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Abstract

Point clouds consist of a discrete set of points irregularly
sampled from continuous 3D objects. Most existing ap-
proaches for point cloud learning are in (semi)-supervised
fashions, which nevertheless require costly human annota-
tions. To this end, we propose a novel unsupervised learn-
ing of geometric sampling invariant representations, aiming
to learn intrinsic feature representations of point clouds on
graphs based on that the geometry of one object can be sam-
pled in various patterns and densities into different forms
of point clouds. In particular, we represent point clouds
on graphs and exploit invariant representations at multi-
ple hierarchies: the low-resolution invariance and original-
resolution invariance. To learn invariance at a lower reso-
lution, we subsample the input point cloud in distinct pat-
terns, and maximize the mutual information among the sub-
sampled variants. Further, to learn invariance at the origi-
nal resolution, we increase the resolution of the subsampled
point clouds to the original resolution of the input based
on the learned features, and minimize the distance between
the input and each of the upsampled versions. In experi-
ments, we apply the learned representations to representa-
tive downstream tasks of point clouds, and results on point
cloud classification, segmentation and upsampling demon-
strate the superiority of the proposed model.

1. Introduction

3D geometric data such as point clouds provides a natu-
ral representation for the 3D world, which is crucial to a va-
riety of applications such as autonomous driving, robotics
and augmented/virtual reality. Recent advances in neural
networks tailored for irregular point clouds have achieved
great success in point cloud analysis [36, 37, 56, 52, 27, 57,
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Figure 1. Illustration of the proposed unsupervised learning of
geometric sampling invariant representations for point clouds.
We exploit such invariant representations under sampling at mul-
tiple hierarchies: the low-resolution invariance and the original-
resolution invariance.

]. However, these methods are mostly trained in a (semi-
)supervised fashion, which requires costly human annota-
tions. This limits the wide applicability of point clouds, es-
pecially for large-scale data. Hence, it is in demand to learn
feature representations of point clouds in an unsupervised
fashion.

The main purpose of unsupervised point cloud learning
is to learn discriminative and generic representations. Sev-
eral attempts have been made for unsupervised representa-
tion learning on point clouds. These approaches are mainly
based on reconstruction [10, 60, 28, 17, 65] or generation
[1, 51, 14, 24, 48]. The former aims to train an encoder
to learn feature representations by reconstructing the input
data via a decoder, while the latter attempts to learn fea-
ture representations by training Generative Adversarial Net-
works (GANs) [15] or Variational Auto-Encoders (VAEs)
[22] to generate 3D point clouds. These methods have
demonstrated to be effective in capturing structural and low-



level information of point clouds, but usually fail to learn
high-level semantic information.

Recently, many approaches have sought to explore se-
mantic information for point cloud learning. Zhang et al.
[63] propose to learn unsupervised semantic features for
point clouds by solving the pretext tasks of part contrast-
ing and object clustering. Sauder et al. [45] attempt to
reconstruct point clouds whose parts have been randomly
rearranged so as to capture semantic properties of the point
cloud. These representations are learned by inferring the re-
lationship among parts, while the global information is not
fully exploited.

To this end, we propose unsupervised point cloud learn-
ing based on Geometric Sampling Invariant Representa-
tions, aiming to characterize both local and global geomet-
ric and semantic information at various scales. This takes
inspiration from the principle that the continuous surface
of one 3D object can be sampled in various patterns and
densities into different forms of point clouds, i.e., these dis-
tinctly sampled point clouds describe the underlying struc-
ture of the same 3D object and thus share the invariant rep-
resentation. Hence, we propose a novel unsupervised learn-
ing of geometric sampling invariant representations, which
learns the intrinsic features of point clouds. In particular, as
demonstrated in Figure 1, we exploit such invariant repre-
sentations at multiple hierarchies: the low-resolution invari-
ance and original-resolution invariance, so as to capture the
geometric structures at various scales.

To learn invariance at a lower resolution, we subsam-
ple the input point cloud in distinct patterns randomly, en-
code the features of these subsampled variants over graphs
respectively via a Siamese graph-based encoder network
with shared weights [56], and maximize the mutual infor-
mation among them so as to ensure the invariance. Mean-
while, to learn more discriminative representations, we en-
force features of point clouds subsampled from different
objects to be distinguishable. We achieve the mutual in-
formation maximization and discriminative representations
among different objects by optimizing the InfoNCE loss
[34], which approaches the lower bound of mutual infor-
mation.

