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Abstract
This paper addresses the problem of 3D hand pose estimation1

from a monocular RGB image. While previous methods have2

shown great success, the structure of hands has not been fully3

exploited, which is critical in pose estimation. To this end, we4

propose a regularized graph representation learning under a5

conditional adversarial learning framework for 3D hand pose6

estimation, aiming to capture structural inter-dependencies of7

hand joints. In particular, we estimate an initial hand pose8

from a parametric hand model as a prior of hand structure,9

which regularizes the inference of the structural deformation10

in the prior pose for accurate graph representation learning11

via residual graph convolution. To optimize the hand struc-12

ture further, we propose two bone-constrained loss functions,13

which characterize the morphable structure of hand poses ex-14

plicitly. Also, we introduce an adversarial learning framework15

conditioned on the input image with a multi-source discrimi-16

nator, which imposes the structural constraints onto the distri-17

bution of generated 3D hand poses for anthropomorphically18

valid hand poses. Extensive experiments demonstrate that our19

model sets the new state-of-the-art in 3D hand pose estima-20

tion from a monocular image on five standard benchmarks.21

1 Introduction22

3D human hand pose estimation is a long-standing problem23

in computer vision, which is critical for various applications24

such as virtual reality and augmented reality (Hürst and van25

Wezel 2011; Piumsomboon et al. 2013). Previous works at-26

tempt to estimate hand pose from depth images (Ge et al.27

2016; Wu et al. 2018; Zhou et al. 2018; Ge et al. 2018) or28

in multi-view setups (Panteleris and Argyros 2017; Zhang29

et al. 2016a). However, due to the diversity and complexity30

of hand shape, gesture, occlusion, etc., it still remains a chal-31

lenging problem despite years of studies (Rehg and Kanade32

1994; Ying and Huang 2002; Ying, John, and Huang 2005;33

Hui et al. 2017).34

As RGB cameras are more widely accessible than depth35

sensors, recent works focus mostly on 3D hand pose es-36

timation from a monocular RGB image and have shown37

their efficiency (Ge et al. 2019; Boukhayma, Bem, and Torr38

2019; Baek, Kim, and Kim 2019; Cai et al. 2018; Zimmer-39

mann and Brox 2017a; Doosti et al. 2020). While some early40

works (Cai et al. 2018; Boukhayma, Bem, and Torr 2019)41
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Figure 1: The proposed method estimates 3D hand pose from
a monocular image based on regularized graph representation
learning. A parametric hand model generates a prior pose, which
regularizes the learning of deformations in graph topology under a
conditional adversarial learning framework.

