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ABSTRACT
Early development of GAs requires many parameters to be tuned.

The tuning process increases the di�culty for inexperienced practi-

tioners. Modern GAs havemost of these parameters pre-determined,

and therefore recent research concerning parameterless schemes

has focused on population size. The techniques developed in this

paper are mainly based on Harik and Lobo’s work and the exponen-

tial population scheme (EPS), which double the population until

the solution is satisfactory. In this paper, we modify EPS based on

theoretical analyses. Speci�cally, we propose a new termination

criterion and an optimized population multiplier. The experiment

results show that our scheme reduces 33.4%, 19.1% and 29.6% num-

ber of function evaluations (NFE) on hBOA (the parameter-less

hBOA), LT-GOMEA and DSMGA-II respectively when compared

to Harik-Lobo scheme, and reduces 28.5%, 4.7% and 11.0% NFE on

hBOA, LT-GOMEA and DSMGA-II respectively when compared to

EPS. In addition, compared to EPS, our scheme empirically reduces

the number of failures when using LT-GOMEA to solve the folded

trap and MAX-SAT problems.

CCS CONCEPTS
• Computing methodologies → Arti�cial intelligence;

KEYWORDS
Parameter-less Genetic Algorithm, Population Sizing

ACM Reference Format:
Yuen-Jen Lin and Tian-Li Yu. 2018. Investigation of the Exponential Popu-

lation Scheme for Genetic Algorithms. In Proceedings of Genetic and Evo-
lutionary Computation Conference (GECCO ’18), Jennifer B. Sartor, Theo
D’Hondt, andWolfgang DeMeuter (Eds.). ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3205455.3205551

1 INTRODUCTION
Genetic algorithms are well known for their applicability and ability

to solve problems e�ciently. However, in traditional GA procedures

such as crossover and selection, many control parameters have to

be determined by users. These parameters might highly impact to
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the e�ciency of GA and the impact might be problem dependent.

Several methods like meta-GA [9] have been proposed to conquer

the inconvenience of �ne-tuning these parameters when using GA

in practice.

In recent years, the crossover in traditional GA has been replaced

by recombinative operators such as optimal mixing [21], restrict

mixing and back mixing [12]. The research on selection also sug-

gests that the selection pressure should be �xed on a small value

like 2 [7]. These works help to determine most of the control pa-

rameters. However, there is the last and maybe the most important

parameter – population size, which decides whether the informa-

tion in population is enough for GA to solve problems. There have

been some research working on population sizing of GA, such

as decision making models [5], supply of building blocks [3] and

entropy-based model building [26]. In practical usage, however,

the actual needed population size cannot be directly derived since

the problem structure is unknown. Usually, GA users need prior

knowledge or experiences to set an appropriate population size.

There are two branches of research on getting rid of the popula-

tion size. One is to use existing GAs with an external mechanism.

For example, in the parameter-less GA scheme proposed by Harik

and Lobo [11, 13, 19], several GAs with di�erent population sizes

are initialized and each GA runs independently. This method has

also been adopted on some other GAs like the parameter-less hBOA

[16]. The other branch is embedding modi�cation, either to adapt

population size during GA process [13, 25], or to change other GA

procedures [2]. The parameter-less population pyramid (P3) [8] is

one of the representative algorithms belonging to this branch.

The exponential population scheme (EPS), which belongs to the

former branch, restarts GA with a doubled population size when

the previous population converges. EPS was not adopted on the

simple GA because of the long convergence time [11]. However,

due to fast convergence of modern GAs, EPS becomes promising.

Research has shown that EPS outperforms Harik-Lobo scheme on

LT-GOMEA [1]. In this paper, we modify EPS to improve e�ciency

and show that our modi�ed scheme is universally applicable on

modern GAs.

The rest of this paper is organized as follows. The background

is �rst introduced in Section 2. Our modi�cation of the scheme is

proposed in Section 3. Experiment results are shown in Section 4.

The conclusion follows.

2 BACKGROUND
In this section, we introduce two parameterless schemes for GAs –

Harik-Lobo scheme and EPS. We also address the GAs on which we

test the parameterless schemes, including the hierarchical Bayesian
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optimization algorithm (hBOA), the linkage tree gene-pool optimal

mixing evolutionary algorithm (LT-GOMEA) and the dependency

structure matrix genetic algorithm II (DSMGA-II).

2.1 Harik-Lobo Scheme
In Harik-Lobo scheme, several populations with di�erent sizes are

maintained and evolved in a parallel way. It starts with a small

population of size n0, runs a GA form generations, then runs the

GA on a population with a doubled size of 2n0 for a generation.
This process repeats until the 2n0 population has evolved for m
generations, then the scheme runs the GA on a population of size

4n0 for a generation, and so on. During the process, the populations
that have converged are terminated since they cannot generate new

solutions. In addition, if the average �tness of a certain population

catches up with smaller populations, the smaller populations are

terminated. Algorithm 1 shows the pseudocode withm = 4 [19].

The conditions that Harik-Lobo scheme stops are prede�ned

by the users, similar to some other parameterless schemes like P3.

The scheme might stop when a solution of good enough quality

is found, or its time or memory limit is reached. In this paper, the

target for the parameterless schemes is set to �nding the optimal

solution.

