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Abstract In this paper, we propose and evaluate a novel
shape measure describing the extent to which a 3D poly-
gon mesh is rectilinear. The rectilinearity measure is based
on the maximum ratio of the surface area to the sum of three
orthogonal projected areas of the mesh. It has the follow-
ing desirable properties: 1) the estimated rectilinearity is al-
ways a number from (0,1]; 2) the measure is invariant un-
der scale, rotation, and translation; 3) the 3D objects can
be either open or closed meshes, and we can also deal with
degenerate meshes; 4) the measure is insensitive to noise,
stable under small topology errors, and robust against face
deletion and mesh simplification. Moreover, a genetic algo-
rithm (GA) can be applied to compute the approximate rec-
tilinearity efficiently. We find that the calculation of recti-
linearity can be used to normalize the pose of 3D meshes,
and in many cases it performs better than the principal com-
ponent analysis (PCA) based method. By applying a simple
selection criterion, the combination of these two methods re-
sults in a new pose normalization algorithm which not only
provides a higher successful alignment rate but also corre-
sponds better with intuition. Finally, we carry out several
experiments showing that both the rectilinearity based pose
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normalization preprocessing and the combined signatures,
which consist of the rectilinearity measure and other shape
descriptors, can significantly improve the performance of
3D shape retrieval.
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1 Introduction

How to quantify shape is an important research area with
many applications in computer vision (Loncaric 1998;
Zhang and Lu 2004; Tangelder and Veltkamp 2008; Yang et
al. 2007). Usually it is preferable if the shape measures have
direct intuitive meanings, for example, compactness (Har-
alick 1974), triangularity (Rosin 2003), ellipticity (Prof-
fitt 1982), rectangularity (Rosin 1999), rectilinearity (Žu-
nić and Rosin 2003; Rosin 2008), convexity (Žunić and
Rosin 2004), symmetry (Leou and Tsai 1987) and chiral-
ity (Petitjean 2003). Having intuitive shape measures means
that the results of shape retrieval queries can be explained
in a manner readily understandable by the user. Although
many approaches have been proposed for these kinds of 2D
shape measures, many of them cannot be directly general-
ized to 3D.

Up to now, just a few global shape descriptors with direct
meanings for 3D models have been developed. In this paper,
we investigate the rectilinearity of 3D meshes. The potential
benefits of rectilinearity were demonstrated recently through
a psychophysical experiment which showed that humans ap-
peared to discriminate artifacts and animals based on recti-
linearity (Levin et al. 2001). The basic idea of rectilinearity
is demonstrated by a simple example using some commonly
seen objects shown in Fig. 1. Intuitively, we would consider
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Fig. 1 Sphere, cylinder, rectilinear object and cube; underneath are
the corresponding rectilinearity values estimated by our method

the leftmost sphere as the least rectilinear model, while the
second one, a cylinder, is more rectilinear than the sphere,
and the third object, as well as the rightmost cube, should
have the greatest value of rectilinearity. We would like to
define a shape measure describing the extent to which a 3D
model is rectilinear, which for convenience should be a value
between 0 and 1.

The most relevant work is presented in the paper (Žunić
and Rosin 2003) where Žunić and Rosin proposed two rec-
tilinearity measurements for 2D polygons. They used values
which consist of the ratio of the L2 norm perimeter and L1

norm perimeter of a polygon. Motivated by their research,
this paper introduces a novel shape measure describing the
extent to which a 3D polygon mesh is rectilinear. The rec-
tilinearity measure is based on the maximum ratio of the
surface area to the sum of three orthogonal projected areas
of the mesh. To the best of our knowledge, our work (Lian
et al. 2008) is the first to quantify the rectilinearity of 3D
objects, and this article is the extended version of the con-
ference paper.

The rectilinearity measurement proposed in this paper
has following advantages:

1. The measure corresponds with the intuitive notion of rec-
tilinear 3D shapes and the estimated rectilinearity is al-
ways a number from (0,1];

2. The measurement is insensitive to noise, stable under
small topology errors, and robust against face deletion
and mesh simplification;

3. The measurement can be applied to both open and closed
meshes. Moreover, we can also deal with poor quality
meshes, which often occur in practice, such as flipped
normals, degenerate elements, zero area triangles and so
on;

4. The measure is straightforward to compute and is invari-
ant under scale, rotation, and translation.

The rectilinearity of 3D meshes can be applied in several
different fields, such as, computer vision, artificial intelli-
gence and pattern recognition. This paper demonstrates the
utility of rectilinearity calculation for 3D shape retrieval and
pose normalization.

The explosion in the number of available 3D models has
led to the development of 3D shape retrieval systems that,

given a query object, retrieve similar 3D models (Tangelder
and Veltkamp 2008). The rectilinearity measure can be di-
rectly used as a shape descriptor for 3D shape retrieval, and
our experiments show that the combination of rectilinear-
ity measure and other descriptors can markedly improve 3D
shape retrieval performance.

Since a large number of shape descriptors are not invari-
ant under similarity transformations (scaling, translation and
rotation) pose normalization is often necessary during the
preprocessing stages of 3D shape retrieval systems. To nor-
malize a 3D mesh for scale, one possible approach is to
scale the average distance of the points on its surface to
the center of mass to a constant, while translation invari-
ance is accomplished by translating the center of mass to
the origin. Securing rotation invariance is usually more diffi-
cult than securing scale and translation invariance. The most
prominent tool for accomplishing rotation invariance is prin-
cipal component analysis (PCA) (Paquet and Rioux 1999;
Vranić et al. 2001). The PCA algorithm is fairly simple
and efficient. However, it may erroneously assign the princi-
pal axes and produce inaccurate normalization results, espe-
cially when the eigenvalues are equal or close to each other,
which is its intrinsic drawback that cannot be overcome eas-
ily (Tangelder and Veltkamp 2003). Moreover, many princi-
pal axis based pose normalization results conflict with our
intuition. For example, applying PCA, a cabinet will be nor-
malized as Fig. 2(a), while it is obvious that the normaliza-
tion result in Fig. 2(b) corresponds better with human per-
ception. Usually, when we express or design a 3D model
in the 2D domain, drawing three images from the left, top
and front directions, which is termed the three-view-drawing
method, might be the first choice. At the same time, we may
recall that when drawing these images, the object should
be placed in a properly aligned pose. So, it is reasonable
to infer that the pose suitable for drawing three-view im-
ages could set up a canonical coordinate system for shape
matching. We find that, compared to principal axis based
methods, the calculation of the rectilinearity measure pro-
vides a better tool for pose normalization of a huge num-
ber of models, especially whose shape characteristics are
dominated by rectilinearity. Furthermore, we demonstrate
that, using a minimum-area selection criterion, the combi-
nation of PCA and the rectilinearity based method can prop-
erly normalize the pose for almost all models (more than
98.2%, which has been approximately verified by an exper-
iment with 39 participants) in the Princeton Shape Bench-
mark (PSB) database (Shilane et al. 2004). However, there
are still some models that can neither be correctly normal-
ized by PCA nor rectilinearity.

Assume that all models can be normalized to draw three-
view images corresponding well with intuition, then the po-
sitions of three coordinate axes are fixed, that means there
are 24 possible choices for the right-handed coordinate sys-
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Fig. 2 Normalized cabinets.
Figure (a) and figure (b) show
two different poses of a cabinet
normalized by the PCA based
method and our method,
respectively. Above are their
corresponding front, left, and
top views

tem, namely, 24 different poses are still plausible for a nor-
malized model. Using different resolution geodesic spheres
generated from the unit octahedron, we can extract different
number of shape descriptors from the depth-buffers or sil-
houettes captured on their vertices. Moreover, according to
the properties of these geodesic spheres, corresponding ef-
ficient shape matching can be carried out. The complexity
of this matching algorithm is O(N ), while the well-known
LFD method (Chen et al. 2003) is O(N3) (here N denotes
the number of views compared). Experiments show that our
method not only dramatically outperforms the LFD method
in retrieval speed but also in the capability of discrimination.