did not explicitly exploit the structure of hands, some recent 42

methods (Ge et al. 2019; Doosti et al. 2020) have shown the 43

crucial role of hand structure in pose estimation, but may re- 44

sort to an additional synthetic dataset. Also, unlike bodies 45

and faces that have obvious local characteristics (e.g., eyes 46

on a face), hands exhibit almost uniform appearance. Con- 47

sequently, estimated hand poses from existing methods are 48

sometimes distorted and unnatural. 49

To fully exploit the structure of hands, we propose to rep- 50

resent the irregular topology of 3D hand poses naturally on 51

graphs, and learn the graph representation regularized by a 52

prior pose from the monocular image input under a con- 53

ditional generative adversarial learning framework, aiming 54

to capture the structural dependencies among hand joints. 55

Based on the Maximum a Posteriori estimation formulation 56

of inferring 3D hand pose, we first construct an initial hand 57

pose from a parametric hand model as a prior of hand struc- 58

ture (prior pose), which captures the holistic topology of 59

hand structures, i.e., the adjacency relations between joints. 60

Based on this prior pose, we represent the topology of hand 61

joints on a graph, where each joint is treated as a node and 62

each pair of adjacent nodes are connected. We further learn 63

the deformation in the prior pose to refine the hand struc- 64

ture representation, by propagating information across ad- 65

jacent nodes via residual graph convolution and conditional 66



on the input image. Moreover, while most existing works67

(Boukhayma, Bem, and Torr 2019; Ge et al. 2019; Cai et al.68

2018) deploy 3D Euclidean distance between joints as the69

loss function for 3D annotation, we propose two bone loss70

functions that constrain the length and orientation of each71

bone connected by adjacent joints so as to preserve hand72

structure explicitly. On the other hand, to address the chal-73

lenge of uniform appearance, we propose to train the net-74

work under an adversarial learning framework conditioned75

on the input image, aiming to estimate the real distribution76

of 3D hand poses. Besides, unlike some recent works (Ge77

et al. 2019; Cai et al. 2018; Kulon et al. 2019), we estimate78

3D hand poses without resorting to ground truth meshes or79

depth maps, which is more suitable for datasets in the wild.80

Specifically, given an input monocular image, our frame-81

work consists of a hand pose generator and a conditional82

discriminator. The generator is composed of a MANO hand83

model module (Romero, Tzionas, and Black 2017) that pro-84

vides an initial pose estimation as prior pose and a deforma-85

tion learning module regularized by the prior pose. In par-86

ticular, taking the prior pose and image features as input,87

the deformation learning module learns the deformation in88

the prior pose to further refine the hand structure, by our89

designed residual graph convolution that leverages on the90

recently proposed ResGCN (Li et al. 2019). Further, we de-91

sign a conditional multi-source discriminator that employs92

hand poses, hand bones computed from poses as well as93

the input image to distinguish the predicted 3D hand pose94

from the ground-truth, leading to anthropomorphically valid95

hand pose. Experimental results demonstrate that our model96

achieves significant improvements over state-of-the-art ap-97

proaches on five standard benchmarks.98

To summarize, our main contributions include99

• We propose regularized graph representation learning for100

3D hand pose estimation from a monocular image, which101

fully exploits structural dependencies among hand joints.102

• We learn the graph representation of hand poses by in-103

ferring structural deformation, which is regularized by104

an initial hand pose estimation from a parametric hand105

model.106

• We introduce two bone-constrained loss functions, which107

optimize the estimation of hand structures by explicitly108

enforcing constrains on the topology of bones.109

• We present a conditional adversarial learning framework110

to impose structural constraints onto the distribution of111

generated 3D hand poses, which is able to address the112

challenge of uniform appearance in hands.113

2 Related Work114

According to the input modalities, previous works on 3D115

hand pose estimation can be classified into three categories:116

1) 3D hand pose estimation from depth images; 2) 3D hand117

pose estimation from multiple RGB images; 3) 3D hand118

pose estimation from a monocular RGB image.119

2.1 Estimation from Depth Images120

Depth images contain rich 3D information for hand pose121

estimation (Tang, Yu, and Kim 2013), which has shown122

promising accuracy (Yuan et al. 2018). There is a rich lit- 123

erature on 3D hand pose estimation with depth images as 124

input (Ge et al. 2018, 2016; Fitzgibbon 2015; Choi 2016; 125

De, Fleet, and Paragios 2011; Khamis et al. 2015; Xiao 126

et al. 2015; Malik et al. 2018; Oberweger and Lepetit 2018). 127

Among them, some earlier works such as (De, Fleet, and 128

Paragios 2011; Khamis et al. 2015) are based on a de- 129

formable hand model with an iterative optimization training 130

approach. Due to the effectiveness of deep learning, some 131

recent works like (Malik et al. 2018) leverage CNN to learn 132

the shape and pose parameters for a proposed model (LBS 133