Algorithm 1: Harik-Lobo scheme

P: populations, GA: the GA used in the scheme, n0: initial
population size, n: size of the next population, r : population
multiplier, UpNext: index of next population to evolve,

BasePop: index of smallest unterminated population,

Generations: list of generations of each population in P

n ← n0
Initialize P[0] with a size of n
BasePop← 0

UpNext← 0

while ¬ShouldTerminate do
if UpNext = Size(P) then

n ← rn
Initialize P[UpNext] with a size of n

Run GA for a generation with P[UpNext]

Generations[UpNext]← Generations[UpNext] + 1

if HasConverged(P[UpNext]) then
BasePop← UpNext + 1

UpNext← UpNext + 1

else
if CatchUpWithSmallerPop(P[UpNext]) then

BasePop← UpNext

if Generations[UpNext] mod 4 = 0 then
UpNext← UpNext + 1

else
UpNext← BasePop

return the best solution in P

2.2 Exponential Population Scheme
Unlike Harik-Lobo scheme, which maintains several populations

at the same time, EPS restarts the GA with a doubled population

size when the current population converges. The concept was �rst

discussed by Harik and Lobo [11]. This scheme is straightforward

for users: if the current population is not large enough to solve

the problem, simply try a larger population. However, EPS was not

adopted by Harik and Lobo due to slow convergence of the simple

GA. Other termination criterion can be de�ned by the users, but

choosing the moment to terminate a population before convergence

might impact e�ciency [17].

Nevertheless, using EPS might be practical on modern GAs,

which converges faster than the simple GA. Taking LT-GOMEA as

an example, the premature convergence of a population is deter-

mined when the population has not changed between two genera-

tions. Research shows that EPS outperforms Harik-Lobo scheme

on LT-GOMEA when using premature convergence as termination

criterion [1]. Algorithm 2 shows the pseudocode of EPS.

Algorithm 2: Exponential population scheme

P: population, GA: the GA used in the scheme, n0: initial
population size, n: size of the next population, r :
population multiplier

n ← n0
Initialize P with a size of n
while ¬ShouldTerminate do

Run GA for a generation with P

if PrematureConvergence(P) then
n ← rn
Initialize NewPop with a size of n
P ←NewPop

return the best solution in P

2.3 Hierarchical BOA
hBOA is a probabilistic model-building GA [14, 15]. In each gen-

eration, hBOA selects better chromosomes from the population

and learns the probabilistic model from the selected chromosomes.

Then the model is used for the recombination of new chromosomes.

hBOA uses restricted tournament replacement (RTR) [10] to replace

the old chromosomes in the population. For a new chromosome,

RTR �nds the closest chromosome with it in the population and

compares their �tness. Replacement occurs only when the �tness

of the new chromosome is greater than the old one. RTR ensures

diversity in the population, which is necessary for building a good

probabilistic model.

2.4 LT-GOMEA
In LT-GOMEA, the recombinative operator used to generate new

chromosomes is optimal mixing (OM) [21], in which the grouped

genes to be exchanged between two chromosomes are referred as

masks. In each OM operation, a donor and a receiver are chosen

from the population, then the donor gives its pattern in the mask to

the receiver. The receiver only takes the change if its �tness does

not decrease after receiving the pattern.

The set of masks used to perform OM in LT-GOMEA is modeled

by clusters in a linkage tree [20, 22]. A linkage tree is computed
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with a distance measure between two genes based on mutual infor-

mation. Before the mixing process, half of the population is chosen

using binary tournament selection to build a linkage tree [22]. Each

generation, every chromosome in the population acts as a receiver,

on which OM is performed with all the masks in the linkage tree.

2.5 DSMGA-II
In DSMGA-II, an incremental linkage set (ILS) is used in place of

masks in the mixing process [12]. ILS use mutual information as the

dependency measure between each pair of gene positions. DSMGA-

II uses two modi�ed versions of OM operator – restrict mixing (RM)

and back mixing (BM). RM �ips the bits in the receiver with the

masks in the ILS if the corresponding pattern exists in the popula-

tion. If the �tness of the receiver does not decrease after �ipping,

the receiver takes the change and RM stops. Once an RM succeeds,

BM is launched. The pattern changed in the receiver is used as a

donor and pasted into other chromosomes in the population. The

change is taken if the �tness of the other chromosomes that receive

the pattern improves.

3 OUR MODIFIED SCHEME
EPS is potentially applicable on modern GAs. One reason is that fast

convergence makes it easier to determine whether a population

is able to produce better solutions. Additionally, since EPS only

maintains one population at a time, it avoids unnecessary function

evaluations that come from maintaining larger populations. Be-

cause Harik-Lobo scheme increases population size exponentially,

evolving larger populations for a generation costs several times

more in terms of number of function evaluations (NFE) compared

to evolving smaller populations.

There is still room for improvement in EPS. In this section, we

propose our new termination criterion and population multiplier

to improve the e�ciency of the scheme. The reasons behind our

modi�cations are also discussed.

3.1 New Termination Criterion
In previous research [1], the population is terminated upon pre-

mature convergence, which is decided by whether the population

remains the same between two generations. Once premature con-

vergence happens, we assume that the population cannot produce

better solutions since no new solution is produced after a genera-

tion of mixing. This termination criterion seems reasonable, but it

has some drawbacks. For those problems with large plateaus in the

problem landscape, GAs may converge slowly, continuously gener-

ate new solutions and reach the premature convergence criterion

too late. Therefore, we need a more robust criterion to determine

the moment when a population should be terminated.