Further, to learn invariance at the original resolution, we
upsample the subsampled point clouds to the original res-
olution of the input based on the learned features via the
patch manifold reconstruction method in [31], and mini-
mize the distance between the input and each of the upsam-
pled versions to learn the invariance. By jointly optimizing
the invariant representation learning at both resolutions, the
learned representations convey structural and semantic in-
formation at various scales.

To evaluate the proposed model, we apply the learned
representation to representative downstream tasks of point
clouds, including point cloud segmentation, point cloud

classification and point cloud upsampling over several
benchmark datasets. Experimental results show that we
achieve the state-of-the-art performance in unsupervised
point cloud classification and segmentation, and improve
the upsampling performance by pre-training with our
model.

In summary, our main contributions include

* We propose a novel unsupervised learning paradigm
of geometric sampling invariant representations, aim-
ing to learn intrinsic features of point clouds that are
invariant under various sampling patterns and densi-
ties.

e We explore geometric sampling invariant representa-
tions at multiple hierarchies: the low-resolution invari-
ance and original-resolution invariance, which cap-
tures geometric structures and semantic information at
various scales.

* Experimental results demonstrate the superiority of
our model over several representative point cloud
downstream tasks.

2. Related Work
2.1. Deep Learning on Point Clouds

Deep learning on 3D point clouds has attracted increas-
ing attention in recent years. Unlike 2D images, 3D point
clouds are irregularly sampled and have some special prop-
erties such as permutation invariance. Previous works
[66, 54] try to apply 3D convolutions by dividing point
clouds into regular voxels or 3D grids. However, these
methods suffer from information loss due to the approxi-
mation. Recently, various techniques [36, 37, 16, 27, 57,

, 49, 64, 55, 56] have been designed to directly consume
the unordered point clouds.

One pioneer method PointNet [36] proposes to learn the
features of each point independently, while PointNet++ [37]
introduces a hierarchical architecture that applies PointNet
on a nested partitioning of the input point set to extract lo-
cal structures. Local structures have also been exploited by
methods such as PCPNet [16], PointCNN [27], PointConv
[57], and Relation-Shape CNN [29] to further improve the
quality of point cloud representation learning. In addition,
Graph Convolutional Neural Networks (GCNNs) have also
been applied to point clouds by constructing a K -nearest-
neighbor (K'NN) graph or complete graph to learn feature
representations [49, 64, 55, 56]. Among them, Dynamic
Graph Convolutional Neural Network (DGCNN) [56] pro-
poses to construct graphs in the feature space and dynami-
cally update them at each layer of the network. Edge Con-
volution is also proposed to aggregate features from the
neighborhood for each node.



2.2. Self-supervised Representation Learning

Self-supervised representation learning has attracted in-
creasing attention since the cost of human annotations is
quite expensive. Auto-Encoders (AEs) [22] and Genera-
tive Adversarial Networks (GANs) [15] are two represen-
tative unsupervised approaches. AEs aim to train an en-
coder to learn feature representations by reconstructing the
input data via a decoder. The idea is based on that fea-
ture representations should contain sufficient information
to reconstruct the input data. FoldingNet [60] proposes a
novel folding-based decoder that deforms a canonical 2D
grid onto the underlying surface of a point cloud, achiev-
ing low reconstruction errors even for objects with delicate
structures. [3, 62, 26, 38] employ point cloud upsampling or
reconstruction as their pretext tasks to learn the representa-
tions of point clouds. MAP-VAE [17] introduces an innova-
tive multi-angle analysis to effectively learn the local geom-
etry and structure on point clouds from semantic local self-
supervision. PointOE [35] proposed to rotate a point cloud
with various angles and predict rotation angles to mine the
intrinsic features. In contrast, GANs extract feature rep-
resentations in an unsupervised fashion by generating data
from input noises via a pair of generator and discriminator.
LGAN [!] introduces the first deep generative models for
3D point clouds. RL-GAN-Net [44] presents a point cloud
generation model that is robust to low-availability data and
requires no prior knowledge.