hand model). 134

2.2 Estimation from Multiple Images 135

Multiple RGB images taken from different views also con- 136

tain rich 3D information. Therefore, some works take multi- 137

ple images as input to alleviate the occlusion problem (Cam- 138

pos and Murray 2006; Oikonomidis, Kyriazis, and Argy- 139

ros 2010; Sridhar et al. 2014). Campos et al. (Campos and 140

Murray 2006) propose a regression-based approach for hand 141

pose estimation, where they utilize multi-view images to 142

overcome the occlusion issue. Sridhar et al. (Sridhar et al. 143

2014) contribute a fundamentally extended generative track- 144

ing algorithm based on an augmented implicit shape repre- 145

sentation with multiple images as input. 146

2.3 Estimation from a Monocular Image 147

Compared with the aforementioned two categories, a 148

monocular RGB image is more accessible. Early works 149

(Athitsos and Sclaroff 2003; Rehg and Kanade 2002; 150

Stenger et al. 2006) propose complex model-fitting ap- 151

proaches, which are based on dynamics and multiple hy- 152

potheses and depend on restricted requirements. These 153

model-fitting approaches have proposed many hand mod- 154

els, based on assembled geometric primitives (Oikonomidis, 155

Kyriazis, and Argyros 2011) or sphere meshes (Tkach, 156

Pauly, and Tagliasacchi 2016), etc. Our work deploys the 157

MANO hand model (Romero, Tzionas, and Black 2017) as 158

our prior, which models both hand shape and pose as well 159

as generates meshes. Nevertheless, these sophisticated ap- 160

proaches suffer from low estimation accuracy. 161

With the advance of deep learning, many recent works 162

estimate 3D hand pose from a monocular RGB image us- 163

ing neural networks (Ge et al. 2019; Boukhayma, Bem, and 164

Torr 2019; Baek, Kim, and Kim 2019; Cai et al. 2018; Zim- 165

mermann and Brox 2017a; Yang and Yao 2019; Kulon et al. 166

2019). Among them, some recent works (Kulon et al. 2019; 167

Ge et al. 2019) directly reconstruct the 3D hand mesh and 168

then generate the 3D hand pose through a pose regressor. 169

Kulon et al. (Kulon et al. 2019) reconstruct the hand pose 170

based on an auto-encoder, which employs an encoder to ex- 171

tract the latent code and feeds the latent code into the de- 172

coder to reconstruct hand mesh. Ge et al. (Ge et al. 2019) 173

propose to estimate vertices of 3D meshes from GCNs (Kipf 174

and Welling 2017) in order to learn nonlinear variations in 175

hand shape. The latent feature of the input RGB image is 176

extracted via several networks and then fed into a GCN to 177

directly infer the 3D coordinates of mesh vertices. How- 178

ever, since the accuracy of the output hand mesh is criti- 179



Figure 2: Architecture of the proposed regularized graph representation learning under a conditional adversarial learning frame-
work for 3D hand pose estimation.

cal for both methods, they need an extra dataset which pro-180

vides ground truth hand meshes as supervision. Also, the181

upsampling layer used in (Ge et al. 2019) to reconstruct the182

hand mesh will cause a non-uniform distribution of vertices183

in mesh, which influences the accuracy of hand pose.184

In contrast, we take a prior pose estimated from a para-185

metric hand model as regularization for graph representation186

learning over hand poses rather than directly reconstructing187

hand poses from latent features. Besides, our method does188

not require any additional supervision such as mesh super-189

vision (Ge et al. 2019; Kulon et al. 2019) or depth image190

supervision (Ge et al. 2019; Cai et al. 2018). Hence, our191

method is more suitable for datasets in the wild. Further, we192

introduce conditional adversarial training for 3D hand pose193

estimation, which enables learning a real distribution of 3D194

hand poses.195

3 Methodology196

3.1 Overview of the Proposed Approach197

We aim to infer 3D hand pose via regularized graph repre-198

sentation learning under an adversarial learning framework.199

The entire framework consists of a hand pose generator G200

and a conditional discriminator D, as illustrated in Fig. 2.201

Given a monocular RGB image I as the input, the gener-202

ator G includes two modules:203

• The hand model module generates an initial estimation204

of 3D hand pose P̃ ∈ RN×3 withN joints (N = 21 in our205

experimental setting), which serves as a prior pose for the206

subsequent refinement. This module consists of a feature207

extractor and a parametric hand model.208

• The deformation learning module infers the structural209

deformation in the prior pose P̃ for regularized graph rep-210

resentation learning. Taking P̃ and I as the input, this211

module exploits the structural relationship among hand212

joints via residual graph convolution and outputs the de-213

formation, leading to the refined pose P̂ ∈ RN×3.214

The multi-source discriminator D imposes structural con-215

straints onto the distribution of generated 3D hand poses216

conditioned on the input image, which distinguishes the 217

ground-truth 3D poses from the predicted ones. 218

3.2 The Proposed Hand Pose Generator G 219

Given the observed input image I and ground truth hand 220

pose Pgt, we formulate the training of hand pose estimation 221

from a monocular image as a Maximum a Posteriori (MAP) 222

estimation problem: 223

P̂MAP(I,Pgt) = argmax
P

f(I,Pgt|P)g(P), (1)

