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Figure 1: Representative results generated using our interactive structure-guided texture transfer framework. The stylized
images are synthesized with the guidance of corresponding user-specified semantic maps. The proposed common framework
is capable of multiple challenging user-controlled texture transfer tasks: (a) turning doodles into artworks, (b) editing deco-
rative patterns, (c) generating texts in special effect, (d) controlling effect distribution in text images, (e) swapping textures.
Source image credits: (a) Van Gogh; (b,c,d) Zcool [1]; (e) Luan et al. [35]

Abstract

In this paper, we present a general-purpose solution to
interactive texture transfer problems that better preserves
both local structure and visual richness. It is challenging
due to the diversity of tasks and the simplicity of required
user guidance. The core idea of our common framework is
to use multiple custom channels to dynamically guide the
synthesis process. For interactivity, users can control the s-
patial distribution of stylized textures via semantic channel-
s. The structure guidance, acquired by two stages of auto-
matic extraction and propagation of structure information,
provides a prior for initialization and preserves the salien-
t structure by searching the nearest neighbor fields (NN-
F) with structure coherence. Meanwhile, texture coherence
is also exploited to maintain similar style with the source
image. In addition, we leverage an improved PatchMatch
with extended NNF and matrix operations to obtain trans-
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formable source patches with richer geometric information
at high speed. We demonstrate the effectiveness and superi-
ority of our method on a variety of scenes through extensive
comparisons with state-of-the-art algorithms.

1. Introduction
Texture transfer is a classic problem in areas of Comput-

er Vision and Computer Graphics. With this technique, we
can automatically transfer the stylized texture from a given
sample to the target image. A number of algorithms capable
of creating impressive stylization effects have been reported
over these years. Champandard et al. [8] proposed Neural
Doodle, a technique turning doodles painted by users into
fine artworks with provided samples. DecoBrush [33], an
extension of Realbrush [32] and Helpinghand [34] allows
designers to draw structured decorative patterns simply with
selected styles. More recently, Yang et al. [43] achieved tex-
t effect transfer which enables to migrate the effect from a
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stylized text image to a plain text image. However, exist-
ing approaches seem to be isolated from each other due to
specific usage scenarios. In fact, they share a common no-
tion of transferring textures under user guidance, namely,
users should be able to transfer the texture from source to
anywhere in target as they want.

The aim of this paper is to establish a general framework
of user-guided texture transfer for multiple tasks, including
turning doodles into artworks, editing decorative patterns,
generating texts in special effect as well as controlling ef-
fect distribution in text images, and swapping textures (see
Figure 1).

Due to the diversity of tasks and the simplicity of user
guidance, it is challenging to achieve the goal mentioned
above using existing methods. Some approaches [33, 43]
perform well but they are tailored to specific domains.
Hertzmann et al. [21] proposed a more general solution
called Image Analogy. However, due to the lack of enough
guidance of structural distribution, it suffers inner texture
dislocation and fails to preserve local high-frequency struc-
tures. Painting by Feature [36] allows users to utilize the
line and contour to guide texture transfer. It presents an
improvement by treating line feature and area feature us-
ing brush tool and fill tool separately. Yet, the method is
more suitable for filling nearly-stationary textures, since it
does not provide the directional control for internal texture
generation. The neural doodle reported in [8] using convo-
lutional neural networks fails to reproduce clear and high-
quality images with low-level texture details. The recently
proposed Deep Image Analogy [31] produces particularly
compelling results via a combination of image analogy [21]
and neural networks [27, 41]. While when we feed a doodle
image to the network, since the semantic labels have very
low neural activation it is difficult to establish correspon-
dence in textureless regions and thus unable to generate sat-
isfactory synthesis results.