The major contributions of this paper are threefold. First,
we provide the complete definition of a rectilinearity mea-
sure describing the extent to which a 3D mesh is rectilin-
ear. Second, we describe a novel pose normalization scheme
whose result is suitable for drawing standard three-view im-
ages, and thus corresponds better with our intuitive percep-
tion than other methods. Third, we demonstrate how to ap-
ply the calculation of rectilinearity to further improve the
performance of 3D shape retrieval.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses previous work. Section 3 describes nota-
tions and basic concepts of rectilinearity for 3D meshes.
Then, we present the definition of a rectilinearity measure
for 3D meshes and demonstrate how to calculate it approx-
imately in Sect. 4 where corresponding theorems are also
explicitly proved. Afterwards, Sect. 5 illustrates some exper-
imental results which validate the effectiveness and robust-
ness of our shape measurement. Furthermore, applications
of 3D rectilinearity to pose normalization and shape retrieval
are introduced in Sects. 6 and 7, respectively. Finally, we
provide the conclusion of this paper as well as some future
research directions in Sect. 8.

2 Related Work

Shape measurement So far, just a few global shape de-
scriptors with intuitive meanings for 3D models have been
proposed. Zhang and Chen (2001a) introduced methods to
calculate global features such as volume-area ratio, statisti-
cal moments, and Fourier transform coefficients efficiently
and then applied these descriptors for 3D shape retrieval
(Zhang and Chen 2001b). Paquet et al. (2000) used the
bounding box and other descriptors for 3D shape matching.
Fink and Wood (1996) developed a restricted-orientation
convexity which was defined in terms of the intersection of
a geometric object with lines parallel to the elements of a
fixed orientation set. Corney et al. (2002) described convex-
hull based indices like hull crumpliness, hull packing, and
hull compactness to carry out a preliminary coarse filtering
of candidates. Kazhdan et al. (2003) presented a 3D objects’
reflective symmetry descriptor as a 2D function associat-
ing a measurement of reflective symmetry to every plane
through the model’s centroid. Bribiesca (2008) proposed a
compactness measure which corresponds to the sum of the
contact surface areas of the face-connected voxels for 3D
shapes. However, most of these 3D shape measures cannot
be applied to open meshes and they usually need voxeliza-
tion which involves expensive computation.

3D shape retrieval As the number of 3D models is increas-
ing rapidly, “shape-based 3D model retrieval” methodology,
concentrating on the representation, recognition and match-
ing of 3D models based on their intrinsic shapes, has be-
come a new hot topic in computer vision (Yang et al. 2007).
A growing number of researchers have been involved in this
area, and they have already made substantial progress. Fea-
ture extraction is the key issue for an efficient retrieval sys-
tem and a considerable number of shape descriptors (Bus-
tos et al. 2005), such as: D1 (Ankerst et al. 1999), D2



Int J Comput Vis (2010) 89: 130–151 133

(Osada et al. 2002), spherical harmonic descriptor (Kazh-
dan et al. 2003), skeleton based shape descriptor (Sundar
et al. 2003), and view based features (Chen et al. 2003)
have been proposed. For more details, we refer the reader
to recent surveys (Shilane et al. 2004; Bustos et al. 2005;
Yang et al. 2007; Tangelder and Veltkamp 2008).

Among these shape descriptors, view-based methods,
considering that two models are similar when they look
similar from all view angles, generally outperform others.
Moreover they are suitable for implementing query inter-
faces using sketches. Therefore, a huge number of view-
based signatures (Chen et al. 2003; Chaouch and Blondet
2006; Shih et al. 2007) have been developed to extract 2D
descriptors (e.g. Zernike moment, Fourier coefficient, eleva-
tion descriptor, etc.) from the silhouettes or depth buffers
captured around 3D models. As a more recent example,
Chaouch and Blondet (2007) proposed a representation of a
3D model by 20 depth images rendered from the vertices of
a regular dodecahedron and then a special depth sequence
was developed to describe each image. The depth line de-
scriptors were compared by dynamic programming distance
(DPD) which can cope with presence of local shifting on the
shape. Their experiment showed that the method using depth
line descriptors and dynamic programming distance gener-
ally outperformed other state-of-the-art methods. However,
dynamic programming is computationally expensive and the
computational complexity of shape matching exponentially
increases as the number of depth buffers grows. In the past,
it is almost impractical to improve the discrimination by
markedly increasing the number of viewpoints. In contrast,
the multi-view based shape matching method applied in this
paper has the ability to deal with huge amounts of views.
The complexity of the algorithm is just O(N ), therefore it
provides a potential to significantly improve retrieval per-
formance.

Since no single descriptor outperforms others in all situ-
ations (Shilane et al. 2004), a popular approach is to con-
struct composite shape signatures, which consist of sev-
eral different descriptors. For instance, Vranić (2005) de-
scribed a composite 3D shape feature vector named DE-
SIRE, which was constructed using depth buffer images,
silhouettes, and ray-extents of a mesh. Ohbuchi and Hata
(2006) combined both multiresolution and heterogeneous
sets of shape descriptors to form new signatures. The shape
descriptors were integrated via linear combinations of the
distance values they produce, using either fixed or adap-
tive weights. Both of them demonstrated (Vranić 2005;
Ohbuchi and Hata 2006) that using the combination of dif-
ferent descriptors could significantly improve the retrieval
performance. Since our rectilinearity measure describes 3D
objects in a quite different manner compared to existing sig-
natures, thereby providing new and independent informa-
tion, it is well suited to be incorporated into composite de-
scriptors.

Also recently, transformation invariant descriptors have
attracted many attentions. Laga et al. (2006) observed that
the so-called rotation-invariant spherical harmonic descrip-
tor (Kazhdan et al. 2003) varied when rotating, mainly
because spherical harmonic analysis is based on latitude-
longitude parameterization of a sphere which has singulari-
ties at each pole and variations of the polar axis markedly af-
fects the spherical function. The spherical wavelet descriptor
(Laga et al. 2006) they proposed is based on uniform spher-
ical sampling and thus the energies of the wavelet transform
are rotation invariant. Gal et al. (2007) introduced a pose-
oblivious shape signature that is not only rotation invariant
but also insensitive to deformations such as skeletal articula-
tions. Their descriptor is a 2D histogram which is a combi-
nation of the distribution of two scalar functions: the local-
diameter function and centricity function. The first function
measures the diameter in the neighborhood of each vertex
while the second calculates the average geodesic distance
from one vertex to all other vertices on the mesh. Ruggeri
and Saupe (2008) applied farthest point sampling to select
a set of reference points which are evenly distributed on
the surface, next calculated the geodesic distance between
these reference points, normalized and stored them in a ma-
trix from which they obtained a set of histograms. After-
wards bipartite graph matching was carried out to match
two histogram sets to calculate the dissimilarity of two mod-
els. Since geodesic distances were used to construct the his-
tograms, their method can classify and recognize objects de-
formed with isometric transformations, e.g., non-rigid and
articulated objects in different postures. Transformation in-
variance is a desirable character for shape signatures, how-
ever, compared to other descriptors using pose normaliza-
tion, they are often less discriminative when mainly pre-
cessing normal models. Moreover, some of them use local
feature extraction and partial matching, which are computa-
tionally expensive. Therefore, effective pose normalization
is still a commonly used approach to accelerate the search-
ing speed and enhance the discrimination for 3D shape re-
trieval systems.

Pose normalization In 3D shape matching applications,
usually we have to register two models to calculate their dis-
similarity. So far, methods for model alignment would either
be pose normalization or searching for the rotation that best
aligns each pair of models. Although marked improvements
have been made for the latter kind of approaches (Kazh-
dan 2007), it is still too slow to be applied in practical
3D shape retrieval systems. Therefore, pose normalization,
which aims to align an object into a canonical coordinate
frame is often the best choice for a large number of shape
descriptors that are not rotation invariant. So far, pose nor-
malization methods are mainly based on principal axes and
symmetry of a 3D shape. PCA-alignment is the most popu-
lar method and has been widely used in applications of 3D
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shape retrieval (Paquet and Rioux 1999; Vranić et al. 2001;
Tangelder and Veltkamp 2003). As PCA is sensitive to small
shape variance and thus is unstable to find the correct prin-
cipal axes, many other more robust methods have been
proposed to solve the problem. For example, Krinidis and
Chatzis (2008) estimated the principal axes of objects based
on a physics-based deformable model that parameterizes the
shape. However, as Fig. 2 shows, principal axes are not
suitable for pose normalization of many models. Podolak
et al. (2006) described a planar reflective symmetry trans-
form (PRST) that captures a continuous measure of the re-
flectional symmetry of a shape with respect to all possible
planes. They demonstrated that, compared to principal axes,
it is more robust to normalize symmetric objects by princi-
pal symmetry axes. Symmetry is a very strong cue for shape
orientation, however it does not necessarily imply correct
orientations for asymmetry models. More recently, Chaouch
and Blondet (2008) introduced a new alignment approach
combining PCA techniques and symmetry properties. They
also illustrated the effectiveness of their method by the im-
provement of retrieval results comparing to PCA-alignment.
Fu et al. (2008) demonstrated how to learn upright orienta-
tion for man-made objects from their functionality-related
geometric properties including static stability, symmetry,
parallelism, and visibility. They presented a novel methodol-
ogy for pose normalization, however, only the upright orien-
tation of man-made objects is concerned and the prediction
accuracy is too low (about 90%) to be used in practical ap-
plications. In this paper, we introduce rectilinearity, which is
also a strong cue for shape orientation of 3D meshes, to pro-
vide a new effective tool to normalize 3D meshes and help
to make the alignment result correspond better with intuitive
perception.