In addition to AEs and GANs, another important
paradigm called contrastive learning aims to train an en-
coder to be contrastive between the representations of posi-
tive samples and negative samples [19, &, 7, 59, 43]. Point-
GLR [39] learns point cloud representations by the bidirec-
tional reasoning between global and local features. Deep
Infomax (DIM) [20] also proposes to learn image feature
representations by maximizing the mutual information be-
tween local patches and the corresponding global represen-
tation through a contrastive learning task. AMDIM [5] en-
hances the positive association between a local feature and
its context by randomly sampling two different views of an
image to generate the local feature vector and context vec-
tor. Deep Graph Infomax [53] and InfoGraph [47] extend
the framework of DIM to non-Euclidean data.

3. Method

We first formulate the unsupervised learning problem of
geometric sampling invariant representations in Sec. 3.1,
and then present an algorithm to implement the formulation
in Sec. 3.2.

3.1. The Formulation

Point clouds are discrete samples of functions on Rie-
mannian manifolds (surfaces), which represent the geome-

try of objects [21]. Geometric properties are invariant under
sampling, i.e., point clouds sampled in various patterns and
densities from the same manifold correspond to the same
shape, which share the invariant representations.

Formally, given a point cloud P € RV >3 with N points,
we consider two sampling operators S; and S for simplic-
ity. A function E(-) is geometric sampling invariant if it
satisfies

E(S,P) = E(S,P) = E(P), (1)

which can be extended to more sampled point clouds.

Our goal is to learn a function E : P — E(P), which

extracts invariant feature representations of P. In particular,
in order to reveal geometric structures at various scales, we
learn geometric sampling invariant representations at mul-
tiple resolutions: invariance at a low resolution and invari-
ance at the original resolution. That is, we ensure the rep-
resentations to be invariant between 1) subsampled point
clouds Q; = S1P and Q> = S;P at a low resolution,
where &7 and S; are downsampling operators; 2) the input
point cloud P and each of the upsampled point clouds from
Q; and Q3 respectively at the original high resolution. We
formulate the two hierarchies of representation invariance
respectively as follows.
Invariance at a Low Resolution. To ensure the geomet-
ric sampling invariance of representations at a low resolu-
tion, i.e., E(S1P) = E(S2P), we propose to maximize the
mutual information between learned features of Q; = S1 P
and Q2 = S2P that correspond to the same object:

max I(E(Q1), E(Q2)), )

where I(-) denotes the mutual information.

Since the mutual information between learned features is
difficult to compute directly, we instead maximize the lower
bound of the mutual information. Among existing meth-
ods [0, 12, 41] that are able to approach the lower bound of
mutual information, we choose the InfoNCE loss [32, 34].
The reason is that the InfoNCE does not require an addi-
tional network to approximate the mutual information as
in other methods, which avoids complicated training proce-
dures. Also, minimizing the InfoNCE loss has been proven
to be equivalent to maximizing the mutual information [34].

Specifically, apart from maximizing the mutual informa-
tion between subsampled point clouds that correspond to
the same object (positive samples), we also attempt to max-
imize the discrepancy among point clouds corresponding to
different objects (negative samples), leading to discrimina-
tive feature learning. Mathematically, given a set of point
clouds P = {Py,...,Pys} with M random samples con-
taining one positive sample and M — 1 negative samples,
the InfoNCE loss aims to minimize

. E(S,P;) ® E(S;P;)

Ly =— lo ,
N P;,eP & ZPkEPE(Slpk) ® E(SQPz)

3)



where P; is the i-th positive point cloud sample, while Py,
is the k-th point cloud in a mini batch P. © denotes the
Hadamard product between two feature vectors. Here, we
adopt the Hadamard product to measure the similarity be-
tween features as it is beneficial to discriminate samples
from different point clouds.

Invariance at the Original Resolution. In addition to ex-
ploiting invariant representation learning at a low resolu-
tion, we also explore geometric invariance at the original
resolution. Compared to subsampled point clouds, original-
resolution point clouds often contain more geometric details
and semantic information that are invariant under sampling,
which is complementary to the low-resolution invariant rep-
resentation learning. If the low-resolution data shares in-
variant features with the original-resolution point cloud, we
are able to reconstruct the point cloud using features learned
from low-resolution point clouds.