In this paper, we propose a common framework for user-
guided texture transfer that is able to handle various chal-
lenging tasks. Interactive structure-based image synthesis
is guided by both semantic map and structure information.
Semantic channels are annotated by the user who can con-
trol the spatial distribution of stylized textures in the tar-
get image. The structure channels are then extracted au-
tomatically by content-aware saliency detection and prop-
agated from the source style image to the target as a prior.
Specifically, the propagation step acquires inner structure
correspondences via the registration of key contour points
between the source and target images. Combining seman-
tic and structure information for dynamic guidance enables
the transfer process to produce high-quality textures with
content-awareness and low-level details. In addition, an
improved PatchMatch algorithm with the extended nearest
neighbor fields and matrix operations is adopted to provide

richer source patches without speed reduction. Major con-
tributions of this paper can be summarized as follows:

• We design a general framework to handle interactive
texture transfer issues with the challenge of task diver-
sity and guided-map simplicity, and show the effec-
tiveness of our framework in multiple tasks.

• We propose a method that extracts salient structure re-
gions and conveys structure information in the source
image to the target. The structure information is then
utilized as a prior to guide better synthesis procedure.

• We present some novel scenarios of user-controlled
texture transfer in which, by incorporating the im-
proved texture synthesis method, finer detailed synthe-
sis images can be generated with higher speed.

2. Related Work
Up to now, a number of texture transfer methods have

been proposed, which can be roughly categorized as classic
texture transfer or neural-based techniques. Here, we briefly
review some representative works.

2.1. Classic Texture Transfer

Classic texture transfer method is a variant of texture
synthesis with given texture examples. For instance, most
early transfer algorithms as pioneered by Efros and Free-
man [13] are based on example-based texture synthesis
methods [14, 2]. They utilized a correspondence map with
some corresponding quantities such as intensity to constrain
the synthesis process. A later work by Criminisi et al. [10]
used patch priorities for region-filling to preserve the struc-
ture. Komodakis et al. [26] adopted Belief Propagation as
the optimization scheme to avoid greedy patch assignments.

Optimization-based texture transfer technique, firstly
proposed by Kwatra et al. [28], is also a follow-up work
of example-based method. This technique develops to a
successful texture synthesis method due to its high visual
quality outcome and wide application in different scenes.
Kwatra et al. [28] regarded texture synthesis problem as a
global optimization task and used Expectation Maximiza-
tion (EM)-like algorithm to iteratively minimize the energy
function. Wexler et al. [42] alleviated the completion is-
sue with multi-level synthesis to avoid being stuck in local
minima. Barnes et al. [3, 4] introduced a PatchMatch al-
gorithm to accelerate the nearest-neighbor search process
leveraging random search and the natural coherence in the
image. The optimization-based method was extended to
image melding [11], stylized 3D renderings [15], and tex-
t effects transfer [43] using adaptive patch partitions [16].
However, these methods fail to synthesize the texture with
salient structure and are prone to wash-out effect caused by



overusing low-frequency texture [38]. Our method shares
the common baseline with these techniques and overcomes
the challenges using multi-channel dynamic guidance.

Analogy-based method is another alternative for texture
transfer. Image Analogy, originally proposed in [21], uti-
lizes the availability of the input exemplar pair (source im-
age A and stylized result A′) to acquire the stylized image
B′ of target image B. The method finds the best correspon-
dence in source image for each pixel in target image. Cheng
et al. [9] improved this method with semi-supervised learn-
ing and image quilting model, which aims to ensure both lo-
cal and global consistency. This approach has also been ex-
tended to solve animation stylization problems [20, 6] and
construct efficient queries for large datasets [5]. Unfortu-
nately, it does not provide a directional control and easily
results in inner texture dislocation, which leads to the lost
of structure information.

2.2. Neural-based Style Transfer

Gatys et al. [17] proposed a neural style transfer method
leveraging pre-trained deep convolutional networks such as
VGG-19 [41]. Their method is effective for stylizing the
context image with a given style image, due to the abili-
ty of decomposing and recombining the content and style
of images. Johnson et al. [25] later utilized perceptual loss
functions to train feed-forward networks for real-time tex-
ture transfer tasks. Li and Wand [29] combined the Markov
Random Fields model with deep neural networks, which
was later extended to semantic style transfer [8]. Despite
the great success of neural-based method, it is not suitable
for our scenarios where source images are not limited to
artistic works, photographs and photorealism images are al-
so included. For those kinds of data, results of neural-based
methods often contain many low-level noises. Moreover,
no intuitive way is provided to control the synthesis process
and thus results become unpredictable.