where P denotes the hand pose to estimate. In (1), g(P) rep- 224

resents the prior probability distribution of the hand pose, 225

which provides the prior knowledge of P. f(I,Pgt|P) de- 226

notes the likelihood function, which is the probability of ob- 227

taining the observed image I and ground truth hand pose Pgt 228

given the estimated hand pose P. 229

We define the likelihood function as an exponential func- 230

tion of the distance between the estimated pose and the 231

ground truth pose/input image: 232

f(I,Pgt|P) = exp{−d1(Pgt,P)− d2(I,P)}, (2)

where d1(·) is the distance metric between the estimated 233

hand pose and the ground truth, and d2(·) is the distance 234

metric between the estimated hand pose and the input im- 235

age. Regarding g(P), it is a constant C after we acquire a 236

prior pose from a parametric hand model. Hence, when we 237

substitute (2) and g(P) = C into (1), take the logarithm and 238

multiply by −1, we have 239

min
P

d1(Pgt,P) + d2(I,P). (3)

d1(·) and d2(·) will be discussed in Section 3.4 in detail. 240

Specifically, we employ a parametric hand model to pro- 241

vide the prior of P, and designate a Deformation Learn- 242

ing Module to learn the pose under the supervision of the 243

ground-truth pose and input image. We discuss the two mod- 244

ules of the generator in detail as follows. 245



Figure 3: Illustration of the residual between the ground truth
hand pose (marked in green) and the predicted one (marked in
red). Each hand pose has 21 key joints. We denote a bone vector
connecting two key joints i and j by bi,j , such as b5,6 in the figure.

The Hand Model Module Given an input monocular im-246

age, this module aims to generate an initial estimation of 3D247

hand pose P̃ as a prior. A hand model is able to represent248

both hand shape and pose with a few parameters, which is249

thus a suitable prior for hand pose estimation.250

We first predict parameters of the hand model. Specifi-251

cally, we crop and resize the input image to a salient region252

of the hand, which is fed into the ResNet-50 network (He253

et al. 2016) to extract features for the construction of the la-254

tent code z, i.e., parameters of the hand model. Then, we255

employ a modified MANO hand model (Romero, Tzionas,256

and Black 2017), which is based on the SMPL model (Loper257

et al. 2015) for human bodies. The MANO hand model is258

a deformable hand mesh model with two vectors θ and β259

contained in the latent code z as the input, which control260

the pose and shape of the generated hand respectively. We261

modify the default setting of {θ, β} from {10, 45} to {10, 8}262

for reduced computation complexity. Also, note that, while263

Boukhayma et al. (Boukhayma, Bem, and Torr 2019) cre-264

ate a synthetic dataset to pre-train the ResNet-50 so as to265

estimate parameters of MANO, we do not resort to any ex-266

tra dataset. The output of the MANO hand model includes a267

hand pose P(θ, β).268

Additionally, we need to position the pose P(θ, β) in a269

camera coordinate system so as to acquire the 3D coordi-270

nates of each point in the hand pose. We project P(θ, β) to271

the 3D space via three parameters that model the camera co-272

ordinate system: 1) a 3D rotation parameter cr ∈ R3; 2) a273

3D translation parameter ct ∈ R3; and 3) a scale param-274

eter cs ∈ R. The camera parameters are estimated by the275

aforementioned ResNet-50 network.276

We formulate the complete hand model as:277

P̃(θ, β, cr, ct, cs) = cs ∗R(P(θ, β), cr) + ct, (4)

where R is a rotation function. The acquired initial estima-278

tion P̃ serves as a prior pose for the subsequent deformation279

learning model.280

The Deformation Learning Module This module aims at281

accurate graph representation learning for hand pose estima-282

Figure 4: Architecture of the deformation learning module in our
generator.