We derive the new termination criterion by optimal mixing (OM)

since it is one of the most powerful recombinative operators in

modern GA research. During the OM process, the receiver takes

the pattern from the donor only if its �tness does not decrease after

the exchange. For the patterns in a certain mask, there are two

situations where the contribution of these patterns to �tness does

not increase after a generation. One is if the corresponding patterns

in all chromosomes in the population are the same, no successful

OM was performed. The other is that all successful OMs exchange

patterns that contribute equally to �tness. In both situations, the

contribution of the patterns in the mask to �tness is not likely to

improve further. If the average �tness of the population does not

increase after a generation, then the patterns in all masks did not

improve. We believe the population cannot produce better solutions

and should be terminated if the average �tness does not improve

after a number of generations.

Considering cases where the problem is composed of nonover-

lapping subproblems, here we make the following assumption:

whenever no improvement in �tness is accomplished during a gen-

eration for a single mask, there exists a big cluster in the current

population of corresponding patterns that contribute equally to

�tness, and the rest of the patterns are superior to those in the

cluster. Our assumption is based on the following reasoning: if

such a cluster does not exist, during OM the �tness contributions

from the mask in the donor and the receiver are unequal, hence

�tness improvement is highly likely to occur. In addition, if some

patterns inferior to those in the cluster exist, when corresponding

chromosomes become receivers during OM, their �tness is highly

likely to improve.

If the patterns in the mask do not improve after a generation,

the patterns in the cluster were not replaced by superior ones and

all successful OMs exchange the patterns in the cluster. So the

probability for no improvement is

pnot improve = peq
npeq ,

where peq is the proportion of the patterns in the cluster, n is

population size and npeq is the number of chromosomes that have

these patterns. Thus the probability that the patterns do not improve

for t consecutive generations is (peq
npeq )t .

However, since the proportion peq is unknown, the probability

cannot be estimated before we observe that the �tness does not im-

prove. In practice, the event is observed as either having happened

or not, so the corresponding maximum likelihood of probability

is either 1 or 0. Once it occurs, we believe that the event tends to

happen, so the probability is closer to 1 rather than 0. Thus we

assume that the probability is greater than 0.5, expressed as the

inequality

(peq
npeq )t > 0.5.

On the other hand, we say that the patterns in the cluster have

taken over the population if peq >
n−1
n . To ensure the condition is

ful�lled when the event is observed, t should satisfy the formula

(peq
npeq )t > 0.5 > (

n − 1

n
)n

n−1
n t .

From the right hand side of the inequality we get

t >
ln 2

(n − 1) ln n
n−1
.

Usually, the population size n is greater than 2, so the right-hand

side of the formula is less than 1. In other words, if average �tness

does not improve after a generation, there is a low probability the

population will produce better solutions, so we should terminate

the current population and switch to the next larger population.

3.2 The Population Multiplier
In both EPS and Harik-Lobo scheme, population size is doubled

when a new population is initialized. However, no solid reason
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Figure 1: The blue line is the n-p curve. The population
should be enlarged if the GA fails with the population size
< nopt and should not be enlarged if the GA fails with the
population size > nopt . nopt appears at where n

p(n) , which is
the reciprocal of the slope of the gray dashed line, is mini-
mized.

is given in the literature for doubling the population size instead

of taking another population multiplier like 3 or 5. In the follow-

ing paragraphs, we discuss the reasonable value of the population

multiplier.

3.2.1 Whether to enlarge population. When GAs successfully

�nd the optimal solution, we do not need to enlarge the population.

However, the question remains whether to enlarge the population

when GAs fail. Assuming we keep trying the GAwith the same pop-

ulation size, we de�ne the optimal population size nopt such that

the expectation value of the NFE consumed is at a minimum. Here

we consider the optimal mixing evolutionary algorithms (OMEAs)

[21], whose complexity in terms of NFE is Θ(n), where n is the

population size [23]. If we keep trying the GA with the same popu-

lation size as n,n, ..., the expectation value of the NFE consumed is

proportional to the expectation value of the total size of used popu-

lations, which is
n

p(n) , where p(n) is the probability of successful

convergence (n-p curve). By de�nition,
n

p(n) is of minimum value at

n = nopt , as illustrated in Figure 1. When the GA fails, we should

enlarge the population if the population size is less than nopt , since
the expectation value of the NFE decreases. Otherwise, we should

not enlarge the population.

From another perspective, if the problem is formed bym building

blocks of size k , the probability that all optimal subsolutions of

each building block are in the population is (1 − (1 − 2−k )n )m [23].

Since the population size increase in EPS grows exponentially, it

is reasonable to illustrate the population size using a logarithmic

scale. When the population size is log-scaled, the probability is

close to a step function whenm approaches in�nity, as shown in

Figure 2. Thus, we model the probability as a step function with

the threshold population size nth . In the step function model, the

optimal population size nopt mentioned above can be approximated

by nth . If the GA fails, we believe that the population size is less

than nth , so the population should be enlarged since the maximum

likelihood of the probability is 0.