Viewpoint selection How to automatically select good
view images for 3D models is an important and ongoing
problem, especially when dealing with a huge database
of 3D models. Some methods tried to capture important
views by maximizing the interesting information content
using measures such as viewpoint entropy (Vazquez et al.
2003) and view saliency (Lee et al. 2005). While Podolak
et al. (2006) and Yamauchi et al. (2006) selected view-
points by measuring symmetry and similarity, respectively,
to minimize visible redundant information. Recently, Shi-
lane and Funkhouser (2007) developed a method for gener-
ating salient views that display the most distinctive region
with respect to a chosen database. Fu et al. (2008) suggested
that their orientation method could help to view an object
in a natural way, since humans usually associate an upright
orientation with objects. Similarly, our pose normalization
method can place objects in the way that they are most com-
monly seen in our surrounding, therefore, it helps to select
different kinds of salient images for different applications.

For example, images captured in the directions of three axes
in canonical coordinate system can be used to generate stan-
dard three-view drawings which is the most popular repre-
sentation method in mechanical engineering domain.

3 Definition and Notations

In this section, we first describe a formal definition of recti-
linear 3D meshes and then give some notations used in this
paper. For convenience, the meshes we describe here are 3D
triangle meshes, but the following definitions and theorems
can also be adopted to other 3D polygon meshes.

Definition 1 A 3D mesh M is rectilinear if the angles be-
tween the normals of every two faces belong to {0, π

2 ,

π, 3π
2 }.

Given a 3D mesh M which consists of N triangles
{T1, T2, . . . , TN }, the surface area of the mesh M is rep-
resented as S(M), while three projected areas correspond-
ing to the YOZ, ZOX and XOY planes are Px(M), Py(M),
Pz(M), respectively, defined by

Px(M) =
N∑

i=1

Six, Py(M) =
N∑

i=1

Siy,

Pz(M) =
N∑

i=1

Siz

(1)

where Six, Siy, Siz are the projected areas of triangle Ti on
the plane YOZ, ZOX and XOY , respectively (see Fig. 3).

If we rotate the coordinate frame, we will get new
projected areas of the mesh M . Therefore, we will use

Fig. 3 Projecting a triangle on three orthogonal planes
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Px(M,α,β, γ ), Py(M,α,β, γ ), Pz(M,α,β, γ ) for these
three projected areas which are obtained after successively
rotating the coordinate frame around its x, y, z axes by an-
gles α,β, γ . Here we denote the sum of these three projected
areas by

P(M,α,β, γ ) =
N∑

i=1

P(Ti, α,β, γ )

= Px(M,α,β, γ ) + Py(M,α,β, γ ) + Pz(M,α,β, γ ) (2)

where P(Ti, α,β, γ ) = S′
ix + S′

iy + S′
iz is the sum of three

projected areas (S′
ix, S

′
iy, S

′
iz) of the triangle Ti in the rotated

coordinate frame.
Let that the original coordinates of the vertices of the

triangles {T1, T2, . . . , TN } be denoted by (xi0, yi0, zi0),
(xi1, yi1, zi1), (xi2, yi2, zi2), i = 1, . . . ,N . After succes-
sively rotating the coordinate frame around its x, y, z axes
with angles α,β, γ , we get their new coordinates, repre-
sented as (x′

i0, y
′
i0, z

′
i0), (x′

i1, y
′
i1, z

′
i1), (x′

i2, y
′
i2, z

′
i2), i =

1, . . . ,N , specified by formulae

(x′
ij , y

′
ij , z

′
ij )

T = R(α,β, γ )(xij , yij , zij )
T ,

i = 1, . . . ,N; j = 0,1,2. (3)

where R(α,β, γ ) stands for the rotation matrix. Let

�Xij = (xij , yij , zij ), �X′
ij = (x′

ij , y
′
ij , z

′
ij ),

i = 1, . . . ,N; j = 0,1,2, (4)

Define

�η′
i = (η′

ix , η
′
iy, η

′
iz) = ( �X′

i1 − �X′
i0) × ( �X′

i2 − �X′
i0). (5)

Then, the area of the triangle Ti is

Si = S′
i = 1

2
|�η′

i | =
1

2

√
(η′

ix)
2 + (η′

iy)
2 + (η′

iz)
2 (6)

and the projected areas of triangle Ti on the plane YOZ, ZOX
and XOY are

S′
ix = 1

2
|η′

ix |, S′
iy = 1

2
|η′

iy |, S′
iz = 1

2
|η′

iz|, (7)

respectively. Thus, we have

Si =
√

(S′
ix)

2 + (S′
iy)

2 + (S′
iz)

2 ≤ S′
ix + S′

iy + S′
iz. (8)

Using the Root Mean Square-Arithmetic Mean Inequality,
we obtain

S′
ix + S′

iy + S′
iz ≤ √

3
√

(S′
ix)

2 + (S′
iy)

2 + (S′
iz)

2 = √
3Si.

(9)

Thus Si ≤ S′
ix + S′

iy + S′
iz ≤ √

3Si. Since

S(M) =
N∑

i=1

Si =
N∑

i=1

√
(S′

ix)
2 + (S′

iy)
2 + (S′

iz)
2, (10)

P(M,α,β, γ ) =
N∑

i=1

(
S′

ix + S′
iy + S′

iz

)
. (11)

Finally, we get

S(M) ≤ P(M,α,β, γ ) ≤ √
3S(M). (12)

Theorem 1 A given 3D mesh M is rectilinear if and only if
there exists a choice of the coordinate system such that the
surface area of M and the sum of three projected areas of
M coincide, i.e.

S(M) = P(M,α,β, γ ) for some α,β, γ ∈ [0,2π]. (13)

Proof On the one hand, if M is rectilinear then a rotation of
coordinate frame, such that all faces of M become parallel
to one of three planes YOZ, ZOX, XOY , ensures the equality
S(M) = P(M,α,β, γ ), where α,β, γ are the rotation an-
gles. On the other hand, S(M) = P(M,α,β, γ ) implies

N∑

i=1

√
(S′

ix)
2 + (S′

iy)
2 + (S′

iz)
2 =

N∑

i=1

(
S′

ix + S′
iy + S′

iz

)
.

(14)

Furthermore, we derive
√

(S′
ix)

2 + (S′
iy)

2 + (S′
iz)

2 = S′
ix + S′

iy + S′
iz (15)

⇒ S′
ixS

′
iy + S′

iyS
′
iz + S′

izS
′
ix = 0, i = 1, . . . ,N. (16)

Therefore, at least two of three projected areas S′
ix, S

′
iy, S

′
iz

of a triangle Ti are 0, which means all triangles Ti (i =
1, . . . ,N) of the given mesh M are parallel to one of these
three planes YOZ, ZOX, XOY , and so every triangle is paral-
lel or orthogonal to all other triangles, i.e. M is rectilinear. �

4 Measuring Rectilinearity for 3D Meshes

4.1 Basic Idea

Theorem 1 gives the basic idea for the rectilinearity mea-
surement of 3D meshes. Theorem 1 together with S(M) ≤
P(M,α,β, γ ) suggests that the maximum ratio function

Ratio(M) = max
α,β,γ∈[0,2π]

S(M)

P (M,α,β, γ )
(17)
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can be used as a rectilinearity measure, which is invariant
under similarity transformations, for the mesh M .