tion, which is conditional on the prior and under the super- 283

vision of the input image and ground truth pose as in (1). In 284

particular, conditioned on the prior P̃, we learn the structural 285

deformation in P̃ instead of the holistic hand pose. 286

We first construct an unweighted graph over P̃, where the 287

irregularly sampled key points (i.e., joints) on the hand are 288

projected onto nodes. The graph signal on each node is the 289

concatenation of the global feature vector of the input im- 290

age and the 3-dimensional coordinate vector of each joint in 291

the input prior pose. Nodes are connected if they represent 292

adjacent key points of the hand, where the adjacency rela- 293

tions follow the human hand structure as presented in Fig. 3, 294

leading to an adjacency matrix A ∈ RN×N . 295

Based on the graph representation A, the finally refined 296

pose is 297

P̂ = P̃+ GCN(P̃⊕ F,A), (5)
where F ∈ RN×F denotes the F -dimensional global fea- 298

ture vector of the image repeated N times, and ⊕ denotes 299

the feature-wise concatenation operation. GCN(P̃ ⊕ F,A) 300

represents the learned deformation between the prior P̃ and 301

the ground truth. The sum of the prior pose P̃ and its defor- 302

mation thus leads to the refined hand pose. 303

Specifically, we first extract features from the RGB image 304

I to facilitate the pose refinement. We follow the ResNet-50 305

architecture (He et al. 2016) to extract 2D features F from 306

I. Next, we learn the structural deformation in the hand pose 307

via residual graph convolution. Leveraging on the idea of 308

the recent ResGCN (Li et al. 2019) that shows graph resid- 309

ual learning enables deeper graph convolution networks and 310

better feature learning, we design a Graph Res-block to learn 311

the deformation of the prior pose. Specifically, we employ 312

the efficient GCN (Kipf and Welling 2017) as the basic unit 313

of the Graph Res-block, which essentially propagates infor- 314

mation across adjacent nodes to learn higher-level features. 315

Each Graph Res-block consists of two GCN layers as well 316

as two normalization layers that enable higher learning rate 317

without vanishing or exploding gradients. Furthermore, we 318

introduce residual skip connections for all the Graph Res- 319

blocks in order to accelerate the speed of convergence and 320

avoid the gradient vanishment. 321

Let Xl denote the input of the l-th Graph Res-block, then 322

the output of the l-th Graph Res-block takes the form 323

Xl+1 = N
(
g(N(g(Xl,A)),A)

)
+ skip(Xl), (6)



Figure 5: Architecture of the conditional discriminator.

where g(·) represents a single GCN layer as in (Kipf and324

Welling 2017), N(·) represents a single normalization layer,325

and skip(·) denotes the skip connection which is a GCN326

layer to match the dimension of the two terms in (6). We327

then stack several layers of Graph Res-blocks to learn the328

deformation of the prior pose, as demonstrated in Fig. 4.329

3.3 The Proposed Conditional Discriminator D330

In the adversarial training stage, while we learn the genera-331

tor to predict hand poses which are indistinguishable to the332

discriminator, the discriminator attempts to distinguish real333

samples from fake ones, i.e., the predicted hand poses. In334

particular, given the input image I, we designate a condi-335

tional discriminator conditioned on I.336

A simple architecture of a discriminator is a fully-337

connected (FC) network with the hand pose as input, which338

however has two shortcomings: 1) the relation between the339

RGB image and inferred hand pose is neglected; 2) struc-340

tural properties of the hand pose are not taken into account341

explicitly. Instead, inspired by the multi-source architecture342

in (Yang et al. 2018), we design a conditional multi-source343

discriminator with three inputs to address the aforemen-344

tioned issues. As illustrated in Fig. 5, the inputs include: 1)345

features of the input monocular image; 2) features of the re-346

fined hand pose P̂ or the ground truth pose Pgt; 3) features347

of bones via the KCS layer as in (Wandt, Ackermann, and348

Rosenhahn 2017), which computes the bone matrix from P̂349

or Pgt via a simple matrix multiplication. The bone features350

contain prominent structural information such as the length351

and direction of bones, thus characterizing the hand struc-352

ture accurately.353

The loss function of the conditional discriminator follows354

the definition of the Wasserstein loss (Arjovsky, Chintala,355

and Bottou 2017) conditioned on the input image I:356

LWass = −EPgt∼pdata(Pgt)D(Pgt|I)+EP̂∼p(P̂)D(P̂|I), (7)