It is still necessary to explain how the threshold population

size nth is chosen. When enlarging the population, consider the

Figure 2: The probability (1−(1−2−k )n )m with di�erent num-
bers of building blocksm. Size of building blocks k is set to 5.
The optimal population sizes nopt of di�erentm are marked
by orange crosses.

Figure 3: Modeling the n-p curve by step function. Suppose
that the GA fails with population size n1 and succeeds with
population size n2. The blue dashed line is the original n-p
curve, and the green line is the modeled step function.

situation where the GA fails with population size n1 and succeeds

with population size n2, where n1 < n2. The probability of such a

situation occurring, denoted as pe , is (1 − p(n1))p(n2). Assuming

a probability pth such that p(n1) < pth < p(n2), therefore pe ≥
(1 − pth )pth . Since the above situation has occurred, its maximum

likelihood is 1. Tomaximize the lower-bound value ofpe ,pth should

be 0.5. Then nth can be de�ned corresponding to pth , and p(n) can
be modeled as a step function with nth , as illustrated in Figure 3.

3.2.2 Strategies for enlarging population. When a GA with a

small population fails, it is straightforward to enlarge the population

and try again. However, it is di�cult to obtain new information

from the GA besides the failure itself. Without extra information,

it is reasonable to repeat the same action until the GA succeeds

in �nding the optimal solution. EPS, in which population size is

multiplied by the same multiplier (n, rn, r2n...), is one such strategy.

Another strategy is to increase population size by the same amount

as n,n+N ,n+ 2N .... Both strategies stop when the population size

is larger than or equal to the threshold population size nth .
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Population
multiplier

Threshold population size
4 5

Pop. size seq.
a

Sum Pop. size seq. Sum

2 1, 2, 4 7 1, 2, 4, 8 15

3 1, 3, 9 13 1, 3, 9 13

a
Pop. size seq. = Population size sequence.

Table 1: Example showing that the threshold population
size highly impacts the total population size in EPS. Sup-
pose the initial population size is 1. Setting the popu-
lation multiplier to 2 is better than 3 when the thresh-
old population size is 4. However, setting the population
multiplier to 3 is better when the threshold population
size is 5.

As described in Section 3.2.1, the total NFE consumed is pro-

portional to the total size of used populations. We assume that

the size of the last population is nth . Considering the two strate-

gies mentioned above, the total population size is Θ(nth ) for the
�rst strategy (EPS) as a summation of the geometric sequence and

Θ(nth
2) for the second strategy as a summation of the arithmetic

sequence. In this case, EPS requires a lower NFE than the other

strategy which increases population size by the same amount.

3.2.3 Deriving the population multiplier. EPS starts with a small

population of size n0 and a population multiplier r . As we try pop-

ulations of size n0, rn0, r
2n0, ... sequentially, we can always �nd

an i such that r i−1n0 < nth ≤ r in0 since nth is �nite. So the last

population size is r in0, and the total NFE of EPS is proportional to

total population size, which is n0 + rn0+ r
2n0 + ...+ r

in0. The sum-

mation varies with di�erent population multipliers r and threshold

population sizes nth . The example in Table 1 shows that the better

r depends on the value of nth , but we want to �nd the optimal r
for the average case.

Let nth be expressed as xr i−1n0, where x is between 1 and r . The
total population size can be approximated to

i∑
j=0

r jn0 ≈
r i+1n0
r − 1

.

Then, replace n0 with nth and we get the formula expressed as

r2

r − 1

nth
x
.

The value depends on r and nth . Since our goal is to reduce the

NFE in an average case, we compare the value to the minimum re-

quired NFE, which is proportional to nth because it is the minimum

population size the GA needs to �nd the optimal solution. We thus

calculate the ratio between total population size and the threshold

population size nth , and the value is

r2

r − 1

1

x
.

The threshold population size nth can be any value, but it is not

realistic to assume a probability distribution with in�nite range.

According to the previous assumption, there must exist i such that

r i−1n0 < nth ≤ r in0. As i is con�rmed, we assume that nth is

uniformly distributed within (r i−1n0, r
in0]. In other words, x is

uniformly distributed in (1, r ]. So the expectation value of the ratio

for a certain r is∫ r

1

1

r − 1

r2

(r − 1)x
dx = (

r

r − 1
)2 ln r .

The formula has a minimum value when r ≈ 3.5. As the result, we

suggest using 3.5 instead of 2 as the population multiplier.

4 EXPERIMENT RESULTS
In this section, we �rst detail the setup of experiments. Then we

show the comparison between the parameterless schemes. Veri�ca-

tion of the population multiplier follows.

4.1 Experiment Setup
In this paper, we compare our scheme with EPS and Harik-Lobo

scheme. The experimental settings are described as follows. Since

we suggest multiplying the population size by 3.5 rather than 2, both

values are used as population multipliers in the experiment for com-

parison. The parameterless schemes start with an initial population

size of 10 as the setting in [16] and [19]. EPS is implemented with

premature convergence as the termination criterion. Our scheme is

implemented with the termination criterion proposed in Section 3.

For Harik-Lobo scheme on hBOA, we compare our scheme with

the parameter-less hBOA directly. For Harik-Lobo scheme on LT-

GOMEA and DSMGA-II, the scheme we use is mainly based on the

latest implementation [19]. In Harik-Lobo scheme, there is still a

parameterm that controls how often to evolve larger populations.