The recently-proposed Generative Adversarial Networks
(GANs) [19, 12, 39] provided a potential alternative to gen-
erate texture via an adversarial process. GANs train a dis-
criminator to distinguish whether the output is real or fake
and a generator is trained simultaneously to fool the dis-
criminator. More recently, image-to-image translation [24]
was proposed using ‘U-Net’-based architecture [40] for
generator and convolutional ‘PatchGAN’ classifier [30] for
discriminator. It is a general framework for translating an
input image into the corresponding output image, such as
turning semantic labels, edges, or segments into realistic
images. Although this technique produces impressive re-
sults, it requires collecting thousands of related images to
train a model for a specific category. On the contrary, our
method only needs one exemplar for generating the target
stylized image from a corresponding semantic map.

Figure 2: Overview of the interactive texture transfer prob-
lem. With three input images Ssem (semantic map of source
image), Ssty (stylized source image aligned to Ssem) and
Tsem (semantic map of target image), stylized target image
Tsty with the style in Ssty can be generated.

3. Method Description
Interactive texture transfer aims to generate the stylized

target image from a given source image with user guidance.
Users can control the shape, scale and spatial distribution of
the objects to be synthesized in the target image via seman-
tic maps. With three input images Ssem (semantic map of
source image), Ssty (stylized source image aligned to Ssem)
and Tsem (semantic map of target image), the stylized tar-
get image Tsty could be automatically synthesized such that
Ssem : Ssty :: Tsem : Tsty (see Figure 2 for an overview).

Reproducing a structural image with stylized textures by
using a semantic map that contains little information is a
challenging task. In our method, we search the best corre-
spondences between the source and target in a patch-wise
manner. From the semantic map shown in Figure 2 we
can see that patches in the boundary of color labels contain
more abundant features than those located in internal posi-
tions. For patches in Tsem, patch a can find its best corre-
spondence (patch c) more easily than patch b that is hard to
choose its best-suited partner among internal source patch-
es, such as patch d and e, which are completely identical
(both full-blue) in the semantic map. Thus, it is difficult for
internal patches with salient structure to be correctly syn-
thesized by only relying on semantics. To solve the prob-
lem, we introduce a structure guidance based on the shape
similarity of semantic labels.

The basic idea is that boundary patches are forward to
be synthesized roughly correctly with more characteristics
in the semantic map, then we find the best correspondences
of inner patches mainly based on the structure guidance and
coherence with the source stylization. Actually, once the
boundary patches have been correctly synthesized, this in-
teractive texture transfer problem could almost be degener-
ated into an image completion task [42, 23, 22] with a large
hole to be filled via boundary propagation. We have tried
many state-of-the-art inpainting methods [11, 23] but our
experimental results (see supplementary materials) show
that all of them fail to synthesize structural textures with
such a large hole. One major reason is that a patch in the in-



Figure 3: The pipeline of our framework.

Figure 4: Illustration of structure information extraction.
The structure mask (i) or (j) is acquired by the computation
of saliency maps (c), (d) or (g), (h).

ternal region receives conflict information propagated from
four directions due to the difference in shapes. We alleviate
this issue by using structure information to provide a prior
in the initialization stage and guide the synthesis process.

As shown in Figure 3, three main steps constitute
our pipeline including salient internal structure extraction,
structure propagation and guided texture transfer.

3.1. Internal Salient Structure Extraction

Some salient texture details in the internal region of a
source semantic map are prone to being lost or suffering
disorder in the synthesized target image. This step aims to
extract detailed structure information within the semantic
map for the following propagation and synthesis.
Saliency Detection. Saliency detection is performed to
mark the salient regions of the source stylized image, which
contain complex textural structure or curvilinear structure
such as an edge or contour in an image. Goferman et al. [18]
proposed a saliency detection with content-awareness. Fol-
lowing their method, we compute a saliency map for the
source semantic map as Msem and the other one for the
source stylized image as Msty .
Structure Definition. There exist some structural textures
which are easily lost in the target because they contain
salient structure information in the source stylized image
but are not marked in the semantic map. These structural
patches mainly locate in the internal region of the semantic
map, such as the cloth region below the neck in Figure 4
(b) and leaves in Figure 4 (f). In this paper, we define these
salient internal textures as structure and the structure mask