where D takes the generated (fake) pose P̂ and ground-truth357

pose Pgt as input, Pgt is a sample following the ground-truth358

pose distribution pdata(Pgt) and P̂ is a sample from the re-359

fined pose distribution p(P̂).360

Specifically, we employ a CNN to extract features of the361

input monocular image, a GCN to learn the representation of362

the refined pose or the ground truth pose, and one FC layer363

to capture the features of bone structures computed from the364

hand pose. Besides, the architecture of our multi-source dis-365

criminator is based on SNGAN (Miyato et al. 2018) with 366

spectral normalization layers. 367

3.4 The Proposed Bone-Constrained Loss 368

Functions 369

As presented in (3), we have two types of loss functions for 370

the MAP estimation of hand pose. We employ the commonly 371

adopted average Euclidean distance in the coordinates of 372

joints of 3D hand pose Lpose (Ge et al. 2019) as well as 373

two proposed bone-constrained metrics as d1(·) to measure 374

the distortion of the estimated 3D hand pose compared to 375

the ground truth, and apply the commonly used average Eu- 376

clidean distance in the coordinates of joints of projected 2D 377

hand pose Lproj (Ge et al. 2019) as d2(·) to measure the dis- 378

tance between the estimation and the 2D image. 379

Since Lpose and Lproj cannot capture the structural prop- 380

erties of hand pose explicitly, we propose two novel bone- 381

constrained loss functions to characterize the length and di- 382

rection of each bone. 383

As illustrated in Fig. 3, we first define a bone vector bi,j ∈ 384

R3×1 between hand joint i and j as 385

bi,j = ji − jj , (8)

where ji, jj ∈ R3×1 are the coordinates of joint i and j re- 386

spectively. 387

The first bone-constrained lossLlen quantifies the distance 388

in bone length between the ground truth hand and its esti- 389

mate, which we define as 390

Llen =
∑
i,j

∣∣∣||bi,j ||2 − ||b̂i,j ||2
∣∣∣ , (9)

where bi,j and b̂i,j are the bone vectors of the ground truth 391

and the predicted bone respectively. 392

The second bone-constrained loss Ldir measures the devi- 393

ation in the direction of bones: 394

Ldir =
∑
i,j

∣∣∣∣∣∣bi,j/||bi,j ||2 − b̂i,j/||b̂i,j ||2
∣∣∣∣∣∣
2
. (10)

This is motivated by the fact that small loss in joints some- 395

times may not reflect large distortion in hand pose. Taking 396

joints j5 and j6 in Fig. 3 as an example, the distance between 397

the ground truth joints and predicted ones is trivial. How- 398

ever, it is obvious that the orientation of the predicted bone 399

b̂5,6 significantly deviates from the ground truth b5,6. This 400

distortion in hand structure is well captured by our proposed 401

loss in the bone direction Ldir. 402

Besides, as we adopt the framework of adversarial learn- 403

ing, we also introduce the Wasserstein loss LWass in (7) into 404

the loss function for adversarial training. Hence, the overall 405

loss function L is 406

L = Lpose + λprojLproj + λlenLlen + λdirLdir + λWassLWass,
(11)

where λproj, λlen, λdir and λWass are hyperparameters for the 407

trade-off among these losses. In accordance with (3), d1 = 408

Lpose + λlenLlen + λdirLdir, and d2 = λprojLproj. 409



Stage hand model deformation discriminator STB RHD EGODEXTER

I X 24.15 83.37 52.32
II X X 5.12 15.84 43.26
III X X X 3.97 12.40 34.98

Table 1: The performance of different stages in our model on three
datasets (measured in 3D Euclidean distance (mm)).

GCN Deformation FC Deformation Discriminator STB RHD EGODEXTER

1 X 15.11 37.59 52.34
2 X 5.12 15.84 40.12
3 X X 10.23 25.15 44.23
4 X X 3.97 12.40 34.98

Table 2: Ablation studies on the Deformation Learning Module,
with comparison between the Deformation Learning Module and
the simple FC Refinement Module in 3D Euclidean distance (mm).