The works [11, 17, 19] suggest using 4 as m in the average case.

Thus, we setm to 4 in the experiment. The implementations of the

parameterless schemes for hBOA, LT-GOMEA and DSMGA-II are

based on the implementation in [15], [8] and [12], respectively.

We use six di�erent types of benchmark problems, including

four linkage-underlying problems and two real-world problems.

Respectively, they are concatenated trap [4], cyclic trap [24], folded

trap [6], NK-landscape [18], Ising spin-glass and maximum satis-

�ability (MAX-SAT) problems. The formula de�nitions of the six

types of problems are shown in Table 2. For the concatenated trap

and the cyclic trap problems, the size of subproblems k is set to 5.

For the folded trap problem, the size of subproblems k is set to 6. We

choose three di�erent NK-landscape problem sets: NK-S1, NK-S3,

NK-S5, in which the step size s is 1, 3 and 5, respectively. These

problem sets represent problems with di�erent overlapping degrees.

For NK-landscape, Ising spin-glass and MAX-SAT problems, we use

100 instances for each problem set. For the concatenated trap, the

cyclic trap and the folded trap problems, we do 100 independent

runs. For NK-landscape, Ising spin-glass and MAX-SAT problems,

we do ten independent runs on each instance, and the results of

100 instances are averaged. In each run, the parameterless schemes

are executed until the optimal solution for the problem is found.

4.2 Results and Discussion
Now we compare our scheme with EPS and Harik-Lobo scheme.

We use these parameterless schemes on hBOA, LT-GOMEA and

DSMGA-II. The results are discussed sequentially. The average

improvement of our scheme and the comparison with P3 follow.
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Problem De�nition

Concatenated trap f
trap
k,m (x) = Σmi=1 f

trap
k

(
Σi ·kj=i ·k−k+1xj

)
, where f

trap
k (u) =

{
1 if u = k,
k−1−u

k otherwise.

Cyclic trap f
cyclic
k,m (x) = Σmi=1 f

trap
k

(
Σi ·k−i+1j=i ·k−i−k+2xj

)
, where f

trap
k (u) =

{
1 if u = k,
k−1−u

k otherwise.
and x`+1 = x1.

Folded trap f
f olded
k=6,m (x) = Σmi=1 f

f olded
k=6

(
Σi ·kj=i ·k−k+1xj

)
, where f

f olded
k=6 (u) =


1 if |u − 3| = 3,

0 if |u − 3| = 2,

0.4 if |u − 3| = 1,

0.8 if |u − 3| = 0.

NK-landscape f NK
l,k,s (x) = Σ

(l−k−1)
s

i=1 f subNK
i,k (xi ·s+1, xi ·s+2, ..., xi ·s+k ) , where f subNK

i,k ∈ [0, 1] for any x.

Ising spin-glass f
spin
n (x) = −Σni, j=1xixj Ji j , where n is the number of total pairs.

MAX-SAT f (x) = ∩mi=1(∪
ki
j=1xi j ), wherem is the number of clauses, ki is the number of literals in the i-th clause.

Table 2: De�nitions of test problems. We denote the problem size as `, a chromosome as a vector x =(x1,x2, ...,x`), and the
number of 1’s of the subfunctions in the trap problems as u.

4.2.1 Results of the schemes on hBOA. Since hBOAuses RTR, the

population changes if and only if average �tness of the population

becomes better. In this case, our termination criterion is identical to

premature convergence in EPS, so EPS is omitted in this comparison.

The results of our scheme and the parameter-less hBOA are shown

in Table 3. Our scheme outperforms the parameter-less hBOA on

the folded trap, NK-landscape, and two real-world problems. The

results also show that our scheme requires a lower NFE when the

population multiplier is set to 3.5.

4.2.2 Results of the schemes on LT-GOMEA. The results are

shown in Table 4. Our scheme outperforms Harik-Lobo scheme on

most of the test problems. Our scheme perform worse on the folded

trap problem, on which LT-GOMEA converges late. Changing the

population multiplier from 2 to 3.5 bene�ts our scheme on the

folded trap, NK-S1 and NK-S3 problems. In most cases, Harik-Lobo

scheme performs worse after the change, since larger populations

in Harik-Lobo scheme consume higher NFE when the population

multiplier increases.

There are no obvious performance di�erences between our scheme

and EPS in most cases, but EPS performs worse on problems with

large plateaus in the landscape, such as Ising spin-glass problems.

EPS even fails in almost half of the runs with the population mul-

tiplier set to 2 when solving the 240-bit folded trap problem, on

which LT-GOMEA continuously generates new chromosomes and

reaches premature convergence late. EPS also fails more when solv-

ing 100-bit MAX-SAT problems. For these problems, our scheme

empirically reduces the number of failures, since the new termina-

tion criterion stops the population from useless exploration.