Since S(M) ≤ P(M,α,β, γ ), it follows that S(M)
P (M,α,β,γ )

≤ 1. However, the infimum for the set of values of S(M)
P (M,α,β,γ )

is not zero. So, for our purpose, it is necessary to determine
the maximal possible μ such that the function (17) belongs
to the interval [μ,1] for any mesh M . Theorem 2 shows that
μ = 2

3 and there is no mesh satisfying

max
α,β,γ∈[0,2π]

S(M)

P (M,α,β, γ )
= 2

3
. (18)

Theorem 2

1) The inequality

max
α,β,γ∈[0,2π]

S(M)

P (M,α,β, γ )
>

2

3
(19)

holds for any 3D mesh M .
2) For any ε > 0, there is a mesh M such that

max
α,β,γ∈[0,2π]

S(M)

P (M,α,β, γ )
<

2

3
+ ε (20)

or equivalently

inf
M∈�

{
max

α,β,γ∈[0,2π]
S(M)

P (M,α,β, γ )

}
= 2

3
, (21)

where � denotes the set of all 3D meshes.

Proof For convenience, we use an alternative expression of
P(M,α,β, γ ) by

P(M,α,β, γ ) =
N∑

i=1

P(Ti, α,β, γ )

=
N∑

i=1

P(Ti,ψi(α,β, γ ),ϕi(α,β, γ ))

=
N∑

i=1

(
| cos(ψi(α,β, γ ))|Si

+ | sin(ψi(α,β, γ ))|| cos(ϕi(α,β, γ ))|Si

+ | sin(ψi(α,β, γ ))|| sin(ϕi(α,β, γ ))|Si

)
(22)

where ψi(α,β, γ ) denotes the angle between the z axis and
the normal of triangle Ti after the coordinate frame has ro-
tated by the angles α,β, γ around its x, y, z axes, while the
angle between the x axis and the perpendicular plane of Ti

is represented by ϕi(α,β, γ ) (see Fig. 4). The last equality
of the above equation comes from the fact that the projected
areas of a triangle on YOZ, ZOX, and XOY planes are di-
rectly proportional to the components of the normal on x, y,

Fig. 4 Geometric relationships between a triangle and the coordinate
system

and z axis, respectively. For simplicity of notation, we will
use ψi and ϕi instead of ψi(α,β, γ ) and ϕi(α,β, γ ) in the
following part of this paper.

We prove statement 1) by a contradiction. Let us assume
the contrary, i.e., there exists a mesh M , which consists
of N triangles, such that S(M)

P (M,α,β,γ )
≤ 2

3 , or equivalently,
P(M,α,β,γ )

S(M)
≥ 3

2 , for any α,β, γ ∈ [0,2π].
Since P(M,α,β,γ )

S(M)
is a continuous nonconstant function

defining on α,β, γ ∈ [0,2π], the equality P(M,α,β,γ )
S(M)

= 3
2

cannot be always satisfied for all α,β, γ ∈ [0,2π]. (see
Appendix Lemma 1). So we have

∫∫

Σ

P (M,α,β, γ )

S(M)
· ds

=
∫∫

Σ

∑N
i=1 P(Ti,ψi, ϕi)

S(M)
· ds

=
N∑

i=1

∫ 2π

0

∫ π

0

P(Ti,ψi, ϕi)

S(M)
· sinψidψidϕi

=
∫ 2π

0

∫ π

0

∑N
i=1 P(Ti,ψ,ϕ)

S(M)
· sinψdψdϕ

>

∫ 2π

0

∫ π

0

3

2
· sinψdψdϕ = 6π (23)

where Σ denotes the surface of the unit sphere. Using the
last inequality, we derive

6π <

∫ 2π

0

∫ π

0

∑N
i=1 P(Ti,ψ,ϕ)

S(M)
· sinψdψdϕ
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Fig. 5 n-triangle meshes which converge to a unit sphere when n tends
to infinity

= 1

S(M)

N∑

i=1

∫ 2π

0

∫ π

0
P(Ti,ψ,ϕ) · sinψdψdϕ

= 1

S(M)

N∑

i=1

∫ 2π

0

∫ π

0

(| cosψ | + | sinψ || cosϕ|

+| sinψ || sinϕ|)Si sinψdψdϕ

=
∑N

i=1 Si

∫ π

0 (2π | cosψ | sinψ + 8| sinψ |2)dψ
∑N

i=1 Si

=
∑N

i=1 Si(2π + 4
∫ π

0 (2 sin2 ψ − 1 + 1)dψ)
∑N

i=1 Si

=
∑N

i=1(6π)Si∑N
i=1 Si

= 6π. (24)

This yields the contradiction 6π < 6π which proves the
statement 1).

It is enough to prove statement 2) if we can find a se-
quence of meshes . . .M99,M100, . . . ,Mn, . . . (Mn denotes a
mesh consisting of n triangles) such that

lim
n→∞

(
max

α,β,γ∈[0,2π]
S(Mn)

P (Mn,α,β, γ )

)
= 2

3
. (25)

Intuitively the sequence of n-triangle mesh Mn (Fig. 5
shows some examples of them) inscribed into the unit sphere
satisfies the previous equality. According to the properties of
the sphere, we get the surface area limn→∞ S(Mn) = 4π and
the sum of three projected areas limn→∞ P(Mn,α,β, γ ) =
2π + 2π + 2π = 6π , both of them hold independently on
the choice of α,β, γ . Therefore, we have

lim
n→∞

(
max

α,β,γ∈[0,2π]
S(Mn)

P (Mn,α,β, γ )

)
= lim

n→∞
S(Mn)

P (Mn,α,β, γ )

= 2

3
(26)

which proves statement 2). �

4.2 A Rectilinearity Measure

Motivated by the properties of the maximum ratio func-
tion (17) we define a rectilinearity measure for 3D meshes.

Definition 2 For an arbitrary 3D mesh M we define its rec-
tilinearity R(M) as

R(M) = 3 ×
(

max
α,β,γ∈[0,2π]

S(M)

P (M,α,β, γ )
− 2

3

)
. (27)

According to the definitions and theorems introduced
above, we obtain the following theorem which summarizes
the properties of the 3D mesh rectilinearity measure pro-
posed here.

Theorem 3 For any 3D mesh M , we have:

1. R(M) is well defined and R(M) ∈ (0,1];
2. R(M) = 1 if and only if M is rectilinear;
3. infM∈�(R(M)) = 0;
4. R(M) is invariant under similarity transformations.

4.3 Computation

Unlike the computation of the accurate rectilinearity for 2D
polygons (Žunić and Rosin 2003), because of the complex-
ity of P(M,α,β, γ ) it is difficult to calculate the exact value
of rectilinearity for 3D meshes. From the introduction of
preceding sections, we can see that the computation of recti-
linearity is actually a nonlinear optimization problem which
can be efficiently solved by intelligent computing methods.
In this paper we choose the genetic algorithm (GA) which is
an optimization technique based on natural evolution (Hol-
land 1992).

First, we define a population including Ng individuals.
Each individual consists of a value of fitness and three dif-
ferent chromosomes which are presented by binary codes.
The fitness of an individual is defined as fit(α,β, γ ) =

S(M)
P (M,α,β,γ )

and rotating angles α,β, γ are encoded in the
three chromosomes. The stopping criterion here is the num-
ber of evolution generations Ngen.

Then, iterating the genetic algorithm process including
encoding, evaluation, crossover, mutation and decoding for
Ngen generations, we get an individual with the group’s
greatest fitness which can be used as the approximate value
of

max
α,β,γ∈[0,2π]

S(M)

P (M,α,β, γ )
.

Finally, we calculate the rectilinearity of the mesh by
(27). Figure 6 demonstrates the convergence curve of some
calculation examples using GA, and we observe that usually
the stable value of rectilinearity measure can be found after
approximately 150 evolution generations.

Note that:

1. Unless otherwise specified, the parameters of the genetic
algorithm in this paper are chosen as follows. The num-
ber of individuals Ng = 50 and evolution generations
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Fig. 6 The value of
rectilinearity measure versus the
evolution generation of the GA

Fig. 7 The number of faces
versus computation time, for
three different numbers of
evolution generations

Ngen = 200. The length of each chromosome’s binary
code Lc = 20. The probability of crossover pc = 0.800
and mutation pm = 0.005.

2. Since our rectilinearity measure is invariant to flipping of
the coordinate axes, that is to say,

max
α,β,γ∈[0,2π]

S(M)

P (M,α,β, γ )
= max

α,β,γ∈[0,π/2]
S(M)

P (M,α,β, γ )
,

(28)

the search range of a rotation angle (α, β , or γ ) can be
therefore narrowed from [0,2π] to [0,π/2].

