We use GCN as the baseline, and empirically con-
struct a k-NN graph as the underlying graph. We mainly com-
pare our RGLN model against the baseline GCN, and also
against other state-of-the-art methods, including Hyper Graph

Neural Networks (HGNN) [12] and AGCN. We also compare
with fully supervised methods for point cloud learning such
as PointNet [24], PointNet++ [25] and DGCNN [2].
Experimental Results. Tab. 2 presents results for Model-
Net40 classification. We see that, 1) our method outperforms
state-of-the-art supervised and semi-supervised methods in
the ModelNet40 dataset; 2) compared with GCN which is
highly influenced by the hyperparameter k, our RGLN does
not need to determine k to build the underlying graph. In-
stead, RGLN learns an effective graph from node features and
achieves improved performance.

Algorithm Setting Accuracy
PointNet [24] Supervised 89.2
PointNet++ [25] Supervised 90.7
DGCNN [2] Supervised 93.5
HGNN [12] Semi-Supervised 96.7
AGCN [5] Semi-Supervised 95.6
GCN (k = 1) [11] Semi-Supervised 96.5
GCN (k = 5) [11] Semi-Supervised 95.3
GCN (k = 10) [11] Semi-Supervised 94.3
RGLN Semi-Supervised 97.1

Table 2: Results of point cloud classification on ModelNet40.
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Fig. 2: Robustness test for point clouds.

Robustness Study. Further, we test the robustness of our
model when the point cloud is of low density. We randomly
drop out points with missing ratios {0, 0.25, 0.5, 0.75, 0.9}.
As shown in Fig. 2, our model outperforms the GCN baseline
significantly, and keeps high accuracy even when the point
cloud density is quite low.

5. CONCLUSION

We propose a robust residual graph learning network (RGLN),
which learns both new edge connectivities and edge weights
in the underlying graph. We cast graph learning as distance
metric learning under a low-rank assumption. Further, we
learn the graph structure by enforcing similarity-preserving
mapping via a cross-space graph Laplacian regularizer, which
keeps the similarity of nodes consistent between the input
data space and the feature space. Extensive experiments
demonstrate the superiority and robustness of our method in
semi-supervised learning tasks.



6. REFERENCES

[1] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam,
and Pierre Vandergheynst, “Geometric deep learning: going
beyond Euclidean data,” IEEE Signal Processing Magazine,
vol. 34, no. 4, pp. 18–42, 2017.

[2] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,
Michael M. Bronstein, and Justin M. Solomon, “Dynamic
graph cnn for learning on point clouds,” ACM Transactions
on Graphics (TOG), 2019.

[3] Gusi Te, Wei Hu, Amin Zheng, and Zongming Guo, “RGCNN:
Regularized graph cnn for point cloud segmentation,” in ACM
Multimedia Conference on Multimedia Conference. ACM,
2018, pp. 746–754.

[4] Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo,
“Semi-supervised learning with graph learning-convolutional
networks,” in IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2019, pp. 11313–11320.

[5] Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang,
“Adaptive graph convolutional neural networks,” in AAAI Con-
ference on Artificial Intelligence (AAAI), 2018.

[6] Lei Shi, Yifan Zhang, Jian Cheng, and Hanqing Lu, “Non-
local graph convolutional networks for skeleton-based action
recognition,” arXiv preprint arXiv:1805.07694, 2018.

[7] Eric P Xing, Michael I Jordan, Stuart J Russell, and Andrew Y
Ng, “Distance metric learning with application to clustering
with side-information,” in Advances in neural information pro-
cessing systems, 2003, pp. 521–528.

[8] P. C. Mahalanobis, “On the generalized distance in statistics,”
Proceedings of the National Institute of Sciences of India, vol.
2, no. 1, pp. 49–55, 1936.

[9] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Le-
Cun, “Spectral networks and locally connected networks on
graphs,” arXiv preprint arXiv:1312.6203, 2013.
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