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ABSTRACT

Molecular Representation Learning (MRL) is widely ap-
plied in various downstream tasks, such as molecule genera-
tion, molecular property prediction and reaction prediction.
Nevertheless, MRL faces several challenges posed by the
vast chemical space and limited labeled-data availability.
In this paper, we propose Hierarchical Graph Transformer
(HieGT), integrating atom-level and motif-level represen-
tations to capture local-global characteristics of molecules
over a hierarchical graph. Leveraging Atom-wise Graph
Attention and Motif-wise Graph Attention, HieGT en-
hances intrinsic representation understanding of molecules.
The proposed method achieves state-of-the-art performance
over the molecular property prediction benchmark PCBA,
and competitive results on PCQM4Mv2 with better inter-
pretability.
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1 Introduction

Molecular Representation Learning (MRL) aims to utilize machine
learning to encode molecules as numerical feature vectors for down-
stream applications, such as molecular property prediction [39], reac-
tion prediction [31], drug design [32] and drug-drug interaction pre-
diction [42]. However, the chemical space of molecules are extremely
vast with limited labeled data, which poses great challenge to extract
effective representations.

There are three main manners to represent molecules: the finger-
print, sequence and graph, as shown in Fig. 1 (a)-(c). The fingerprint
[29] embodies hand-crafted information from molecules with a fixed
length, which is not flexible for various tasks. The sequence [35] mainly
refers to Simplified Molecular Input Line-Entry System (SMILES),
which consists of ASCII strings to describe molecules. Though SMILES
can be processed by Natural Language Processing methods, they are
typically difficult to understand intuitively and may encounter ambi-
guity [15]. In contrast, the graph is a natural way to represent the
topology of molecules. Typically the atoms are treated as nodes while
the bonds are treated as edges, then additional information can be in-
corporated in nodes and edges from atom and bond features. Thus,
graphs are widely adopted in recent studies [15, 44, 5, 21, 40, 24, 25,
23, 13]. In applications such as drug-drug interaction [43], drug-target
binding affinity prediction [12] and biochemical reactions [36], edge di-
rectionality may be meaningful for learning asymmetric relationships
between molecules. However, as we mainly focus on independent and
static molecular representations rather than molecular interactions and
dynamics, the chemical bonds between atoms within molecular graphs
can be regarded as symmetric edges, on account of which we represent
molecules as undirected graphs as in previous works [40, 24, 23, 13].

Previous works in graph-based molecular representation learning
can be divided into three classes [7]: molecular-topology-based meth-
ods [15, 44], knowledge-graph-based methods [5], and spatial-learning-
based methods [21, 4, 8]. Molecular-topology-based methods focus
on the topological structures or substructures. However, most quan-
tum chemical properties are derived from 3D conformations [23], which
cannot be reflected from 2D topologies. Knowledge-graph-based meth-
ods extract molecular representations by knowledge graphs rather than
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molecular graphs. Nevertheless, knowledge graphs relies heavily on
hand-crafted features and domain knowledge, and may discard large
amounts of structural features. Spatial-learning-based methods fo-
cus more on 3D geometric features of molecules. Since 3D geomet-
ric features serve as a vital role in predicting molecular properties,
we choose to integrate molecular-topology-based and spatial-learning-
based paradigms to extract more comprehensive molecular representa-
tion combining both 2D & 3D graph features.

As one of the most powerful models to learn molecular topological
and spatial representations, graph Transformer [41] has recently gained
state-of-the-art performance on many MRL tasks [40, 24, 25, 23, 13],
due to its distinct self-attention mechanism for capturing long-range
structural dependencies. Previous works in graph Transformer [40, 24,
23] mainly focus on the global information flow among node represen-
tations. Edge representations are merely utilized as a bias term to
the attention module. To emphasize the significance of edge repre-
sentations equal to node representations, the Edge-augmented Graph
Transformer (EGT) [14] introduced dynamic edge channels that are up-
dated across layers, enabling information flow between node and pair
representations. Furthermore, TGT-At [13] enabled direct communi-
cation between two adjacent pairs in a graph via novel triplet attention
and aggregation mechanisms.