Hence, in order to ensure that features learned at low
resolution contains geometric details in the original point
cloud, we first upsample the low-resolution point clouds Q1
and Q- to 151 and 152 respectively with the same resolution
as P using the learned features. Then, we minimize the dif-
ference between P and each of the upsampled point clouds
Pl and f’g respectively by the Chamfer Distance Lcp [11].
Taking P, as an example, the Chamfer Distance is defined
as

A 1 . 2 1 . 2
P,,P)= E m — — § _ )
Lep(P1,P) - ; qelgllp Q||2+|P| pﬂelgll lla—pl2
Py peP, q€P

“)

The same can be defined for Lcp(P2, P). By averaging

Lep(P1, P) and Lop (P2, P), we acquire the loss function
for invariance at the original resolution.

Final Formulation. Taking both the InfoNCE loss be-
tween subsampled point clouds and the Chamfer Distance
loss between the input and each of the upsampled point
clouds into consideration, the entire network is trained end-
to-end by minimizing the loss

min Ly +a - E [ECD(Pia P)] ) 4)
E P

where « is the hyper-parameter that strikes a balance be-
tween the invariance at a low resolution and that at the orig-
inal resolution. The expectation [ is taken over the upsam-
pled point clouds P.

We update the parameters in the feature extractor E it-
eratively by backward propagation of the loss in Eq. (5).
Next, we elaborate on the proposed algorithm.

3.2. The Algorithm

Based on the formulation, the proposed framework
consists of three modules: point cloud resampling, low-

Algorithm 1 Unsupervised Learning of Geometric Sam-
pling Invariance Representations

Input: Point cloud dataset P

Input: Randomly initialized model weights ® of the feature ex-
tractor £/ and model weights ® of the PMR network F’

Output: Learned model weights ® of the feature extractor £/

1: for each mini-batch P = {P1,...,Py} in P do
2: Subsample Q1 = {81P17...,81PJ\4}
Subsample Q2 = {S2P1, ..., S2P s}
Extract the features E(S1P;) and E(S2P;),i=1,....,. M
Calculate the InfoNCE loss in Eq. (3)
Upsample the point clouds in Q; and Q2 via the PMR
Calculate the Chamfer Distance loss in Eq. (4)
Calculate the final loss in Eq. (5)
Update the model weights ® and @ through backpropaga-
tion of the final loss
10: end for

B A A

resolution invariant representation learning and original-
resolution invariant representation learning. The architec-
ture of the network is demonstrated in Figure 2.

Point Cloud Resampling. Given an input point cloud P
={p1,pP2, -, PN} ,Pi € R?, we first resample P into dif-
ferent patterns. In order to explore low-resolution invariant
representation learning, we choose to subsample P into a
lower resolution. While there exist a variety of sampling
methods, such as uniform sampling, farthest point sampling
[33], and local sampling, we randomly sample a subset of
points uniformly for simplicity. By performing uniform
random subsampling on P twice respectively, we acquire
two sub-clouds Q; and Qg, where |Q1| = |Qz| = N/2.

Low-resolution Invariant Representation Learning.
The feature extractor £ takes the coordinates of the subsam-
pled point clouds Q; and Q2 as input. We encode point-
wise features of irregular sub-clouds QQ; and Qs through a
Siamese network with shared weights, where Edge Convo-
lution (EdgeConv) layers in DGCNN [56] are adopted as
basic feature extraction blocks. Specifically, given an input
sub-cloud Q = {qi, ...,qN/g}T,q,; € R3, we first con-
struct a K -nearest-neighbor graph, where each point is con-
nected to its K nearest neighbors in terms of the Euclidean
distance. Then, the encoded feature of a point q; is

fi= E(Q)i = Jmax ReLU(d(q; — qi) + #qi),  (6)

where j € N (i) denotes point j is in the neighborhood of
point . 6 and ¢ are learnable network parameters.

The edge convolution in Eq. (6) over each node essen-
tially aggregates features from neighboring nodes via edge
weights that capture the distance between points. By stack-
ing several edge convolution layers, each node is aggregated
with features of neighbors hops away. Further, as the sub-
sampling operation enlarges the distance between neighbor-
ing points, edge convolution for the low-resolution point
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Figure 2. The architecture of the proposed network. We subsample the input point cloud into two sub-clouds, and encode them through
a Siamese network with shared weights based on edge convolution. The InfoNCE loss is employed to maximize the mutual information
between distributions of the global features to perform low-resolution invariant representation learning. We then upsample each sub-cloud
to the original resolution, and minimize the distance from the input point cloud for the original-resolution invariant representation learning.

cloud captures longer-range dependencies and thus extracts
higher-level features that are invariant under various sam-
pling. Hence, the learned representation is able to capture
intrinsic geometric structures at low resolution.