4.2.3 Results of the schemes onDSMGA-II. The results are shown
in Table 5. On DSMGA-II, using 3.5 as the population multiplier also

reduces the NFE in our scheme and EPS in most cases. Our scheme

does not outperform Harik-Lobo scheme on the concatenated trap

and the cyclic trap problem, because DSMGA-II usually solves these

problems in one or two generations with su�cient population size,

so larger populations are not initialized in Harik-Lobo scheme. It

Problems
Ours Parameter-less

hBOAPopulation multiplier

2 3.5

Concatenated
trap 92.8 61.5 56.3

Cyclic trap 170 88.8 75.1

Folded trap 57.1 41.2 91.4

NK-S1 67.5 48.5 90.9

NK-S3 67.4 46.3 84.3

NK-S5 34.8 25.5 54.5

Ising spin-glass 6.3 4.5 18.5

MAX-SAT 22.8 21.9 27.0

Unit: 10
4
NFE

Table 3: Results of our scheme on hBOA and the
parameter-less hBOA. The problem size is 60 in the folded
trap problem, 50 in the MAX-SAT problem, and 100 in
other problems.

is worth to mention that changing the population multiplier bene-

�ts Harik-Lobo scheme on these two problems. Nevertheless, our

scheme outperforms Harik-Lobo scheme on the other problems.

Similar to the LT-GOMEA results, there are no obvious perfor-

mance di�erences between our scheme and EPS in most cases, and

our scheme outperforms EPS on Ising spin-glass problems. How-

ever, our scheme performs worse than EPS on MAX-SAT problems.

When solving MAX-SAT problems, our scheme tends to try larger

populations because our termination criterion terminates popula-

tions too early.

4.2.4 Average improvement of our scheme. Table 6 shows the

average improvement of our scheme compared to the other two

schemes on the eight test problems. We compare with the original

version of EPS and Harik-Lobo scheme, in which the population

multiplier is set to 2. The results show that our scheme outperforms

the other two schemes on average, and the improvement increases

in most cases when the population multiplier is set to 3.5.
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Problems
Ours EPS Harik-Lobo

Population multiplier

2 3.5 2 3.5 2 3.5

Concatenated
trap 30.9 36.7 33.0 34.6 33.9 40.0

Cyclic trap 84.9 84.5 80.8 85.7 112 162

Folded trap 2860 1676 22594
a

7879 2348 1118

NK-S1 230 199 227 207 289 336

NK-S3 229 202 230 195 286 322

NK-S5 64.4 70.9 65.1 71.3 79.1 80.6

Ising
spin-glass 74.7 82.7 116 120 101 127

MAX-SAT 255 356
b

918
c

1260
c

333
b

350
d

Unit: 10
4
NFE

a
There are 47 failures in 100 runs.

b
The scheme fails several times in 10 runs on 1 instance.

c
The scheme fails several times in 10 runs on 9 instances.

d
The scheme fails several times in 10 runs on 2 instances.

Table 4: Results of the parameterless schemes on LT-
GOMEA. The problem size is 240 in the folded trap prob-
lem, 100 in the MAX-SAT problem, and 400 in other prob-
lems.

4.2.5 Comparison with P3. Here we compare our scheme (r =
3.5) with P3, one of the most e�cient parameterless GAs. P3 re-

quires 71, 143, 6831, 1900, 2103, 400, 183 and 151 thousand function

evaluations for the concatenated trap, the cyclic trap, the folded

trap, NK-S1, NK-S3, NK-S5, Ising spin-glass and MAX-SAT prob-

lems, respectively (Problem sizes are as described in Table 4 and

Table 5). P3 outperforms our scheme on LT-GOMEA in all test prob-

lems except NK-S3. On DSMGA2, our scheme outperforms P3 on

folded trap and NK-landscape problems and performs worse on the

other problems. However, P3 modi�es the process of LT-GOMEA

[8], and our scheme does not change the GA process.

4.3 Veri�cation for Population Multiplier
The experiment results shows that our scheme requires a lower

NFE when the population multiplier is set to 3.5 in the average case.

However, we do not know if taking other population multipliers

is better in practice. To verify our analysis in Section 3.2, we test

our scheme on several problems and see if the average result is

consistent with the analysis.

Three di�erent problem sets (NK-S1, NK-S3, NK-S5) are used

for veri�cation. Since these problem sets are randomly generated

and consist of subproblems which overlap in di�erent degrees,

we believe that these problems represent most problems that are

composed of subproblems. Moreover, since the problems consist

of building blocks of the same size, we can estimate the needed

population size by supply models. For each problem set, we use

four di�erent problem sizes: 50, 100, 200, 400. According to supply

model theory, the needed population size isΘ(2k lnm) = Θ(2k ln `),
wherem is the number of building blocks, k is the order of each

building block, and ` is the problem size. So as problem size grows

Problems
Ours EPS Harik-Lobo

Population multiplier

2 3.5 2 3.5 2 3.5

Concatenated
trap 11.1 13.8 11.6 9.8 10.8 8.9

Cyclic trap 24.7 23.3 25.6 24.4 23.5 20.7

Folded trap 31.8 28.8 31.8 33.2 67.2 92.0

NK-S1 178 154 179 151 286 636

NK-S3 140 112 137 109 198 375

NK-S5 20.3 16.6 20.6 16.7 27.1 39.0

Ising
spin-glass 59.4 41.8 98.5 65.6 86.4 79.5

MAX-SAT 48.1 51.9 43.3 57.1 71.3 207

Unit: 10
4
NFE

Table 5: Results of the parameterless schemes on
DSMGA-II. The problem size is 240 in the folded trap
problem, 100 in the MAX-SAT problem, and 400 in
other problems.