3. As our results demonstrate, the GA provides an adequate
solution to computing the rectilinearity measure. How-
ever, we note that it is neither the only, nor necessar-
ily the best, numerical optimization method to compute
the rectilinearity measure. For instance, other intelligent
computing algorithms such as Artificial Neural Network,
Simulated Annealing Algorithm, and Ant Colony Opti-
mization etc. all have their particular advantages over GA
in some cases. Even exhaustive searching methods are
more suitable for some applications requiring only low
accuracy data and these results can also be used as initial
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Fig. 8 3D meshes have identical inner angles but differ in rectilinearity. Underneath are the corresponding rectilinearity values

Fig. 9 3D meshes derived from a cube by filleting all of its edges with increasing radius. Underneath are the corresponding rectilinearity values

Fig. 10 Ellipsoids that are progressively elongated. Underneath are the corresponding rectilinearity values

searching points in the search space of intelligent com-
puting algorithms to further improve performance.

5 Experimental Results

Since the rectilinearity measure proposed in this paper is cal-
culated based on the area of triangles, together with the def-
initions and theorems described in the previous sections we
can summarize the primary advantages (already described
in Sect. 1) of this measurement. While these four proper-
ties indicate that the rectilinearity measurement may be well
suited for 3D shape analysis tasks in theory, it is necessary to
demonstrate that these desirable properties are also satisfied
in practice. As the third and fourth properties are obvious, in
this section we only illustrate experimental results to inves-
tigate the following questions:

1. How well does this measure correspond with the intuitive
perception of rectilinear 3D shapes?

2. How robust is this measure with respect to geometric
noise and small errors or changes in topology?

We implemented the calculation of rectilinearity de-
scribed in Sect. 4.3 in Visual C. The experiments were run
on a Windows XP Laptop with a 2.0 GHz Intel Core 2 Duo

CPU, 1.0 GB DDR2 memory and an NVIDIA Quadro NVS
140M graphics card. After the parameters of the GA have
been chosen, the total computing time is proportional to the
number of faces. When the number of generations is selected
as Ngen = 200, the average time to compute the rectilinear-
ity of each model in the PSB database is 2.3 seconds. The re-
lationship between computing time and the number of faces
of some individual meshes is demonstrated in Fig. 7. We
can see that usually the calculation can be finished within
seconds and the computing complexity is O(N) where N

denotes the number of faces.

5.1 Rank of the Rectilinearity

In order to give the reader an indication of the perceptual
quality of our rectilinearity measurement, we demonstrate it
by three particular cases. First, it is applied to some meshes
which are obtained from a cube by cutting off, in a given
direction, parts of increasing size. Second, we calculate the
rectilinearity values of a set of 3D meshes which are de-
rived from a cube by filleting all of its edges with increasing
radius. The third example is the rectilinearity calculation of
several ellipsoids that are progressively elongated. The com-
puted rectilinearity values are shown in Figs. 8, 9, and 10,
respectively. All these three examples show that our recti-
linearity measure is well behaved.
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Fig. 11 Shapes ranked by rectilinearity. Underneath are the corresponding rectilinearity values

The rectilinearity measure is now applied to a wide range
of 3D meshes which are then ranked in order of decreas-
ing rectilinearity (Fig. 11). Comparison against our intuitive
notion shows that a similar ordering has been generated.

5.2 Robustness

It is often desirable that the shape descriptor is insensi-
tive to noise and small extra features, and robust against
arbitrary small topological degeneracies. To demonstrate
the robustness of the calculation of this measure, we first
add small amounts of noises to a model or change its im-
portant topology structure, and then compute the rectilin-
earity for them. Results (see Fig. 12) show that our rec-
tilinearity measurement of 3D meshes is robust to small
noise or changes in topology, this is mainly because the
measure corresponds to the surface area and projected
areas which are hardly affected by small changes of a
mesh.

Fig. 12 Robustness against topology changes and small noise. An
original chair is displayed in the leftmost, the topology of some im-
portant structures of the middle one are varied, while small amounts of
noises are introduced to form the rightmost model. Underneath are the
corresponding rectilinearity values

Our next example shows more precisely how the rectilin-
earity measurement can tolerate deletion of random faces.
As shown in Fig. 13, we first randomly eliminate different
percentages of faces for a synthetic model (teapot in the first
row) and a real scanned model (dragon in the second row)
(Stanford 3D Scanning Repository 2008), and then measure
their rectilinearity. From the curves in the rightmost column,
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Fig. 13 Robustness against
random face deletion,
Underneath are the
corresponding rectilinearity
values

Fig. 14 Robustness against
mesh simplification. For
representation sake, the
simplified meshes in the middle
are zoomed in to focus on local
parts. Underneath are the
corresponding rectilinearity
values

we can see that the value of rectilinearity remains stable with
respect to the large amounts of information missing. Even if
90% faces of the mesh are discarded, the rectilinearity value
varies by less than 0.005.

The last example demonstrates how robust our method is
with respect to mesh simplification. In the first column of
Fig. 14, original meshes including a car (synthetic model)
and the famous Happy Buddha (Stanford 3D Scanning
Repository 2008) (scanned model) are displayed. Then the
examples of simplified meshes, applying the Quadric Edge
Collapse Decimation provided by MeshLab1.1.0 (2008), are
displayed in the second and third columns. The rightmost
graphs show the relationship between the rectilinearity mea-
sure and the number of faces. We observe that simplification
of the meshes has little effect on the calculated rectilinear-
ity values for both the synthetic models and the real scanned
objects.

5.3 Limitations

There are two major limitations in our rectilinearity measur-
ing method. In this subsection, we will discuss them briefly
and point out some potential solutions.

First, as described in Sect. 4.3, the rectilinearity measure
here is calculated by GA that may converge to a local max-
imum and the computation time is still expensive compared
to the 2D approach proposed by Žunić and Rosin (2003).
Therefore, developing a more efficient numerical computa-
tion algorithm might be the best choice if we finally find out
that it is impossible or more costly to calculate the optimal
value of rectilinearity analytically.

Second, our rectilinearity measure is sensitive to some
kinds of changes in a mesh. For example, a mesh could ap-
pear almost exactly as a pyramid as the number of its compo-
nents tends to infinity (shown in Fig. 15), while the rectilin-
earity value of the pyramid-like mesh remains 1. In contrast,
the original pyramid which consists of five vertices would
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Fig. 15 Meshes whose appearances tend to a pyramid, but not the rectilinearity values measured by our method. Underneath are the corresponding
rectilinearity values

Fig. 16 Cabinets normalized by two methods. The results of the PCA based method are demonstrated in the first row, while final results, the same
as the rectilinearity based method, are displayed in the second row

appear perceptually identical but has a very different recti-
linearity value (0.4270). Such effects can often occur with
scanned objects and voxel models. However, a simple solu-
tion would be to first smooth the mesh sufficiently to elim-
inate the effects of quantization errors. We can also analyse
an object at multiple scales obtained by smoothing and get
a set of rectilinearity values which are suitable for different
applications.

6 Pose Normalization Application

In this section, we describe how to normalize a mesh by
its rectilinearity and how to combine this new method with
PCA to generate a reliable result which corresponds well
with human intuition.

We find out that the calculation of rectilinearity can be
used for pose estimation of 3D meshes. The basic idea is
that the value of α,β, γ maximizing S(M)

P (M,α,β,γ )
of a mesh M

specifies a standard pose for this object. Figure 16 demon-
strates several normalized cabinets applying the rectilinear-
ity based and the PCA based normalization methods, respec-
tively. Referring to the figure, we can see that, in this case,

PCA-alignment not only corresponds poorly to our intuitive
perception but also results in quite dissimilar orientations for
different models within the same class. On the contrary, the
rectilinearity based method provides much better results that
exactly coincide with our common sense. In fact, through
the experiments conducted on the PSB database, we observe
that, usually, from intuitive human perception, the rectilin-
earity based method performs better than the PCA based
method, especially when processing artificial objects such
as cabinets, tables, chairs, houses, etc. (see some examples
in Fig. 17).

However, the rectilinearity based method does not guar-
antee good performance for all shapes. For instance, when
the properties of an object are dominated by its principal
axes (i.e. elongated objects) or symmetry, better alignment
results can be obtained by applying the PCA based method
rather than rectilinearity. Examples are illustrated in Fig. 18.