Meanwhile, in order to learn discriminative features for
each object, we treat the features extracted from resampled
point clouds corresponding to the same object as positive
samples, while the features of point clouds resampled from
different objects as negative samples. We ensure features
of positive pairs to be as similar as possible, which satisfies
geometric invariance under various sampling patterns. In
contrast, features of the negative pairs are enforced to be as
distinctive as possible so as to distinguish among different
objects. This is achieved by optimizing the InfoNCE loss in
Eq. (3).

Original-resolution Invariant Representation Learning.

To ensure the geometric sampling invariant representa-
tions at the original resolution, we upsample the subsam-
pled point clouds Q; and Q2 to the resolution of the input
point cloud P, and minimize the Chamfer Distance between
P and each of the upsampled point clouds as described in
Eq. (4).

Among various point cloud upsampling approaches [60,

, 311, we choose the upsampling method based on patch
manifold reconstruction (PMR) in [3 1] for its simplicity and
effectiveness. Given a subsampled point cloud Q and its
encoded point-wise features £(Q), the idea of PMR-based
upsampling is to transform each point q; in Q along with its
embedded neighborhood feature f; into a local surface cen-
tering at q,—referred to as a patch manifold. By sampling
r times on these patch manifolds (r = 2 in our setting), we

are able to acquire the upsampled point cloud.

Specifically, we first construct a patch manifold around
each point in Q. A 2D manifold M embedded in the 3D
space parameterized by a feature vector f is defined as:

M(u,v;f) : [-1,1] x [-1,1] = R?, 7

where (u,v) is some point in the 2D rectangular area
[~1,1]2. Eq. (7) maps the 2D rectangle to an arbitrarily
shaped patch manifold parameterized by f. Hence, we draw
samples from the uniform distribution over [—1,1]? and
then transform them into the 3D space via the MLP-based

mapping:
Mi(u,’l];fi) = MLPM([U7U7fl])a (8)

which approximates arbitrarily-shaped manifolds.

Then, we sample two points from each patch manifold
M, ([u, v, £;]), leading to an upsampled point cloud with N
points:

q1 + MLP pq([u11, v11, fi])
q1 + MLP pq([u12, v12, f1])

P=F(Q) = : )

an + MLP p([unsi, varn, far))
gm + MLP s ([unre, vare, far])

where F' denotes the PMR network, M = |Q| = N/2.

Based on this approach, we upsample Q; and Q- to P,
and P, respectively, and minimize the Chamfer Distance
in Eq. (4) between the input point cloud P and each of the
upsampled point clouds to ensure the original-resolution in-
variant representation learning.



Method Year Unsupervised Accuracy
PointNet[36] 2017 No 89.2
KD-Net [23] 2017 No 90.6
PointNet++[37] 2017 No 90.7
PointCNN [27] 2018 No 92.2
PCNN [4] 2018 No 92.3
DGCNN [56] 2019 No 92.9
RS-CNN [29] 2019 No 93.6
LGAN [1] 2018 Yes 85.7
MRTNet [14] 2018 Yes 86.4
PCGAN [24] 2018 Yes 87.8
FoldingNet [60] 2018 Yes 88.4
ContrastNet [63] 2019 Yes 86.7
NSampler [40] 2019 Yes 88.7
3D-PointCapsNet [65] 2019 Yes 88.9
Multi-task [ 18] 2019 Yes 89.1
MAP-VAE [17] 2019 Yes 90.15
PointDist [46] 2020 Yes 84.7
PointGrow [48] 2020 Yes 85.8
ACD [13] 2020 Yes 89.8
PointOE [35] (1.83M para.) 2020 Yes 90.75
Ours (89.28K para.) Yes 90.36

Table 1. Classification accuracy (%) on ModelNet40 dataset.

Finally, we jointly optimize the low-resolution and
original-resolution invariant representation learning by
minimizing the loss function in Eq. (5) end-to-end. A sum-
mary of the proposed algorithm is presented in Algorithm 1.