Figure 5: Overview of our structure propagation process.
Structure information in a target image is obtained by find-
ing a planar transformation, which enables to project the
structural pixels in Sstruct to Tstruct. The transformation
is computed with the TPS algorithm based on contour key
point matching and the correspondence of contour points
established via the CPD method.

as a binary image which can be computed by

Mstruct(p) =

{
1, Msty(p) - `Msem(p)>δ

0, otherwise
, (1)

where p is the pixel in saliency map Msty and Msem, we
set ` as 10 for a sharp saliency decrease of boundary pixels.
δ is a threshold to discriminate the structure information.
Figure 4 shows two examples of extracted structure regions.

The structure map of source image is acquired by the
multiplication of colocated elements in matrix

Sstruct = Ssty ◦Mstruct. (2)

3.2. Structure Propagation

After extracting internal structure of source labels, as
shown in Figure 5, the structure information is propagated
from source to target to guide the texture transfer process.
Matching Contour Key Points. With only the semantic
map given for a target image, we want to propagate the
structure from source to target via a planar transformation
ψ : R2 → R2, by which each structural pixel in Sstruct is
projected to Tstruct. We compute the planar transformation
ψ by using key points on the contour, which are more reli-
able to represent the shape features. To establish correspon-
dence between two sets of points, we use the coherent point
drift (CPD) [37], a powerful point set registration algorith-
m to match each target contour point ĉp ∈ Ω′con to source
contour point cp ∈ Ωcon. We choose this algorithm mainly
due to the fact that it is capable of both rigid and nonrigid
spatial transformation and is more robust to assign contour
correspondences as a queue. Then, the contour points with
top nc curvature values are picked up as key points.
Structure Correspondence. Once the matching of contour
key points is completed, we compute the planar transfor-
mation ψ using thin plate splines (TPS) [7], which is often
used to build elastic coordinate transformation. The dense



correspondences for structural pixels are acquired by

Ω′struct(ŝp) = ψ · Ωstruct(sp), (3)

where Ωstruct is the point set of structural pixels (sp) in
Sstruct and Ω′struct is the point set of transformed points
in Tstruct. Afterwards, the structure map of target image is
computed by

Tstruct(q) =

{
Sstruct(sp), q ∈ Ω′struct and q = ŝp

0, q /∈ Ω′struct
.

(4)
Tstruct provides a prior for predicting positions of struc-

tural pixels in the target image. We introduce the struc-
ture correspondences < sp, ŝp > and target structure map
Tstruct for guided initialization and guided search.

3.3. Guided Texture Transfer

In this section, we describe how the extracted struc-
ture information and user-specified semantic annotations
are used to guide the texture transfer process. Our structure-
guided texture transfer approach is designed based on an
optimization-based texture synthesis [42] and utilizes an
improved PatchMatch to search the nearest neighbor fields.

More specifically, we incorporate customized guidance
by modifying the original energy function (Section 3.3.1)
and three guiding channels (semantics, structure and coher-
ence) are introduced for dynamical guidance using change-
able weights (Section 3.3.2-3.3.4). Finally, after initial-
ization with structure information, we optimize the energy
function by performing guided search and vote iteratively
(Section 3.3.5).