Though the atom-level global graph structure has been effectively
exploited in previous works, the local context of molecules is not fully
studied yet in the networks. It has been found that molecules can be
characterized by a set of motifs, each of which may correspond to a cer-
tain type of local substructures and functions (similar to chemical func-
tional groups) [34]. As illustrated in Fig. 2, the sample molecule can
be composed of four motifs, such as the benzene ring and the carbonyl
group (the 3rd and 4th colored circle from left to right). Accordingly,
the molecule can be represented as a motif-wise graph, embodying a
hierarchical structure. Hence, we propose Hierarchical Graph Trans-
former (HieGT), the first hierarchical Transformer framework to learn
molecular representation, to the best of our knowledge. We incorpo-
rate both atom-level and motif-level graph representations and come
up with a hierarchical graph encoding strategy to shed new light on
local-global characteristics of molecules.

In particular, we firstly decompose the atom-wise molecular graph
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Figure 1: Representations of molecules. (a) Fingerprints calculated as MACCSFP by
rdkit [18] in binary. (b) The SMILES. (c) The graph. (d) The proposed hierarchical
graph representation, where molecules can be characterized by a set of motifs. Each
motif may correspond to a certain type of local substructures and functions.
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Figure 2: The atom-wise graph could be decomposed into the motif-wise graph by
certain rules.

into motifs based on three hand-crafted rules, as specified in Sec. 4.1.
Then the motifs are assembled with the same connectedness, compos-
ing the motif-wise graph, as illustrated in Fig. 2. The atom-wise and
the motif-wise graphs are both exploited in the proposed method in a
hierarchical manner, as illustrated in Fig. 1(d).

Then, we propose to learn molecular representations based on two
natural assumptions. First, there exists information exchange among
motifs via inter-motif edges. Second, the information flow among atoms
in the same motif are regulated by the motif via intra-motif edges.
Based on these two assumptions, we develop two procedures to learn
Atom-wise Graph Attention (AGA) via intra-motif edges, as illustrated
in Fig. 3(a), and Motif-wise Graph Attention (MGA) via inter-motif
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Figure 3: Atom-wise Graph Attention (AGA) and Motif-wise Graph Attention
(MGA).

edges, as illustrated in Fig. 3(b). After AGA and MGA, the learned
molecular representations are projected for downstream tasks.

Our main contributions are summarized as follows:

• We propose a novel hierarchical molecular representation learning
paradigm (HieGT), which integrates both atom-level and motif-
level information.

• We introduce Atom-wise Graph Attention and Motif-wise Graph
Attention to learn the information flow within and among motifs,
by constraining attention over intra-motif and inter-motif edges.

• Experimental results demonstrate that our approach estab-
lishes a new state-of-the-art (SOTA) on the PCBA dataset [11]
and achieves competitive performance with the SOTA on the
PCQM4Mv2 dataset [10] while obtaining better interpretability.

2 Related Works

Previous works in graph-based MRL methods can be divided into three
classes [7]: molecular-topology-based methods, knowledge-graph-based
methods, and spatial-learning-based methods.

Molecular-topology-based methods. Molecular-topology-
based methods focus on the topological structures or substructures
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of the molecular graphs. Jin et al. [15] generate molecular graphs
from SMILES strings by the junction tree variational autoencoder for
molecular graph generation. Zhang et al. [44] extract motifs from
molecular graphs and design a self-supervised motif generation frame-
work for molecular property prediction. However, motif features are
used without explicit atom features, and 2D topology merely reveals
the connectivity between atoms, while the actual 3D distances may
significantly vary between different atom pairs sharing the same local
topology.

Knowledge-graph-based methods. Knowledge-graph-based
methods extract molecular-structure-invariant knowledge. KCL [5]
adopts contrastive learning with an external knowledge graph, which is
formed by triples in the form of (chemical element, relation, attribute).
Nevertheless, atom pair-wise characteristics are largely neglected, es-
pecially quantitative features such as geometric features.