Comparison hBOA LT-GOMEA DSMGA-II
Ours
(r = 2) a

EPS 0%
b

6.2%
c

4.5%

Harik-
Lobo 1.2% 13.8%

d
25.0%

Ours
(r = 3.5) a

EPS 28.5% 4.7%
c

11.0%

Harik-
Lobo 33.4% 19.1%

d
29.6%

a r = Population Multiplier.

b
On hBOA, our scheme is identical to EPSwhen the population

multiplier is 2.

c
The folded trap and MAX-SAT problems are not counted in

the average.

d
MAX-SAT problems are not counted in the average.

Table 6: The average improvement of our scheme com-
pared with the other two parameterless schemes.

exponentially, the needed population size increases linearly. We

therefore assume that the needed population size is uniformly dis-

tributed in some range for each problem set.

We use LT-GOMEA and DSMGA-II for the veri�cation. In the

experiment, the population multiplier r is scanned from 2 to 5,

increasing by 0.1. To calculate the average ratio for each population

multiplier, we use the average NFE of our scheme from the results in

Section 4.2, and the results from previous research for the optimal

NFE needed by the GAs.

Figure 4 shows the veri�cation results. For LT-GOMEA, the

minimum average ratio appears in the interval between r = 2.5

and r = 4.1. For DSMGA-II, the minimum average ratio appears in

the interval between r = 2.4 and r = 3.6. The variances are high

since the problems have di�erent optimal population multipliers.

Nevertheless, the results show that setting the population multiplier

to 3.5 is better than 2 for our scheme.
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Figure 4: The average ratios between the NFE of our scheme
and the optimal NFE while using LT-GOMEA and DSMGA-
II. The blue lines are the normalized average ratios, and the
orange dashed lines are moving averages of the normalized
average ratios. The ranges where the moving averages < 0.2
are marked with gray shading.

5 CONCLUSIONS
In this paper, we modify EPS by using a new termination criterion

and an optimized population multiplier. The new termination crite-

rion decides more robust timing for terminating a population, and

the optimized population multiplier makes our modi�ed scheme

more e�cient in terms of NFE. We also provide theoretical analyses

of our modi�cations. Our scheme is applicable on modern GAs such

as hBOA, LT-GOMEA and DSMGA-II. The experiment results show

that our scheme reduces NFE by 33.4%, 19.1% and 29.6% on hBOA,

LT-GOMEA and DSMGA-II respectively when compared to Harik-

Lobo scheme, and reduces NFE by 28.5%, 4.7% and 11.0% on hBOA,

LT-GOMEA and DSMGA-II respectively when compared to EPS. In

addition, on problems with large plateaus in the landscape, such

as the folded trap and Ising spin-glass problems, our scheme con-

siderably outperforms EPS, since our termination criterion avoids

unnecessary exploration when the population is not large enough

to �nd the optimal solution.

As for future work, we would like to research methods for deter-

mining suitable population size to solve the problem. In our scheme,

we simply try a larger population if the current population seems

unpromising. If we can tell the population size is large enough

or not, we can keep trying the GA with su�cient population size

until success, reducing the NFE needed for maintaining a larger

population. Since the information from studies of �tness might not

be su�cient, further investigation is needed.

ACKNOWLEDGMENTS
The authors would like to thank the Ministry of Science and Tech-

nology in Taiwan for their support under Grant No.MOST 106-2628-

E-002-011-MY2.

REFERENCES
[1] W. den Besten. 2015. Parameter-less GOMEA. Master’s thesis. Utrecht, Utrecht,

Netherlands.

[2] C.-H. Chang and T.-L. Yu. 2016. Investigation on Parameterless Schemes for

DSMGA-II. In Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference Companion (GECCO ’16 Companion). ACM, New York, NY, USA, 85–

86.

[3] D. E. Goldberg, K. Sastry, and T. Latoza. 2001. On the supply of building blocks. In

Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation

(GECCO ’01). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 336–

342.

[4] K. Deb and D. E. Goldberg. 1994. Su�cient conditions for deceptive and easy

binary functions. Annals of Mathematics and Arti�cial Intelligence 10, 4 (1994),
385–408.

[5] D. E. Goldberg, K. Deb, and J. H. Clark. 1992. Genetic Algorithms, Noise, and the

Sizing of Populations. Complex Systems 6 (1992), 333–362.
[6] D. E. Goldberg, K. Deb, and J. Horn. 1992. Massive Multimodality, Deception, and

Genetic Algorithms. Technical Report.
[7] D. E. Goldberg, K. Deb, and D. Thierens. 1993. Toward a Better Understanding of

Mixing in Genetic Algorithms. Journal of the Society of Instrument and Control
Engineers 32, 1 (1993), 10–16.

[8] B. W. Goldman and W. F. Punch. 2015. Fast and E�cient Black Box Optimization

Using the Parameter-less Population Pyramid. Evolutionary Computation 23, 3

(2015), 451–479.

[9] J. Grefenstette. 1986. Optimization of Control Parameters for Genetic Algorithms.