3.3.1 Energy Function

Our goal is to synthesize the target stylized image using
stylized textures in source. We pose this problem as a patch-
based optimization task with the following energy function

E =
∑
q∈T

min
p∈S

(λ1Esem(p, q) +λ2Estruct(q) +Ecoh(p, q)),

(5)
where p denotes the center coordinate of the source patch
in Ssem and Ssty , and q is the center coordinate of the tar-
get patch in Tsem, Tsty and Tstruct. λ1 and λ2 are the t-
wo weight parameters of semantic and structure guidance
terms, respectively. We define λ1 as a linear variable de-
creasing with iteration times and λ2 as a constant based on
the shape similarity between source and target:

λ1 =
te − t
te − ts

β, ts 6 t 6 te, (6)

λ2 = exp{− 1

|Ω′con|
∑

ĉp∈Ω′
con

d(ĉp, cp)}, (7)

where ts and te denote the starting and ending times of
iteration, respectively. λ1 will be changeable from β to
0. d(ĉp, cp) is the Euclidean distance between the contour
point in target and its aligned correspondence. During ini-
tial iterations, with β set to a large value, semantic guidance
is in dominant position leading boundary patches to find
reliable correspondences first. The influence of semantic
guide is gradually weakened with reduction in λ1. Structure
and textural coherence terms weighted by λ2 guide synthe-
sis together in the later stage.

3.3.2 Semantic Guide

The semantic map specified by users introduces manual
control to the texture transfer process. Same color labels in
Ssem and Tsem manifest the similar objects with identical
stylized texture. We manually produced labels via the brush
and quick selection tool of photoshop in about 30 seconds
for each image. A semantic label should cover an object to
naked eyes to avoid textures in one label being synthesized
in another. We define the semantic guidance term using L2-
norm of two sampled patches in RGB space

Esem(p, q) = ‖Tsem(Nq)− Ssem(f(Np))‖2, (8)

where Tsem(Nq) is a ω×ω patch sampled around the center
position q in target semantic map Tsem, and Ssem(f(Np))
is a ω × ω patch centered at source pixel p with geometric
transformation f applied. The transformation f encompass-
es transform, rotation and reflection. The i-th pixel in Np is
transformed as

f(N i
p) = γH∆N i

p + p, (9)

where H =

∣∣∣∣cos θ − sin θ
sin θ cos θ

∣∣∣∣ denotes the rotation matrix,

γ ∈ {1,−1} represents the reflection parameter, and ∆N i
p

is the coordinate of pixel i related to p.

3.3.3 Structure Guide

The salient structure in Ssty ignored by semantic map is
pre-projected as Tstruct. With this prior we describeEstruct
as the similarity of the target structural patch and temporary
stylized patch. Structural pixels are constrained with the
following equation

Estruct(q) =
∑

i=0...ω2−1

(Tstruct(N
i
q)− Tsty(N i

q))
2κ(N i

q)

τ(Nq)
,

(10)
where κ(N i

q) denotes whether the i-th pixel inNq is a struc-
tural pixel or not, defined by

κ(N i
q) =

{
1, N i

q ∈ Ω′struct
0, N i

q /∈ Ω′struct
, (11)



(a) no structure guide (b) struct init (c) struct init+search

Figure 6: The effects of structure guide. (a) Results without
structure guide. (b) Results obtained by initialization with
structure prior. (c) Results obtained by both initialization
and search with structure guide.

and τ(Nq) =
∑
i=0...ω2−1 κ(N i

q) denotes the number of
structural pixels in patch Nq . The structure guidance ter-
m affects the synthesis of Tsty by leveraging EM iterations
since the weighted average based on energy is used in the
vote step and thus results in the search step can also be im-
proved iteratively.

3.3.4 Coherence Guide

The coherence term aims to synthesize the target image us-
ing the consistent stylized textures in source. We define this
term similar to semantic term using distance in RGB space

Ecoh(p, q) = ‖Tsty(Nq)− Ssty(f(Np))‖2, (12)

where Tsty is the temporarily-generated image, which will
be iteratively improved.

3.3.5 Function Optimization

Our optimization approach is modified from the one orig-
inally proposed by Wexler et al. [42] with the main dif-
ference for the customized guidance and improved Patch-
Match. To be specific, the energy function is optimized by
EM-like iterations with two steps (guided search and vote)
performed alternatively. Here, we mainly describe the dif-
ference of our method against the original one, whose more
details can be found in [42].
Guided Initialization. In the coarsest level, structure corre-
spondences acquired in section 3.2 are utilized to initialize
the NNF that assigns the source patch to each target patch.
Then the initialization of Tsty is synthesized via the vote
step. Projecting structural patches to roughly correct posi-
tions in the initial stage is beneficial for strengthening the
structure information, which will be propagated to neigh-
bors later. In the finer level, the NNF and Tsty are both
upsampled from coarser one as the initialization of curren-
t level. Meanwhile, we construct the image pyramid for

target structure map T lstruct with l ∈ [1, L] and L is the
number of pyramid levels.