Spatial-learning-based methods. Spatial-learning-based meth-
ods pay more attention to 3D geometric features of molecules. Ge-
omGCL [21] proposes graph contrastive learning by embedding dis-
tances and angles across 2D and 3D views. The properties of molecules
are mostly determined by their 3D structures [4, 8], which explains why
spatial-learning-based methods typically achieve better performance on
MRL tasks.

By combining molecular-topology-based and spatial-learning-based
paradigms, the graph Transformer model has recently achieved state-
of-the-art performance across numerous downstream tasks in MRL
with its unique self-attention mechanism. Graphormer [40] encodes the
centrality, shortest path distance and edge features into the standard
Transformer architecture. Nevertheless, only 2D topological informa-
tion is encoded. Transformer-M [24] develops two separated channels to
encode both 2D and 3D structural information and incorporates them
with the atom features in the network modules. GPS++ [25] is a hybrid
Message Passing Neural Network (MPNN) and Transformer to incorpo-
rate 3D atom positions and an auxiliary denoising task. Uni-Mol+ [23]
generates an initial molecule conformation from simple methods such
as RDKit [18], and iteratively updates the conformation, which will
be used to further predict molecular properties. TGT-At [13] enables
direct communication between two adjacent pairs in a graph via novel
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triplet attention and aggregation mechanisms. Our method adopts the
transformer architecture but incorporates both atom-level and motif-
level features in a hierarchical manner to extract local-global intrinsic
molecular representation.

3 Preliminary

3.1 Graph Neural Networks (GNN)

We represent molecules on undirected graphs. An undirected graph
G = {V, E} is composed of a node set V with cardinality |V| = N , and
an edge set E connecting nodes. The typical GNNs iteratively update
the representation of a node vi by aggregating representations of its
neighbors:

hl+1
i = UPDATE(hl

i,AGGREGATE({hl
j}j∈N (vi))), (1)

where hl
i is the representation of vi at the l -th layer, and N (vi) is the

set of neighbors of vi.

3.2 Transformer

The Transformer model consists of Transformer layers [33], each of
which includes a self-attention module and a position-wise feed-forward
network (FFN).

Multi-head self-attention. Denote Hl as the input of self-
attention module on the transformer layer l, and d as the hidden di-
mension, one head k of self-attention Ak(H) is represented as:

Qk = HlWQk
,Kk = HlWKk

,Vk = HlWVk
, (2)

Ak(Hl) = softmax(
QkK

⊤
k√

d
+Bk)Vk, (3)

where WQk
, WKk

and WVk
are learnable projection matrices, and Bk

is the graph structural encodings below as the attention bias of the k
heads.

Let Wk be the learnable projection matrix to map the concatenated
output of all h heads, the multi-head self-attention is denoted as:

A(Hl) = CONCAT(A1,A2, ...,Ah)Wl. (4)
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Figure 4: The framework of the proposed Hierarchical Graph Transformer.

Transformer layer. After the multi-head self-attention, the feed-
forward network (FFN) is applied, which is composed of a pre-norm
layer, a linear transformation layer, a non-linear activation layer, fol-
lowed by another linear transformation layer. As in previous works [40,
13], we choose the widely used Gaussian Error Linear Unit (GELU) [9]
as the activation function. Both the output of self-attention and FFN
of layer l is processed with pre-norm layer normalization and residual
connection:

H′
l = LayerNorm(Hl +A(Hl)), (5)

Hl+1 = LayerNorm(H′
l + FFN(H′

l)), (6)

where Hl+1 is the output of the transformer layer l + 1.

4 The Proposed Hierarchical Graph Transformer

We propose a Hierarchical Graph Transformer framework, as illustrated
in Fig. 4. Our molecular representation learning consists of four steps:
1) hierarchical graph construction, where we design three hand-crafted
rules to decompose the atom-wise graph into a motif-wise graph; 2)
Atom-wise Graph Attention, which computes self-attention within mo-
tifs via intra-motif edges; 3) Motif-wise Graph Attention, which com-
putes self-attention between motifs via inter-motif edges; and 4) output
projection, which obtains representations of the whole graph by linear
transformation. We elaborate on these steps in the following.