IEEE Trans. Syst. Man Cybern. 16, 1 (1986), 122–128.
[10] G. R. Harik. 1995. Finding Multimodal Solutions Using Restricted Tournament Se-

lection. In Proceedings of the Sixth International Conference on Genetic Algorithms.
Morgan Kaufmann, 24–31.

[11] G. R. Harik and F. G. Lobo. 1999. A Parameter-less Genetic Algorithm. In Pro-
ceedings of the 1st Annual Conference on Genetic and Evolutionary Computation
- Volume 1 (GECCO ’99). Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 258–265.

[12] S.-H. Hsu and T.-L. Yu. 2015. Optimization by Pairwise Linkage Detection,

Incremental Linkage Set, and Restricted / Back Mixing: DSMGA-II. In Proceedings
of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO
’15). ACM, New York, NY, USA, 519–526.

[13] F. G. Lobo and C. F. Lima. 2007. Adaptive Population Sizing Schemes in Genetic

Algorithms. In Parameter Setting in Evolutionary Algorithms. Springer Berlin
Heidelberg, Berlin, Heidelberg, 185–204.

[14] M. Pelikan. 2005. Probabilistic Model-Building Genetic Algorithms. In Hierarchi-
cal Bayesian Optimization Algorithm: Toward a new Generation of Evolutionary
Algorithms. Springer Berlin Heidelberg, Berlin, Heidelberg, 13–30.

[15] M. Pelikan and D. E. Goldberg. 2001. Escaping Hierarchical Traps with Competent

Genetic Algorithms. In Proceedings of the 3rd Annual Conference on Genetic and
Evolutionary Computation (GECCO ’01). Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 511–518.

[16] M. Pelikan and T.-K. Lin. 2004. Parameter-Less Hierarchical BOA. In Genetic and
Evolutionary Computation – GECCO 2004: Genetic and Evolutionary Computation
Conference, Seattle, WA, USA, June 26-30, 2004. Proceedings, Part II, K. Deb (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 24–35.

[17] M. Pelikan and F. Lobo. 1999. Parameter-less Genetic Algorithm: A Worst-case
Time and Space Complexity Analysis. Technical Report.

[18] M. Pelikan, K. Sastry, D. E. Goldberg, M. V. Butz, and M. Hauschild. 2009. Perfor-

mance of Evolutionary Algorithms on NK Landscapes with Nearest Neighbor

Interactions and Tunable Overlap. In Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation (GECCO ’09). ACM, New York, NY, USA,

851–858.

[19] J. C. Pereira and F. G. Lobo. 2015. A Java Implementation of Parameter-less

Evolutionary Algorithms. (2015). arXiv:1506.08694 http://arxiv.org/abs/1506.

08694

[20] D. Thierens. 2010. The Linkage Tree Genetic Algorithm. In Proceedings of the 11th
International Conference on Parallel Problem Solving from Nature: Part I (PPSN’10).
Springer-Verlag, Berlin, Heidelberg, 264–273.

[21] D. Thierens and P. A. Bosman. 2011. Optimal Mixing Evolutionary Algorithms.

In Proceedings of the 13th Annual Conference on Genetic and Evolutionary Compu-
tation (GECCO ’11). ACM, New York, NY, USA, 617–624.

[22] D. Thierens and P. A. Bosman. 2013. Hierarchical Problem Solving with the

Linkage Tree Genetic Algorithm. In Proceedings of the 15th Annual Conference on
Genetic and Evolutionary Computation (GECCO ’13). ACM, New York, NY, USA,

877–884.

[23] Y.-F. Tung and T.-L. Yu. 2015. Theoretical Perspective of Convergence Complexity

of Evolutionary Algorithms Adopting Optimal Mixing. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation (GECCO ’15). ACM,

New York, NY, USA, 535–542.

[24] T.-L. Yu, K. Sastry, and D. E. Goldberg. 2005. Linkage Learning, Overlapping

Building Blocks, and Systematic Strategy for Scalable Recombination. In Pro-
ceedings of the 7th Annual Conference on Genetic and Evolutionary Computation
(GECCO ’05). ACM, New York, NY, USA, 1217–1224.

[25] T.-L. Yu, K. Sastry, and D. E. Goldberg. 2005. Online population size adjusting us-

ing noise and substructural measurements. In 2005 IEEE Congress on Evolutionary
Computation, Vol. 3. 2491–2498.

[26] T.-L. Yu, K. Sastry, D. E. Goldberg, and M. Pelikan. 2007. Population Sizing

for Entropy-based Model Building in Discrete Estimation of Distribution Algo-

rithms. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation (GECCO ’07). ACM, New York, NY, USA, 601–608.

982

http://arxiv.org/abs/1506.08694
http://arxiv.org/abs/1506.08694
http://arxiv.org/abs/1506.08694

	Abstract
	1 Introduction
	2 BACKGROUND
	2.1 Harik-Lobo Scheme
	2.2 Exponential Population Scheme
	2.3 Hierarchical BOA
	2.4 LT-GOMEA
	2.5 DSMGA-II

	3 OUR MODIFIED SCHEME
	3.1 New Termination Criterion
	3.2 The Population Multiplier

	4 EXPERIMENT RESULTS
	4.1 Experiment Setup
	4.2 Results and Discussion
	4.3 Verification for Population Multiplier

	5 CONCLUSIONS
	Acknowledgments
	References