Guided Search. In the search step, we mainly leverage E-
quation (5) to search better correspondences between source
and target with the given Tsty . Specially, the structure guid-
ance uses multi-scale T lstruct in coarse-to-fine resolution.
Low-frequency structure map TLstruct provides a rough-
ly correct projection guide while the details are missing,
and high-frequency structure map T 1

struct contains clearer
detailed textures but suffers from severe corruption with
cracks. Multi-scale texture synthesis integrates them to-
gether for better synthesis. The effects of initialization and
search with structure guide are shown in Figure 6.

Moreover, inspired by [23] we use the PatchMatch (P-
M) algorithm [3] with extended NNF and matrix opera-
tions. The NNF is extended to [x, y, θ, γ] containing po-
sition (x, y), rotation θ and reflection γ. With matrix op-
erations, target patches are not processed in scanning order
and the neighbor information is propagated in target patches
simultaneously. Thus, we do not need to search geometric
transformation space explicitly. Instead, the four direction-
al propagations are performed alternately until no patch is
updated. Geometric transformable patches are provided in
the random search step. In this manner, we accelerate the
retrieval of nearest neighbors while obtaining more abun-
dant source patch for synthesis. This improved PM method
also reduces the mistake accumulation in one-by-one fash-
ion and encourages the correct correspondences scattered in
multi-places to be better preserved and propagated.

Vote. In the vote step, we reconstruct the target stylized
image Tsty with given NNF. Tsty is produced by computing
the weighted average color of co-located pixels in neighbor
patches as mentioned in [22].

4. Implementation Details

We use a fixed patch size 5× 5. Parameter ` and δ in E-
quation (1) control the salient degree of structural pixels. `
is set to a higher value to decrease boundary saliency since
boundary patches mainly depend on semantic annotation-
s rather than structure guidance. δ is a saliency threshold
between 0 and 1. Parameters nc controls the number of
key contour points. Parameters λ2 and λ1 determined by
β control the balance among global semantic consistency,
structure completeness and local texture coherence. In this
paper, we set the values of `, δ, β and nc as 10, 0.2, 10
and 20, respectively. The rotation angle θ ranges from −π2
to π

2 and γ takes value from {−1, 1}. In synthesis process,
we use ten levels of the image pyramid with ϕ optimization
iterations on each level, where ϕ linearly decreases when
synthesizing from coarse to fine.



(a) Input (source) (b) Input (semactics) (c) Output (target)

Figure 7: Doodles-to-artworks. Image courtesy of Cham-
pandard [8] and Liao et al. [31]

(a) Input (source) (b) Input (semactics) (c) Output (target)

Figure 8: Decorative Pattern Editing. Image courtesy of Lu
et al. [33]

5. Experimental Results

We implemented our method in Matlab with a 4 GHz
quad-core CPU. It takes around 2 minutes to synthesis a
target stylized image with 500 × 400 pixels. To validate
the performance of our general framework, we applied the
proposed technique to a wide variety of interactive texture
transfer applications and illustrated that it performs better
than other state-of-the-art methods.

5.1. Applications

Our approach can be effectively used for multiple tasks
of interactive texture transfer such as turning doodles in-
to artworks, editing decorative patterns with user guidance,
generating special effect texts and swapping textures.
Doodles-to-artworks In this scenario, two-bit doodles an-
notated by users can be turned into fine paintings with sim-
ilar styles as corresponding exemplars. When users force
fine-grained guidance into semantic map, this task is more
like an image morphing problem with object deformation.
While with multiple objects in the picture, this task becomes
an image retargeting process. Results are shown in Figure 7
and more can be found in supplemental materials.
Decorative Pattern Editing. As depicted in Figure 8, given
an exemplar, the decorative patterns can be synthesized nat-
urally along with the user-specified path. To be specific, our
method first automatically cuts the stroke into several sec-
tions based on the curvature and then performs the structure