Molecular Representation Learning via Hierarchical Graph Transformer 9

Table 1: Input atomic features and the corresponding rdkit functions.

Features Rdkit Functions
the atomic number GetAtomicNum()

the chiral tag GetChiralTag()
the degree GetTotalDegree()

the formal charge GetFormalCharge()
the number of connected Hs GetTotalNumHs()

the number of radical electrons GetNumRadicalElectrons()
hybridization GetHybridization()
aromaticity GetIsAromatic()

whether is in ring IsInRing()

Table 2: Input bond features and the corresponding rdkit functions.

Features Rdkit Functions
the bond type GetBondType()
the bond stereo GetStereo()

whether is conjugated GetIsConjugated()

4.1 Hierarchical Graph Construction

Graph motifs are frequently-occurring subgraph patterns (e.g., func-
tional groups of molecules), which are fundamental for both the struc-
ture and function of molecules. For instance, the benzene ring is one
of the most typical motifs among molecules, which embodies special
chemical properties not reflected by individual atoms. Therefore, to
better extract molecular features, we propose to construct atom-wise
graph and motif-wise graph to learn both local and global molecular
representations.

The atom-wise graph. Following previous works [40, 24, 13],
we use the input atomic and bond features as calculated by the OGB
[11] Python library. Specifically, they can be represented in Table 1 and
Table 2 by rdkit functions. We treat atoms as nodes and bonds as edges,
then the input atomic and bond features are projected via a learnable
embedding layer into node embeddings Xa and edge embeddings Ea.

The motif-wise graph. To obtain motifs from a molecule in a
universal manner, we consider bridge bonds that connect motifs based



10 Wang et al.

on three rules:
Rule 1 : The bonds that connect rings and chains (non-ring sub-

graphs);
Rule 2 : The bonds in chains that connect carbon and non-carbon

atoms;
Rule 3 : The bonds in chains whose types are not single (i.e.double

or triple).
By breaking bridge bonds, a molecule is transformed from an atom-

wise graph to a motif-wise graph, where each motif is represented as
a node, and the bridge bonds serve as the inter-motif edges. The new
node embeddings of the motif-wise graph are obtained via Atom-wise
Graph attention discussed in Sec. 4.2, while the new edge embeddings
are part of the atom-wise-graph edge embeddings, merely retaining
embeddings of inter-motif edges.

4.2 Atom-wise Graph Attention (AGA)

Given the atom-wise graph, we can obtain the AGA via intra-motif
edges Eintra_m, illustrated as the module painted light green in Fig. 4.

As the self-attention mechanism described in Sec. 3.2 only calcu-
lates the context between each node and all the other nodes, much
structural information of a graph is neglected, such as the relation be-
tween node pairs. Therefore, we introduce three graph structural en-
codings of the previous work [40]: centrality encoding, path encoding
and edge encoding.

Centrality encoding. Node centrality measures how important a
node is in the graph. Because degree centrality is one of the standard
centrality measures in literature, the degree encoding of node vi is
defined as:

ΨCentrality
i = z−

deg−(vi)
+ z+

deg+(vi)
, (7)

where z−
deg−(vi)

, z+
deg+(vi)

∈ Rd denote embedding vectors with indegree
deg−(vi) and outdegree deg+(vi) respectively. For undirected graphs
like molecular graphs, deg−(vi) and deg+(vi) are equal.

Path encoding. In the Transformer architecture, positional de-
pendency is generally encoded as bias terms to encode global structural
information. To extract positional dependency between atom pairs of a
molecule, encoding the distance is the most natural way. To avoid am-
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biguity with the 3D distance encoding, we apply 2D distance encoding
for each connected atom pair (vi, vj) but rename it to path encoding:

ΨPath
ij = bSPD(vi,vj), (8)

where bSPD(vi,vj) is a learnable scalar indexed by the Shortest Path
Distance (SPD) between vi and vj .