Consequently, we suggest using a combination of these
two methods. A selection criterion will be defined such that
the correct alignments would be automatically chosen from
the two methods. The steps of our composite pose normal-
ization (CPN) method are listed as follows.
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Fig. 17 Several models normalized by two methods. The results of the PCA based method are demonstrated in the first row, while final results,
chosen to apply the rectilinearity based method, are displayed in the second row

Fig. 18 Several models normalized by two methods. Final results, chosen to adopt the PCA based method, are displayed in the first row, while
the results of the rectilinearity based method are demonstrated in the second row

1. Translation and scaling. For a given 3D mesh, translate
the center of its mass to the origin and then scale the max-
imum polar distance of the points on its surface to one.

2. Rotation by two methods. Apply PCA and the rectilin-
earity based method, respectively, to rotate the original
model to the canonical coordinate frame and then store
these two normalized meshes in memory;

3. Selection. Calculate the number of valid pixels of three
silhouettes, projected on the planes YOZ, ZOX, XOY ,
for the two normalized meshes generated in the previous
step. And then select the model which yields the smaller
value, as the final normalization result.

Here we make the selection just according to the summed
area of the projected silhouettes which we have observed to
be effective for almost all models. Take Fig. 19 for an ex-
ample, it is obvious that the well normalized cabinet yields
a smaller value of the summed area of three projected sil-
houettes than the one incorrectly normalized. Using our
composite pose normalization method, almost all models in
the PSB database can be successfully normalized. By man-
ual inspection (an experiment with 39 participants has been
carefully conducted), we find that more than 98.2% models
in the database have been correctly normalized. The experi-
ment was carried out as follows. First, all models normalized
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by the new method were provided to the participants with a
user-friendly interface. Afterwards, they were asked to judge
whether the given models had been correctly normalized
according to their intuitive perception. Finally, the average
percentage of correctly normalized models on the PSB can
be calculated. Moreover, we also validate the effectiveness
through a more objective way. Using the GSMD_66 descrip-
tor to evaluate retrieval performance (the same signature and
evaluation method as described in Sect. 7.1), the Discounted

Fig. 19 Demonstration of our selection criterion. A correctly normal-
ized model and its three projected silhouettes in top, front, and left
views are shown in the first row, while the second row displays an
example of incorrectly aligned model which yields a greater value of
summed area of these three silhouettes

Cumulative Gain (well-known as the most stable retrieval
measure (Shilane and Funkhouser 2007)) is 0.660 for the
database normalized using PCA, while the value is improved
to 0.664 by our method. Several successful normalization
examples are displayed in the second row of Figs. 16 and 17,
where the rectilinearity based method is chosen. In contrast,
PCA is selected to correctly align the models in the first row
of Fig. 18.

Nevertheless, there are still some models (about 1.8%)
which can not be perfectly normalized by our method. In-
specting the models on which it failed, we could classify
them into following two categories and suggest several pos-
sible reasons for failure. The first class consists of the mod-
els which can be correctly normalized by one of these two
original methods separately but not the composite approach.
About 80% of the failed cases belong to this category. For in-
stant, the hand gun and the flowerpot, shown in the first col-
umn and the second column of Fig. 20 are correctly normal-
ized by the rectilinearity based method, but finally the com-
posite method choose PCA to incorrectly align the meshes.
On the other hand, the hot-air balloon in the middle can be
successfully normalized by PCA instead of the rectilinearity
method. In this case, the summed areas of three projected
silhouettes of the models normalized by two methods are

Fig. 20 Examples of incorrect normalization by our method. In the first row, models are normalized by the PCA based method, while the
rectilinearity based method is adopted to the second-row objects. Final normalized poses are illustrated in the third row
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almost the same. We speculate that the area of silhouettes
alone might not be sufficient for basing our decisions. The
second class consists of the models on which both PCA and
the rectilinearity based method failed. Just about 20% of the
failed cases belong to this category. Examples can be found
in the last two columns of Fig. 20, from which we can see
that the cup and the eyeglasses have been incorrectly nor-
malized by both two methods, thus the composite method
inevitably results in unsatisfactory alignments.

The potential solution may be either introducing more
high-level information of the depth buffers to the selection
criterion or developing a learning mechanism to integrate
as many significant properties (e.g. rectilinearity, principal
axes, and symmetry et al.) as possible.

7 3D Shape Retrieval Application

In this section, we describe how to design a discriminative
view based shape matching mechanism for the models nor-
malized by the composite method and demonstrate that our
rectilinearity measure can be used as an important element
of a composite descriptor to efficiently improve the retrieval
performance.

7.1 Searching for Normalized Models

After pose normalization, 3D meshes have been well aligned
to a canonical coordinate frame. However, only the positions
of three axes are fixed for the mesh normalized by our com-
posite method, namely, the direction of each axis is still un-
decided and the x-axis, y-axis, z-axis of the canonical coor-
dinate system can be located in all three axes. That means 24
different orientations are still plausible for the aligned mod-
els, or rather, 24 matching operations should be carried out
when comparing two normalized objects. Shih et al. (2007)
described a similar matching approach, but they just used
the relative position between every two depth buffers and
did not take the right-hand rule into account, so that their

method resulted in two times more matching operations than
ours. Moreover, they just investigated the situation involving
six images.

Without pose normalization, due to the O(N3) complex-
ity of shape matching (Chen et al. 2003), it is almost im-
practical to utilize a large number of images to extract view-
based descriptors for further comparison. Applying an of-
fline pose normalization preprocessing, the method utilized
in this section reduces the matching complexity to O(N).
Furthermore, it can be executed at different levels accord-
ing to the desired retrieval speed and discrimination. Al-
though the idea of matching views for normalized objects
is considered as common sense and it has been used by
many researchers (Chen et al. 2003; Shilane et al. 2004;
Chaouch and Blondet 2007; Shih et al. 2007), so far no one
has systematically described how to efficiently match huge
(even infinite) numbers of views captured from the models
with incomplete pose alignment.

For the sake of convenience, we denote x+, x−, y+,
y−, z+, and z− axis as 0, 1, 2, 3, 4, and 5 respectively.
When comparing two models, one of them will be placed
in the original orientation denoted as a permutation p0 =
{p0(k)|k = 0,1,2,3,4,5} while the other one may appear in
24 different poses denoted as permutations pi = {pi(k)|k =
0,1,2,3,4,5}, 0 ≤ i ≤ 23. Table 1 lists these 24 permu-
tations from which all possible matching pairs ((p0,pi),
0 ≤ i ≤ 23) between two models can be obtained. More
specifically, we can capture six silhouettes or depth buffers
from the vertices of a unit regular octahedron and then ex-
tract 2D shape descriptors for these images to construct a
view-based 3D feature vector. The vertices in the corre-
sponding axes are also denoted as 0, 1, 2, 3, 4, and 5, re-
spectively. Then we compare all 24 matching pairs for two
models and the minimum distance is chosen as their dissim-
ilarity.

The geodesic spheres generated from the unit regular oc-
tahedron are suitable for multi-view based feature extrac-
tion and shape matching. Examples of this kind of geodesic
spheres are displayed in Fig. 21. For more details, we refer

Table 1 Twenty-four permutations for shape matching between a query model and a matching model, both of them have been normalized before
matching

k 0 1 2 3 4 5 k 0 1 2 3 4 5 k 0 1 2 3 4 5

p0(k) 0 1 2 3 4 5 p8(k) 4 5 2 3 1 0 p16(k) 2 3 1 0 4 5

p1(k) 0 1 4 5 3 2 p9(k) 4 5 1 0 3 2 p17(k) 2 3 4 5 0 1

p2(k) 0 1 3 2 5 4 p10(k) 4 5 3 2 0 1 p18(k) 2 3 0 1 5 4

p3(k) 0 1 5 4 2 3 p11(k) 4 5 0 1 2 3 p19(k) 2 3 5 4 1 0

p4(k) 1 0 3 2 4 5 p12(k) 5 4 2 3 0 1 p20(k) 3 2 0 1 4 5

p5(k) 1 0 4 5 2 3 p13(k) 5 4 0 1 3 2 p21(k) 3 2 4 5 1 0

p6(k) 1 0 2 3 5 4 p14(k) 5 4 3 2 1 0 p22(k) 3 2 1 0 5 4

p7(k) 1 0 5 4 3 2 p15(k) 5 4 1 0 2 3 p23(k) 3 2 5 4 0 1
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Fig. 21 Geodesic spheres generated from a regular octahedron

the reader to paper (Laga et al. 2006). These kinds of geo-
desic spheres can be used for our multi-view based shape
retrieval mechanism, mainly because of following three rea-
sons. First, the vertices are distributed evenly in all direc-
tions. While unless low discrepancy sequences are used, ran-
dom sampling will produce an uneven distribution of view-
points. Second, these geodesic spheres enable different level
resolutions in a natural manner. The coarsest (level-0) one is
obtained using a unit regular octahedron with 6 vertices and
8 faces. Higher levels can be generated by recursive subdivi-
sions. Then we can capture different number of silhouettes
or depth buffers from the vertices of the geodesic spheres
and then extract 2D shape descriptors for these images to
construct different level 3D feature vectors. Third, since all
these spheres derive from an octahedron, given the position
of six vertices for the original octahedron, other vertices can
be specified automatically. Moreover, all vertices are sym-
metrically distributed with respect to the coordinate frame
axes. That means, when comparing two models, only 24
matching pairs need to be considered for the feature vector
in an arbitrary level.