4 Experimental Results410

4.1 Datasets and Metrics411

Datasets We evaluate our approach on five public datasets:412

Stereo Hand Pose Tracking Benchmark (STB) (Zhang413

et al. 2016b), the Rendered Hand Pose Dataset (RHD)414

(Zimmermann and Brox 2017b), EGODEXTER (Mueller415

et al. 2017), MPII+NZSL (Simon et al. 2017) and DEX-416

TER+OBJECT (Mueller et al. 2017). We use STB, RHD417

and EGODEXTER for ablation studies and compare with418

state-of-the-art methods on all the five datasets.419

STB is a real-world dataset with image resolution of420

640 × 320. Following (Zimmermann and Brox 2017b), we421

split the 18,000 images into 15,000 training samples and422

3,000 test samples. Besides, to make the definition of joints423

consistent, we move the location of the root joint from the424

palm center to the wrist following (Ge et al. 2019). RHD is425

a more challenging synthetic dataset with image resolution426

of 320 × 320, which is built upon 20 different characters427

performing 39 actions. MPII+NZSL is a real-world dataset428

containing images from YouTube videos. This dataset only429

provides 2D annotations. DEXTER+OBJECT dataset shows430

interactions of an actor’s hand with a cuboid object from431

a third person view. EGODEXTER dataset displays a hand432

from an egocentric view interacting with various objects.433

Metrics We evaluate the performance of 3D hand pose434

estimation with two metrics: (i) pose error, which takes the435

average location error in Euclidean distance between the es-436

timated 3D joints and the ground truth; (ii) percentage of437

correct key points (PCK), which is the percentage of cor-438

rect key points whose error in Euclidean distance is below a439

threshold.440

4.2 Implementation Details441

In our experiments, we first pretrain the hand model module442

and then train the entire network end-to-end. In particular,443

the training process can be divided into three stages.444

Stage I. We pretrain the hand model module, which is445

randomly initialized and trained for 100 epochs using the446

Adam optimizer with learning rate 0.001. Then, we freeze447

the parameters of this stage to evaluate the effectiveness of448

the deformation learning module.449

Stage II. We train the generator G end-to-end without the450

discriminator D. In G, the hand model module is initialized451

Figure 6: Qualitative results of different stages in our model.

with the trained model in the first stage and the deformation 452

learning module is randomly initialized. G is then trained 453

with 100 epochs using the Adam optimizer with learning 454

rate 0.0001. 455

Stage III. We adopt the framework of SNGAN (Miyato 456

et al. 2018) for the conditional adversarial training, and train 457

our model end-to-end. G and D are trained with 100 epochs 458

using the Adam optimizer with learning rate 0.0001. 459

Regarding the hyper-parameters in (11), we set λlen = 460

0.01, λdir = 0.1, λproj = 0.1, λWass = 0.01. 461

4.3 Ablation Studies 462

We perform ablation studies on the performance of different 463

stages, the deformation learning module, the discriminator 464

and loss functions. Due to the page limit, we present all the 465

results in 3D Euclidean distance (mm). Please refer to the 466

supplementary material for the results measured in 3D PCK. 467

On different stages. We present the results of three train- 468

ing stages in average 3D Euclidean distance, as listed in 469

Tab. 1. The performance of Stage II significantly outper- 470

forms Stage I, which demonstrates that the proposed defor- 471

mation learning module plays the most critical role in our 472

model. The adversarial training scheme (Stage III) further 473

improves the result, by learning a real distribution of the 474

3D hand pose. We also show visual results of our method 475

at different stages in Fig. 6. We see that Stage I estimates 476

a coarse hand pose from the MANO hand model as a prior 477

pose, while Stage II refines the structure of the prior pose 478

significantly. Finally, Stage III generates more realistic hand 479

poses via conditional adversarial learning. 480

On the deformation learning module. We compare the 481

deformation learning module with a simple fully-connected 482

deformation learning module (FC Deformation Module) to 483

refine the prior pose. We train the deformation learning mod- 484

ules in different experimental settings: 1) without our dis- 485

criminator, i.e., without adversarial learning; and 2) with our 486

discriminator. As presented in Tab. 2, the GCN deformation 487

learning module leads to significant gain over the simple FC 488

deformation module on both datasets in different settings, 489

thus validating the superiority of the proposed deformation 490

learning module. 491

On the conditional discriminator. We compare with a 492

single-source discriminator which only takes the 3D hand 493

pose as the input. As presented in Tab. 3, the multi-source 494

discriminator outperforms the single-source one on both 495

datasets, which gives credits to exploring the structure of 496

hand bones and the relation between the image and pose. 497



Deformation Learning Multi-source Single-source STB RHD EGODEXTER

1 X X 3.97 12.40 34.98
2 X X 4.54 15.10 37.46

Table 3: Ablation studies on the discriminator (3D Euclidean dis-
tance (mm)).