Edge encoding. For molecular graphs, edge features represent
critical properties of bonds between connected atoms. For each con-
nected atom pair (vi, vj), the edge encoding is defined as:

ΨEdge
ij =

1

N

N∑
n=1

xen(wn)
T , (9)

where xen is the feature of the n-th edge en in the shortest path between
vi and vj , and wn is the n-th weight embedding of the same dimension
as xen .

Though the above encoding methods effectively represent 2D struc-
tural features of molecular graphs, the 3D geometric features are ne-
glected, which are more practical for discovering the actual properties
of molecules. Therefore, we introduce the 3D distance encoding as
[24], which is naturally invariant to translation and rotation of the 3D
molecular graphs.

3D distance encoding. While path encoding can effectively rep-
resent topological distances, it fails to take the actual 3D Euclidean
distances into account. Due to the complex conformation of a molecule,
one atom can be close to another atom (which means a short 3D Eu-
clidean distance) but have a long SPD. Hence, we apply 3D distance
encoding as a complement for path encoding, similar to the one used
in Transformer-M [24] and TGT [13]:

ϕk
ij =

1√
2π · |σk|

exp

−1

2

(
mk

ij · dij + bkij − µk

|σk|

)2
 , (10)

where dij is the 3D Euclidean distance between atoms i and j. mk
ij , b

k
ij

are learnable scalars indexed by the pair of atom types, and µk, σk

are learnable parameters for the k-th kernel (k = 1, ...,K where K
is the number of Gaussian Basis kernels [30]). Denoting ϕij as the
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concatenation of the outputs of all kernels, the 3D distance encoding
of pair (i, j) is defined as:

ΨDistance
ij = GELU(ϕijWd1)Wd2, (11)

where Wd1 and Wd2 are learnable weight matrices, and GELU is the
Gaussian Error Linear Unit [9] as the activation function.

The path encoding, edge encoding, and 3D distance encoding are
combined as the atom-wise attention bias:

Ba = ΨPath +ΨEdge +ΨDistance. (12)

For simplicity, we omit the notation of multi-heads. Inspired by
EGT [14], we use the intra-motif edge embeddings Eintra_m to gate
the information flow between atoms. Given node representations Ha,
the attention matrix Aa in the atom-wise graph is denoted as:

Qa = HaWQ,Ka = HaWK ,Va = HaWV , (13)

Aa = softmax(
QaK

⊤
a√

d
+Ba)⊙ σ(Eintra_m)Va. (14)

The network outputs the embedded representation of each atom for
the MGA module.

4.3 Motif-wise Graph Attention (MGA)

Given the motif-wise graph, we can obtain the MGA via inter-motif
edges Einter_m, illustrated as the module painted light orange in Fig.
4.

In this module, we deploy a similar network framework as in the
AGA module, but choose different encodings. As the motif-wise graph
possesses new topological structure and edges, we retain the above
manners of computing the path encoding ΨPath′ and edge encoding
ΨEdge′ , and combine them as the motif-wise attention bias:

Bm = ΨPath′
+ΨEdge′ . (15)

Nevertheless, the distances between motifs do not make much sense
due to the nonexistence of explicit centers in each motif, so we discard
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them in the module. Similar to AGA, the attention matrix Am in the
motif-wise graph is denoted as:

Am = softmax(
QmK⊤

m√
d

+Bm)⊙ σ(Einter_m)Vm. (16)

The network outputs the embedded representation of each atom for
output projection.

Despite the similarity in the network architecture of AGA and MGA
in Fig. 4, there are some differences in the specific implementation
of AGA and MGA. First, the input data are different. AGA takes
the node representations Ha as input, while MGA takes the output of
AGA as input. Second, the atom-wise attention bias Ba in AGA and
the motif-wise attention bias Bm in MGA are calculated differently,
as described in Eq. 12 and Eq. 15. Third, the information flows of
AGA and MGA are gated by intra-motif edges and inter-motif edges,
respectively.

4.4 Output Projection

In this module, the output representation from the motif module is
projected as the overall graph representation by linear transformation
for downstream tasks.