Generally speaking, our method performs in three steps:

1. Initialization. Recursively subdividing the original unit
octahedron nd times, we get a geodesic sphere with the
required resolution and the coordinates of its vertices
should be recorded to a table (called the vertex table)
consecutively according to the time they emerge. The
number of its vertices is calculated as follows,

Nv(nd) = Nv(nd − 1) + Ne(nd − 1), (29)

Ne(nd) = (Nf (nd) × 3)/2, (30)

Nf (nd) = 4 × Nf (nd − 1), (31)

and

Nv(0) = 6,Nf (0) = 8, (32)

where Ne(nd) and Nf (nd) stand for the number of edges
and faces, respectively. During the process of subdivi-
sion, a table (named the edge table) which records the re-
lationship between old and new vertices is also obtained.
Note that we only need to process this step once.

2. Feature extraction. The vertices are selected as a model’s
viewpoints, from which Nv(nd) silhouettes or depth

buffers are then captured. Next, we extract several 2D
descriptors for each image before arranging them in a
vector in the order that coincides with the vertex table.
We denote the feature vector as FV i = {FV i (k)|0 ≤ k <

Nv(nd)}, where FV i (k) is the signature of image k.
3. Shape matching. As mentioned above, when compar-

ing two models represented by level-0 descriptors, we
will calculate the minimum distance among 24 match-
ing pairs ((p0,pi), 0 ≤ i ≤ 23) which can be derived
using the permutations listed in Table 1. If higher-level
shape descriptors are applied, we should use the edge ta-
ble and pi , 0 ≤ i ≤ 23 to build new permutations p′

i =
{p′

i (k)|0 ≤ k < Nv}, 0 ≤ i ≤ 23 describing all possible
matching pairs (p′

0,p
′
i ), 0 ≤ i ≤ 23 for two models rep-

resented by Nv views. Finally, using the L1 norm, the
dissimilarity between the query model q and the source
model s is defined as,

Disq,s = min
0≤i≤23

Nv−1∑

k=0

‖FVq(p′
0(k)) − FVs(p

′
i (k))‖. (33)

In order to demonstrate the effectiveness and the effi-
ciency of our method, we extract 2D shape descriptors,
the same as the well-known LFD proposed by Chen et al.
(2003), to describe the silhouettes captured on the Nv-vertex
geodesic spheres. More specifically, we use the feature vec-
tor with 47 members including 35 Zernike moments, 10
Fourier coefficients, eccentricity and compactness to de-
scribe a silhouette and then the vector is normalized to its
unit L1 norm. For feature extraction, we use the source
code from their web site without modification. However, for
shape matching, we develop our own platform to compare
different methods under the same condition without any ex-
tra optimizations, because the original LFD method applies
a storage optimization and a hierarchical matching technol-
ogy whose impacts on the retrieval performance are difficult
to evaluate.

Unless otherwise specified, in this paper we use the PSB
(Shilane et al. 2004) test set with base classification to eval-
uate the 3D shape retrieval performance that is quantified by
the following evaluation measures:

• Nearest neighbor (1-NN): The percentage of the closest
matches that belong to the same class as the query.



Int J Comput Vis (2010) 89: 130–151 147

Table 2 Retrieval performance
of our GSMD signatures and
LFD descriptor

Methods Length Compare 1-NN 1-tier 2-tier DCG

time (s)

GSMD_258 258×47 0.000609 65.8% 40.6% 50.9% 65.9%

GSMD_66 66×47 0.000154 67.9% 40.8% 51.3% 66.4%

GSMD_18 18×47 0.000041 65.8% 40.1% 50.3% 65.6%

GSMD_6 6×47 0.000013 62.0% 35.2% 45.8% 62.2%

LFD 100×47 0.011642 65.0% 38.3% 48.7% 64.4%

• First-tier (1-Tier) and Second-tier (2-Tier): The percent-
age of models in the query’s class that appear within
the top K matches, where K depends on the size of the
query’s class. Specifically, for a class with |C| members,
K = |C| − 1 for the first tier, and K = 2(|C| − 1) for the
second tier.

• Discounted Cumulative Gain (DCG): A statistic that
weights correct results near the front of the list more than
correct results later in the ranked list under the assump-
tion that a user is less likely to consider elements near the
end of the list. For details, we refer the reader to the paper
(Shilane et al. 2004).

Here, we test four Geodesic Sphere based Multi-view
Descriptors(GSMD), denoted as GSMD_6, GSMD_18,
GSMD_66, and GSMD_258, with respect to different reso-
lution geodesic spheres having 6, 18, 66, and 258 vertices,
respectively. Table 2 shows the storage requirements, com-
parison times, and retrieval statistics for LFD and our de-
scriptors. Since the number of view pairs need to be com-
pared is (60 × N2

rot × 2 × Ncam) for LFD method, which
uses Ncam = 10 viewpoints with Nrot = 10 random rota-
tions, and (24 × Ncam) for our GSMD method correspond-
ing to a geodesic sphere with Ncam vertices, we can see
that the retrieval speed as well as the discrimination has
been significantly improved by our method. For example,
GSMD_66 requires 44% less storage and performs about 70
times quicker, but provides better classification than LFD.
We also observe that higher-level descriptor does not guar-
antee better discrimination. This is mainly because compar-
ing too many details is not suitable for coarse shape retrieval
tasks such as the base classification of PSB. It is reasonable
to infer that high resolution GSMD descriptors could per-
form well if precise discrimination is necessary.

The above experiment demonstrates the advantage of the
retrieval method with pose normalization against the method
without pose normalization. In order to show the effect of
our pose alignment method, using the GSMD_66 descriptor,
we also compare the retrieval performance under different
pose normalization and shape matching methods which are
denoted as follows:

Table 3 Retrieval performance of the GSMD_66 descriptors with dif-
ferent pose normalization and shape matching methods

1-NN 1-Tier 2-Tier DCG

GSMD_rect24 67.9% 40.8% 51.3% 66.4%

GSMD_pca24 65.9% 40.3% 50.9% 66.0%

GSMD_pca4 65.7% 39.0% 49.5% 65.1%

GSMD_pca 65.0% 38.2% 48.5% 64.4%

– GSMD_rect24: GSMD_66 descriptor with our compos-
ite pose normalization algorithm and our original GSMD
shape matching method.

– GSMD_pca24: GSMD_66 descriptor with PCA pose
normalization algorithm and our original GSMD shape
matching method.

– GSMD_pca4: GSMD_66 descriptor with PCA pose nor-
malization algorithm using eigenvalues to resolve for axis
switch. During shape matching, only 4 matching pairs
(p′

0,p
′
0), (p′

0,p
′
2), (p′

0,p
′
4), (p′

0,p
′
6) are compared.

– GSMD_pca: GSMD_66 descriptor with PCA pose nor-
malization algorithm using eigenvalues and area distribu-
tion (i.e. the positive direction of an axis points to the half
part with larger surface area) (Shilane et al. 2004) to re-
solve for axis switch and flip, respectively. During shape
matching, only one matching pair (p′

0,p
′
0) is compared.

As we can see from Table 3, the approach using the com-
posite pose normalization algorithm and our shape matching
method obtain the best retrieval performance.