Lpose + Lproj Llen Ldir
STB RHD

Stage I Stage II Stage III Stage I Stage II Stage III

1 X 32.75 9.11 5.35 99.24 25.96 15.07
2 X X 30.32 8.00 5.02 95.19 22.96 14.76
3 X X 27.65 6.91 5.00 89.76 21.63 14.01
4 X X X 24.15 5.12 3.97 83.37 15.84 12.40

Table 4: Ablation studies on the proposed bone-constrained loss
functions at three stages.

On loss functions. We also evaluate the proposed bone-498

constrained loss functions Llen and Ldir separately. We train499

the network with different combinations of loss functions on500

the STB and RHD datasets in three stages respectively. As501

reported in Tab. 4, the network trained with our proposed502

bone-constrained loss functions performs better in all the503

three stages on both datasets. We also notice that Ldir plays504

a more significant role compared to Llen. This gives cred-505

its to the constraint on the orientation of bones that explic-506

itly takes structural properties of hands into consideration.507

Further, we demonstrate the visual comparison of estimated508

poses with and without bone-constrained losses in Fig. 7.509

The estimated pose may have unnatural distortion in the di-510

rection of bones in the absence of the bone-constrained loss511

functions, e.g., the little finger in the first row and the thumb512

in the second row. In contrast, our results exhibit natural and513

accurate structure in the orientation of bones with the pro-514

posed bone constraints enforced.515

4.4 Experimental Results516

STB RHD MPII+ZNSL(px) Dexter+Object EgoDexter

(Ge et al. 2019) 6.37 15.33 - - -
(Boukhayma, Bem, and Torr 2019) 9.76 - 18.95 25.53 45.33
(Spurr et al. 2018) 8.56 19.73 - 40.20 56.92
(Zimmermann and Brox 2017b) - - 59.40 34.75 52.77
Ours 3.97 12.40 9.87 16.12 34.98

Table 5: Comparison with state-of-the-art methods on the five
datasets. Note that MPII+ZNSL only provides 2D annotation, thus
we employ the 2D distance (px) metric on this dataset.

We compare our method with competitive 3D hand pose517

estimation approaches on the five datasets. On the relatively518

simple STB dataset, as shown in Fig. 8, we compare with lat-519

est methods (Cai et al. 2018; Iqbal et al. 2018; Boukhayma,520

Bem, and Torr 2019; Ge et al. 2019; Mueller et al. 2018a;521

Zimmermann and Brox 2017a; Mueller et al. 2018b). Our522

paradigm outperforms the state-of-the-art (Ge et al. 2019),523

which closely reaches the upper bound 1.0 of 3D PCK at all524

the error thresholds. Also, we list the results in 3D Euclidean525

distance for comparison with the state-of-the-arts in Tab. 5.526

Compared to these works which directly reconstruct the 3D527

hand pose (Ge et al. 2019; Boukhayma, Bem, and Torr 2019;528

Cai et al. 2018), our method performs much better mainly529

due to the proposed regularized graph representation learn-530

ing and conditional adversarial learning.531

Moreover, we demonstrate some qualitative results of our532

Figure 7: Qualitative results for the evaluation of the proposed
bone-constrained loss functions.

Figure 8: Comparison with state-of-the-art methods on the
STB dataset.

Figure 9: Qualitative results of our proposed network on the STB
dataset. The 2D pose is projected from the 3D pose.

3D hand pose estimation in Fig. 9. The generated poses are 533

accurate and natural even in case of severe self-occlusions, 534

as shown in the first three columns of Fig. 9. This validates 535

the effectiveness of the proposed paradigm. We show the 536

qualitative results and PCK results on the other four datasets 537

in the supplementary material. 538

5 Conclusion 539

In this paper, we propose regularized graph representation 540

learning under a conditional adversarial learning framework 541

for 3D hand pose estimation from a monocular image. Based 542

on the MAP estimation formulation, we take an initial es- 543

timation of hand pose as prior pose, and further learn the 544

structural deformation in the prior pose via residual graph 545

convolution. Also, we propose two bone-constrained loss 546

functions to enforce constraints on the bone structures ex- 547

plicitly. Extensive experiments demonstrate the superiority 548

of the proposed method. 549
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