4. Experiments

In this section, we evaluate the proposed model by ap-
plying it to point clouds on three representative downstream
tasks: point cloud classification, point cloud segmentation
and point cloud upsampling. We compare the proposed
approach with the state-of-the-art supervised and unsuper-
vised methods.

Note that, in all the tasks, we set the parameter « in
Eq. (5) in the same way. We initialize & = 1, and divide
it by 2 at the end of each epoch if Lcp > Ly. This aims
to keep Lcp and Ly at the same magnitude. During train-
ing, We adopt NVIDIA GeForce RTX 2080Ti in our exper-
iments.

4.1. Point Cloud Classification

Dataset We adopt the commonly used ModelNet40
dataset [58] for point cloud classification. This dataset con-
sists of 12,311 CAD models from 40 categories. The dataset
is divided into a training set containing 9,843 models and
a testing set containing 2,468 models. We sample 1,024
points for training and testing our model on the classifica-
tion task.

Implementation Details In this task, We train our feature
extractor via the Adam optimizer with a batch size of 32.
As for the hyper-parameters of the Adam optimizer, we set
the initial learning rate as 0.01, 37 as 0.9 and (35 as 0.999.
We use the cosine annealing scheduler [30] to decay the

learning rate. The setting is the same for the network of
learning the original-resolution invariant representations.

Specifically, The feature extractor contains five Edge-
Conv [56] blocks whose output feature dimensions are 32,
32, 64, 128 and 256, respectively. We concatenate the out-
put features of these layers to acquire a 512-dimensional
feature vector for each node. Then, the global max pooling
and average pooling layer are deployed to acquire a 1,024-
dimensional global feature vector. To evaluate the quality
of the extracted features, we train a linear Support Vector
Machine (SVM) [9] using the extracted global feature vec-
tor to produce predictions. We train the feature extractor on
the training set in an unsupervised fashion, whose weights
are frozen during training the SVM classifier. After that, we
test our method on the testing set for evaluation.

Experimental Results We compare our method with un-
supervised and supervised point cloud classification ap-
proaches. As shown in Table 1, our method outperforms
almost all the unsupervised methods by a large margin,
and is also competitive to the state-of-the-art unsupervised
method PointOE [35]. However, it is worth noting that our
model is much more lightweight, with much fewer param-
eters (89.28K) than PointOE (1.83M). Also, as we adopt
DGCNN [56] as the backbone and employ a linear SVM
classifier without any pretraining, we mainly compare our
method with networks using DGCNN as their backbone and
testing on ModelNet40 without pretraining for fair compar-
ison. Thus, approaches with a different backbone and mul-
tiple tasks [39] or a different dataset [59] and approaches
using larger datasets like ShapeNet to pretrain the model
[45, 43] are not considered here. Moreover, we com-
pare our method with well-known supervised models in-
cluding PointNet [36], PointNet++ [37] and DGCNN [56].
Though all parameters are optimized under supervision in
their models, some of the methods are comparable to our
unsupervised model.

Ablation Studies We conduct two ablation studies: 1)
invariant representation learning at a single resolution; 2)
different resampling strategies. Firstly, we study the ef-
fectiveness of the multi-resolution invariant representation
learning. We keep one resolution invariance learning phase
while removing the other, and compare the results with
that of the complete model in Table 2. While the perfor-
mance at a single low resolution or the original resolution is
reasonable, the multi-resolution invariance learning signif-
icantly outperforms only learning geometric invariant fea-
tures at a single resolution. As we discussed in Sec. 3, the
original-resolution invariant representation learning helps
extract more geometric details and semantic information
of the original point cloud, and the low-resolution invari-
ant representation learning is able to maximize the discrep-
ancy among point clouds corresponding to different objects.
Both phases are critical to downstream tasks.



Resolution Low Original Low + Original
Accuracy (%) | 84.89  84.68 90.36

Table 2. Ablation study on learning resolution.

Sampling Method URS LS FPS
Accuracy (%) 90.36 88.70 89.63

Table 3. Ablation study on sampling methods. URS: Uniform Ran-
dom Sampling; LS: Local Sampling; FPS: Farthest Point Sam-

pling.