(a) Input (source) (b) Input (plain text) (c) Output (target)

Figure 9: Special Effect Text Generation. Image courtesy
of Zcool [1]

(a) Input (source) (b) Output (target)

Figure 10: Texture Swap. Image courtesy of Yang et al. [43]

projection for each section to ensure the accuracy of propa-
gated structure information.
Special Effect Text Generation. As shown in Figure 9,
our method is also effective for generating texts with var-
ious textures such as the skin of object and the stylization
designed by artists. We can also control the effect distribu-
tion in complex texts and complete text effect transfer with
fragile decorative textures. The proposed method performs
better when the shapes are more similar between source and
target, but the structure can still be well preserved even with
large shape difference.
Texture Swap. From Figure 10 we can see that our method
is also capable of texture swap. For instance, apples can
swap the skin with each other (see Figure 1 (e)) and special
effect texts can swap the effects among them.

5.2. Comparison

We compared our algorithm with state-of-the-art inter-
active texture transfer methods in different scenarios men-
tioned in Section 5.1. See Figure 11 for the results and more
can be found in supplemental materials.

Image analogy [21], a pioneering approach, fails to
maintain local structures in the target stylized image, such
as incomplete leaves in the second row and missing vine in
the bottom row. It is also unable to preserve high-frequency
details for the nose and collar in the top row.

Text effect transfer [43], tailored to special effect tex-
t generation, uses a spatial distribution model based on the



(a) (Ssem, Ssty) (b) Tsem (c) Image Analogy (d) Text Transfer (e) Neural Doodle (f) Deep Analogy (g) Our method

Figure 11: Comparison with state-of-the-art texture transfer methods. Image courtesy of Van Gogh and Zcool [1]

high correlation between patch patterns and their distances
to text skeleton. The method performs better than other pre-
vious approaches in our experiments of special effect text
generation, but it still fails to preserve the vine’s structure
(vine effect in the third row) whose effect patterns do not
distribute according to the distances. It also suffers from
dislocation for inner textures in other scenarios.

Neural doodle [8] based on the combination of CNN and
MRF methods [29] does not guarantee a high-quality image
with low-level details (the first row). It produces color noise
for photorealism images and messy background with leaves
appearing randomly (the second and third row).

Deep image analogy [31] achieves attractive results with
two stylized images as input. However, in our scenarios
one stylized image must be replaced with a semantic map
and the other stylized image needs to be automatically syn-
thesized. With low neural activation in the semantic map, it
is difficult to find correct correspondence in textureless re-
gions using the VGG network. As we can see from the first
row in Figure 11 (f), although fine-grained controls have
been performed to the face, synthesized facial features are
still more similar as the source stylized image with little
characteristic of the target content. If we increase the con-
tent weight, it will fill regions with pure color patches re-
peatedly (such as the body part). No internal structure is
preserved due to the simplicity of semantic guidance.

From the last column of Figure 11, we can see that the
proposed framework is effective for multiple tasks, synthe-
sizing higher-quality content-specific stylization with well-

preserved structures. Furthermore, under the same experi-
mental settings, our method runs much faster (≈2 mins per
image) than other existing approaches such as image analo-
gy (≈15 mins) and neural doodle (≈40 mins).

6. Conclusion
This paper presented a general framework to interactive

texture transfer with structure guidance. Our method can
automatically migrate style from a given source image to a
user-controlled target image while preserving the structure
completeness and visual richness. More specifically, we in-
troduced a structure guidance acquired by automatically ex-
tracting salient regions and propagating structure informa-
tion. By incorporating the structure channels with seman-
tic and textural coherence, guided texture transfer can be
achieved. Experimental results showed that the proposed
framework is widely applicable for many texture transfer
challenges. Despite the current tendency to use neural-
based methods to style transfer, our results demonstrated
that a simple conventional texture synthesis framework can
still achieve state-of-the-art performance.
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