7.2 Composite Descriptors with Rectilinearity Measure

In this section, we discuss the composite shape descriptors
that integrate several features via the linear combination of
the distance values they produce, using fixed weights. The
process of building a composite descriptor can be achieved
in the following two steps:

1. Feature selection. Select several complementary descrip-
tors which represent different aspects of a shape.

2. Weight tuning. Tune the weights of features in an inde-
pendent training database to maximize the retrieval per-
formance. For instance, we use a GA to automatically
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Table 4 Retrieval performance of several descriptors

1-NN 1-Tier 2-Tier DCG

D1 25.7% 13.1% 19.3% 40.6%

D2 33.7% 16.4% 24.5% 44.4%

SHD 56.9% 28.8% 38.5% 57.2%

LFD 65.0% 38.3% 48.7% 64.4%

GSMD 67.1% 41.8% 52.0% 67.0%

GSMD + SHD 71.8% 44.5% 56.2% 69.8%

find the optimal weights to achieve an approximately
maximum DCG with respect to base classification in the
train set of the PSB database.

The goal of this section is to evaluate the retrieval perfor-
mance of the composite features consisting of the rectilin-
earity measure and the following shape descriptors:

– D1: A histogram of distances from the center of mass to
points on the surface (Ankerst et al. 1999). The number
of histogram bins is selected as 64.

– D2: A histogram of distances between pairs of points on
the surface (Osada et al. 2002). The number of histogram
bins is chosen as 64.

– SHD: A vector consisting of spherical harmonic coef-
ficients which are calculated from three spherical func-
tions giving the maximal distance from center of mass
as a function of spherical angle. The spherical functions
differ due to their polar axes which are located at three
axes of the canonical coordinate frame, respectively. The
spherical harmonic descriptors are computed on a 64×64
spherical grid and then represented by its harmonic coef-
ficients less than order 16. The dissimilarity between two
objects is the minimum L1 distance of six matching pairs.
We use SpharmonicKit2.7 (2004) to calculate the spher-
ical harmonic coefficients and the feature vector of each
spherical function is normalized to its unit L1 norm.

– LFD: See Sect. 7.1 for details. The length of the feature
vector is 4700.

– GSMD: See Sect. 7.1 for details. Note that depth buffers
instead of silhouettes are utilized here and the number of
the viewpoints is selected as 66.

First, we separately test the descriptors without rectilin-
earity. Results are shown in Table 4.

Next, the rectilinearity values, with well tuned weights
(using the train set of PSB), are added to the original sig-
natures to form new features. Thus we obtain six new com-
posite descriptors which are denoted as D1 + R, D2 + R,
SHD + R, LFD + R, GSMD + R, and GSMD + SHD + R,
respectively. Their retrieval results are demonstrated in Ta-
ble 5. The distances between every pair of shape descrip-
tors are calculated using their L1 difference. Precision-recall

Table 5 Retrieval performance of the descriptors combined with rec-
tilinearity

1-NN 1-Tier 2-Tier DCG

D1 + R 34.2% 18.7% 28.2% 46.8%

D2 + R 43.0% 22.2% 32.0% 50.1%

SHD + R 62.2% 33.2% 45.2% 61.5%

LFD + R 67.5% 41.3% 53.6% 67.3%

GSMD + R 69.2% 44.2% 56.3% 69.4%

GSMD + SHD + R 73.1% 47.2% 60.2% 72.1%

Table 6 Comparing retrieval results of our method (first row) with
state-of-the-art descriptors

1-NN 1-Tier 2-Tier DCG

GSMD + SHD + R 73.1% 47.2% 60.2% 72.1%

MDLA-DPD 68.8% 43.6% 54.2% 67.8%

LFD + AAD + SPRH – 42.7% 52.7% –

LFD(PSB) 65.7% 38.0% 48.7% 64.3%

SWC 46.9% 31.4% 39.7% 65.4%

plots for the original descriptors and corresponding compos-
ite descriptors are also compared in Fig. 22. We can see that
considerable improvements have been achieved, mainly be-
cause the rectilinearity measure provides extra effective in-
formation with respect to the original shape descriptors.

Such kinds of combined signatures are fairly simple,
but the result is encouraging. As shown in Table 6, com-
pared to other state-of-the-art methods, such as, MDLA-
DPD (Chaouch and Blondet 2007), LFD + AAD + SPRH
(Ohbuchi and Hata 2006), LFD(PSB) (Shilane et al. 2004)
and SWC (Laga et al. 2006), our method outperforms them
in discrimination, occupies medium size of memory, and can
be computed sufficiently quickly without special optimiza-
tion.

8 Conclusion and Future Work

In this paper, we have proposed a novel rectilinearity mea-
sure, describing the extent to which a 3D mesh is rectilinear,
and we also explicitly proved several corresponding theo-
rems. The measure presented here has many desirable prop-
erties including simplicity, stability, robustness, and invari-
ance to similarity transformation. We demonstrated how to
compute it efficiently by a genetic algorithm. Afterwards, a
series of experiments were carried out to validate the robust-
ness as well as the effectiveness of our shape measurement
in practice.

Furthermore, applications of 3D rectilinearity to pose
normalization and shape retrieval were also investigated.
First, we demonstrated that the calculation of rectilinearity
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Fig. 22 Precision-recall curves calculated for 12 descriptors in the PSB test set with base classification. The precision-recall curves of a descriptor
and its corresponding composite descriptor with rectilinearity measure are drawn together in a small figure

provided a new powerful tool to improve the pose normal-
ization result of 3D meshes. Second, we applied a multi-
view based shape matching mechanism for the normalized
models and combined rectilinearity measure with other sig-
natures to markedly enhance the performance of 3D shape
retrieval.

Four directions for future investigation are listed as fol-
lows:

1. Is it possible to calculate the optimal value of the recti-
linearity analytically, and how can this be done?

2. Can we derive other 3D shape measures, such as convex-
ity, rectangularity, and compactness, using the relation
between area and projected areas instead of the perimeter
in 2D field in the same manner as we have described in
this paper?

3. Can other selection criteria and properties be better inte-
grated to build a stable and effective pose normalization
method that can cope with all (or almost all) shapes?

4. Can other more discriminative 2D shape descriptors be
introduced into our multi-view based shape retrieval
mechanism to further improve the retrieval performance?

Acknowledgements This work was supported by China Scholarship
Council and NSFC Grant 60674030.

Appendix

Lemma 1 P(M,α,β,γ )
S(M)

is a nonconstant function defined on
α,β, γ ∈ [0,2π].

Proof We prove the lemma by a contradiction: P(M,α,β,γ )
S(M)

is a constant function defined on α,β, γ ∈ [0,2π]. Assume
that the unit normal of the triangle Ti is ni = [ai, bi, ci]T .
After rotation, we obtain a new normal

n′
i = R(α,β, γ )ni =

⎡

⎣
a′
i

b′
i

c′
i

⎤

⎦ (34)

where

a′
i = ai cosγ cosβ + bi(sinγ cosα + cosγ sinβ sinα)

+ ci(sinγ sinα − cosγ sinβ cosα) (35)

b′
i = −ai sinγ cosβ + bi(cosγ cosα − sinγ sinβ sinα)

+ ci(cosγ sinα + sinγ sinβ cosα) (36)

c′
i = ai sinβ − bi cosβ sinα + ci cosβ cosα. (37)

And we have

P(M,α,β, γ )

S(M)
=

∑N
i=1(|a′

i |Si + |b′
i |Si + |c′

i |Si)
∑N

i=1 Si

. (38)

Let α,β be constants and ensure that not all faces of the
mesh are parallel to XOY plane. Then we can find an interval
γ ∈ [γ0, γ0 + ε], ε > 0 such that

P(M,α,β, γ ) =
N∑

i=1

(
f ai ·a′

i ·Si +f bi ·b′
i ·Si +f ci ·c′

i ·Si

)

(39)
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and

PYOZ(M,α,β, γ ) + PZOX(M,α,β, γ )

=
N∑

i=1

(
f ai · a′

i · Si + f bi · b′
i · Si

)
> 0 (40)

where
{
f ai, f bi, f ci |i = 1,2, . . . ,N

} ⊂ {+1,−1}.
Since P(M,α,β,γ )

S(M)
and S(M) both are constant functions,

P(M,α,β, γ ) should also be a constant function defined on
α,β, γ ∈ [0,2π]. Then we obtain

0 = d(P (M,α,β, γ ))

dγ
= d2(P (M,α,β, γ ))

dγ 2

=
N∑

i=1

(−f ai · a′
i · Si − f bi · b′

i · Si

)
< 0 (41)

when α,β are the given constants and γ ∈ [γ0, γ0 + ε],
ε > 0. The obtained contradiction 0 < 0 proves the lemma. �
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Žunić, J., & Rosin, P. L. (2003). Rectilinearity measurements for poly-
gons. IEEE Transactions Pattern Analysis and Machine Intelli-
gence, 25(9), 1193–1200.
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