Secondly, we explore the influence of resampling meth-
ods. We choose three different sampling strategies for com-
parison: 1) Uniform Random Sampling (URS), where the
probability of sampling each point in the point cloud fol-
lows a uniform distribution; 2) Farthest Point Sampling
(FPS), where each point to be sampled is as far away as
possible from points in the sampled set; 3) Local Sampling
(LS), where the points are sampled from a local part of the
point cloud. As presented in Table 3, the classification ac-
curacy is comparable under all the three sampling methods.
This shows that the performance of the proposed model is
insensitive to the sampling strategies, i.e., employing the
simplest sampling method is sufficient to learn discrimina-
tive invariant feature representations. This complies with
the principle of geometric sampling invariant representa-
tions, where various sampling patterns lead to invariant rep-
resentations of the same 3D object.

4.2. Point Cloud Segmentation

Dataset Point cloud segmentation is a fine-grained task,
aiming at predicting the category of each point in a given
point cloud. We employ the commonly used ShapeNet
Part dataset [61] as a benchmark for point cloud segmen-
tation, which consists of 16,881 point clouds from 16 cat-
egories. Each point cloud is annotated with fewer than six
parts and there are altogether 50 parts among all categories.
We employ 12,137 models for training and 2,874 models
for testing. In point cloud segmentation, we sample 2,048
points for this task.

Implementation Details We also use Adam optimizer to
train the network, and cosine annealing scheduler to decay
the learning rate. Hyper-parameters are set all the same as
they are in the classification task. The architecture of the
network is slightly different from above. Four EdgeConv
blocks compose the feature extractor, and their dimensions
are all 64. We then train a 4-layer MLP whose dimensions
are [1024, 256, 256, 128] following the settings of DGCNN
[56] to classify every point.

As in previous works [18, 65, 25], we evaluate our
method in a semi-supervised fashion. Firstly, we pre-train
the feature extractor unsupervisedly. Then, we randomly
sample a tiny fraction of data (1% and 5%) from the train-
ing set to fine-tune the model of DGCNN.

1% labeled data 5% labeled data

Method Year ToU ToU
SO-Net [25] 2018 64.0 69.0
3D-PointCapsNet [65] 2019 67.0 70.0
Multi-task [ 18] 2019 68.2 77.7
MortonNet [50] 2019 - 77.1
JointSSL [2] 2020 71.9 77.4
Ours 71.6 78.2

Table 4. Comparison with other semi-supervised segmentation
methods on ShapeNet Part dataset. Metric is mIoU (%) on points.

Experimental Results We adopt the commonly used
Intersection-over-Union (IoU) as the metric of point cloud
segmentation. We follow the same evaluation protocol as in
the PointNet [36]: the IoU of a point cloud is calculated by
averaging the IoUs of different parts occurring in that point
cloud, and the IoU of a category is obtained by averaging
the IoUs of all the point clouds belonging to that category.
The mean IoU (mloU) is finally calculated by averaging the
IoUs of all the test point clouds.

We compare our method with other semi-supervised
methods in Table 4. Results show that our model achieves
the state-of-the-art accuracy with 5% labeled data, and
achieves competitive performance compared with the state-
of-the-art with 1% labeled data. Note that, we didn’t com-
pare with PointContrast [59], since training from scratch
with their backbone (SR-UNet [42]) already achieves
71.8% with 1% labeled data and 79.3% with 5% labeled
data. Also, we didn’t compare with [45] as they have no
test under 1% or 5% labeled data.

Further, we present the per category comparison with su-
pervised methods and one state-of-the-art semi-supervised
method Multi-task [18] with 5% labeled data in Table
5, while the per category accuracy is not reported in
other semi-supervised methods listed in Table 4. Results
show that our semi-supervised model achieves 78.2% when
trained with only 5% of data, which pushes closer toward
the fully-supervised methods.

We also visualize our segmentation results in Fig-
ure 3. Compared with the state-of-the-art unsupervised
point cloud representation learning method MAP-VAE [17],
our model is able to distinguish geometric details better,
such as the transition between the leg and surface of a chair.

4.3. Point Cloud Upsampling

Point clouds acquired from LiDAR scanners or depth
sensors are often sparse, which hinders shape analysis and
reconstruction. Point cloud upsampling is thus crucial to the
subsequent 3D vision applications. We evaluate the pro-
posed unsupervised model on the point cloud upsampling
task over the ShapeNet Part dataset.