5 Experiments

5.1 Experimental Setup

We follow the experimental settings in previous works [40, 24, 13].
First, we pre-train our model on the large quantum chemistry datasets
PCQM4Mv2 from OGB Large-Scale Challenge [10]. After pre-training,
we implement finetuning on PCBA [11] for the classification task.

PCQM4Mv2. PCQM4Mv2 is a quantum chemistry dataset origi-
nally curated under the PubChemQC project [26]. The total number
of training samples is 3.37 million. The task of PCQM4M-LSC is to
predict HOMO-LUMO energy gap of molecules calculated by density
functional theory (DFT) [3] with their 2D molecular graphs, which is
one of the most practically-relevant quantum chemical properties of
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molecule science [10]. We utilize the same dataset-division manner as
[10] for fair comparison.

PCBA. PCBA is a molecular property prediction dataset with
437,929 molecules. We follow MoleculeNet [37] to split datasets into
the training, validation and test set with a 80/10/10 ratio.

The experiments are conducted over eight RTX3090 (24GB RAM).
We employ 24 transformer layers, and the dimension of hidden layers
and feed-forward layers is set to 768. The number of attention heads
is set to 32.

5.2 Pre-training

The model is pre-trained on the training set of PCQM4Mv2. The train-
ing set provides 3D structural information for training molecules com-
puted by DFT. We calculate a rough version of coordinates by rdkit
[18] for the validation set and the test set. The objective is predicting
the HOMO-LUMO gap. The results are presented in Table 3 in terms
of Mean Absolute Error (MAE) in eV unit. We compare our algorithm
with 14 methods: GINE-VN [2, 6], GCN-VN [17, 6], GIN-VN [38, 6],
DeeperGCN-VN [20, 6], TokenGT [16], GRPE [27], Graphormer [40],
GraphGPS [28], GEM-2 [22], Transformer-M [24], GPS++ [25], Uni-
Mol+ [23], and TGT-At [13].

As shown in Table 3, our method achieves competitive performance
with other state-of-the-art methods. Though the MAE of our method
on pre-training is slightly higher than that of TGT-At, the finetuning
result in Sec. 5.3 is better, which shows greater potential on downstream
tasks. In addition, the interpretability of our method is stronger, as
will be specified in Sec. 5.4. The time cost of our method is competitive
to other state-of-the-art methods with available efficiency data [23, 13],
as shown in Table 4.

5.3 Finetuning

As the 3D coordinates are not provided for PCBA, we calculate coor-
dinates by rdkit as well. The results are presented in Table 5 in terms
of Average Precision (AP). We compare our algorithm with 7 methods:
DeeperGCN [20], DGN [1], GINE [2], PHC-GNN [19], GIN-VN [38,
6], Graphormer [40] and TGT-At [13]. Our method outperforms the
state-of-the-art approaches and achieves performance gain by around



Molecular Representation Learning via Hierarchical Graph Transformer 15

Table 3: Results on PCQM4Mv2. The evaluation metric is the Mean Absolute Error
(MAE↓) [eV]. Bold values indicate the best performance.

Model Year Source Valid
MAE↓

Test-dev
MAE↓

GINE-VN [2, 6] 2020 arXiv preprint,
ICML 0.1167 -

GCN-VN [17, 6] 2017 ICLR, ICML 0.1153 0.1152
GIN-VN [38, 6] 2018 ICLR, ICML 0.1083 0.1084
DeeperGCN-VN

[20, 6] 2020 arXiv preprint,
ICML 0.1021 -

TokenGT [16] 2022 NeurIPS 0.0910 0.0919
GRPE [27] 2022 ICLR 0.0867 0.0876

Graphormer [40] 2021 NeurIPS 0.0864 -
GraphGPS [28] 2022 NeurIPS 0.0852 0.0862

GEM-2 [22] 2022 arXiv preprint 0.0793 0.0806
Transformer-M [24] 2022 ICLR 0.0772 0.0782

GPS++ [25] 2022 arXiv preprint 0.0778 0.0720

Uni-Mol+ [23] 2023 Nature
Communications 0.0693 0.0705

TGT-At [13] 2024 ICML 0.0671 0.0683

HieGT 0.0769 0.0781

4.99%, which gives credits to the effective local-global representation
learning by the proposed hierarchical framework.