Implementation Details We demonstrate a pre-training
strategy to evaluate if the unsupervised pre-training with our
model helps improve the performance. We still choose the
PMR-based upsampling network [3 1] described in Sec. 3.2



Model :lr;l: Mean | Aero Bag Cap  Car  Chair PE;;e Guitar Knife Lamp Laptop Motor Mug Pistol Rocket lilc();;z Table
Samples 2690 76 55 898 3758 69 787 392 1547 451 202 184 283 66 152 5271
PointNet [36] 83.7 834 787 85 749 896 730 915 859 808 953 652 930 812 579 728 80.6
PointNet++ [37] 85.1 824 790 877 773 908 718 91.0 859 837 953 716 941 813 587 764 826
KD-Net [23] 82.3 80.1 746 743 703 8.6 735 902 872 810 949 574 867 781 51.8 699 803
PCNN [4] 100% 85.1 824 801 8.5 795 908 732 913 8.0 8.0 957 732 948 83 510 750 818
PointCNN [27] 86.1 84.1 865 8.0 808 906 797 923 884 83 961 772 953 842 642 800 83.0
DGCNN [56] 85.2 840 834 867 778 906 747 912 875 828 957 663 949 81.1 635 745 826
RS-CNN [29] 86.2 835 848 88 796 912 8l1.1I 916 884 860 960 737 941 834 605 777 836
Multi-task [ 18] 5% 71.7 784 677 782 662 855 526 877 816 763 937 561 801 709 447 60.7 73.0
Ours 5% 782 | 76.1 448 790 645 875 651 868 807 765 945 260 719 646 241 612 794

Table 5. Segmentation results on ShapeNet part dataset. We adopt both mIoU (%) on points and instance-averaged IoU (%).

(b) Ours

Figure 3. Visual comparison of point cloud part segmentation
with the state-of-the-art unsupervised method MAP-VAE. Our
method achieves more accurate results in tiny parts like junction.

for evaluation. We first pre-train the feature extractor with
our approach in an unsupervised fashion, and then employ
the learned representation from the pre-trained feature ex-
tractor as an initialization. We evaluate the effectiveness
of our model by comparing the results of PMR-based up-
sampling with our initialization and those with random ini-
tialization in a supervised fashion. The architecture of the
feature extractor and the settings of hyper-parameters are
all the same as in the segmentation task. Hyper-parameters
including the learning rate, training epochs and weight de-
cay are identical in training the network with and without
pre-training.

We randomly sample 1,024 and 512 points from each
point cloud in the ShapeNet Part dataset, and upsample
them to 2,048 points respectively, denoted as 2x and 4x.
The quality of the upsampled point cloud is measured by
the Chamfer Distance between the original and upsampled
point clouds.

Experimental Results As shown in Table 6, self-
supervised pre-training with our method outperforms the
randomly initialized PMR model at both upsampling rates.
The gain is much more significant in 4x upsampling which
requires more semantic features. Also, our results ad-
mit much smaller standard deviation over multiple training,

AT ST

LY ¥
Pl
4 tﬂ

#

(b) PMR (c) PMR+Pre-train

(d) Ground Truth

(a) Sparse Input

Figure 4. Visualization of the upsampling results at the upsam-
pling rate 4x. The results with our pre-training preserve geometric
details better than those without pre-training.

Method PMR PMR (Pre-training)
2X 4.82 + 0.12 4.63 £ 0.013
4x 8.80 £ 0.31 8.30 £ 0.084

Table 6. Comparison of point cloud upsampling results with and
without pre-training at the upsampling rates 2x and 4x, respec-
tively. The evaluation metric is the Chamfer distance.

which validates the stability of our method.

Further, we visualize the upsampling results from both
methods by the upsampling rate 4x in Figure 4. As marked
in rectangles, geometric details such as the legs of chairs
and tiny parts in airplanes are well preserved by our pre-
training method, while those in the random-initialization
method are significantly deformed.

5. Conclusion

In this paper, we propose a novel unsupervised learn-
ing of geometric sampling invariant representations over
graphs, aiming to learn discriminative and generic repre-
sentations that are invariant under various sampling patterns
and densities. To capture geometric structures and seman-
tic information at various scales, we exploit invariant rep-
resentations at both a low resolution and the original res-
olution, which enforces the encoder to learn intrinsic rep-
resentations. We apply the proposed model to downstream
tasks of point clouds including classification, segmentation
and upsampling, and experimental results demonstrate the
superiority of our model.
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