5.4 Interpretation

To show the interpretability of the proposed method, we visualize the
attention scores of two randomly sampled molecules in head 0 and head
1 after AGA and MGA, compared with the state-of-the-art method
TGT [13], as shown in Fig. 5. The results illustrate the main impact
within intra-motif edges in AGA and inter-motif edges in MGA, which
demonstrate the intuitive interpretability of the proposed method. For
instance, in AGA, the attention weights are constrained in atoms of
the same motif of the target atom. In MGA, the attention weights are
significant in atoms of other motifs. In comparison, the distribution
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Table 4: Efficiency comparison on PCQM4Mv2.

Model GPUs Training time Inference time
Uni-Mol+ [23] 8 A100 GPUs 5 days 7 minutes

TGT [13] 8 A100 GPUs 4 days -
HieGT 8 RTX3090 GPUs 5 days 8 minutes

Table 5: Results on PCBA. The evaluation metric is the Average Precision (AP↑).
Bold values indicate the best performance.

Model Year Source Test-AP(%)↑

DeeperGCN-VN-FLAG [20] 2020 arXiv preprint,
ICML 28.42±0.43

DGN [1] 2021 ICML 28.85±0.30

GINE-VN [2, 6] 2020 arXiv preprint,
ICML 29.17±0.15

PHC-GNN [19] 2021 ICANN 29.47±0.26
GIN-VN [38, 6] 2018 ICLR, ICML 29.02±0.17

Graphormer-FLAG [40] 2021 NeurIPS 31.40±0.34
TGT-Ag+TGT-At-DP [13] 2024 ICML 31.67±0.31

HieGT 33.25±0.27

of attention weights in TGT is spread around and it is not easy to
discover chemical mechanism. Moreover, the atoms with significant
weights are consistent in Head 0 and Head 1 in AGA (the neighbor
atoms of the candidate atom) or MGA (atoms in other motifs), while
atoms with significant weights vary greatly in Head 0 and Head 1 in
TGT (either the neighbor atom of the candidate atom, or one of the
farthest atoms). That is to say, the weights of atoms are more stable
across different attention heads in our method. This indicates that the
latent features learned by AGA and MGA are more intrinsic than TGT
for molecular representation learning.
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Figure 5: The visualization of attention weights of two randomly sampled molecules.
The node marked by a red square represents the candidate atom, while the other
atoms are shaded from red to white based on the magnitude of their attention
weights relative to the candidate atom.

5.5 Ablation Study

We conduct ablation studies on the two major components of our algo-
rithm: AGA and MGA. Experiments are conducted on the PCQM4Mv2
dataset in Table 6. The evaluation metric is the Mean Absolute Error
(MAE) in eV unit. The results with both AGA and MGA are signif-
icantly better than results with removing one of the modules, which
validates the effectiveness of our method. In addition, keeping merely
the AGA module achieves lower MAE than remaining merely MGA.
This could suggest that atom features serve as a comparatively more
important role in molecular representation learning.
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Table 6: Ablation Study on PCQM4Mv2.

Model AGA MGA Valid MAE↓
HieGT ✕ ✓ 0.0856
HieGT ✓ ✕ 0.0812
HieGT ✓ ✓ 0.0769

6 Conclusion

In this work, we propose Hierarchical Graph Transformer to learn local-
global molecular representations. As molecules can be decomposed
into motifs that possess local substructures and functions, we develop
rules to construct motif-wise graphs from atom-wise graphs, and de-
sign Atom-wise Graph Attention and Motif-wise Graph Attention con-
strained by intra-motif edges and inter-motif edges. Experimental re-
sults show that the proposed method achieves competitive results on
pretraining and significantly outperforms state-of-the-art graph repre-
sentation learning approaches on finetuning. In future, we plan to ap-
ply the proposed method on more downstream tasks, such as molecule
generation and molecular conformation learning.
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