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a b s t r a c t 

One highlight of deep networks is their ability to automatically learn useful representations from raw in- 

puts. Hence, domain knowledge, generic priors and feature extraction are no longer needed. It is however 

still a challenging task to train deep networks, because they require extensive human expertise to choose 

the type of model and its parameters to ensure that the system is properly trained. In this work, we 

propose a novel feature learning framework based on the marginalised stacked auto-encoder which does 

not need practitioners to have any deep learning specific knowledge. We applied this method on visual 

speech recognition, and the performance of our proposed method outperforms the other feature extrac- 

tion methods with a 2% improvement in the accuracy for speaker independent systems. This method is 

also a universal solution which can be used for any deep learning based tasks. Therefore, we also veri- 

fied our method on a popular hand written digit recognition database MNIST, and experimental results 

showed that our proposed method with an error rate of 1.30% is comparable to the best models tuned 

by experts. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

Feature representation plays a significant role and affects the

erformance of machine learning systems. Because of the rapid

evelopment of deep learning methods, automatic feature learning

as been a popular technique in order to replace the traditional

eature engineering based methods (i.e., hand-crafted feature

xtraction) [2] . The performance of automatic machine learned

eatures have outperformed their hand-crafted counterparts in

arious machine learning tasks [2] . 

Despite the promising performance of the deep feature learn-

ng methods, determination of the optimal parameters of the

eep learning model is very labour-intensive and requires prac-

itioners to have a very good understanding and experience with

eep learning. In this paper, we propose an automatic method

hat can be used by anyone in order to achieve optimal feature

epresentations, regardless of their machine learning experience. 

Because the training of deep networks is a time-intensive task,

t is not feasible to repeatedly adjust the structure and parameters

f the model in order to achieve optimal configuration. Given

he current limitations of deep feature learning methods, Chen
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t al. [3] recently proposed a novel automatic visual feature learn-

ng method called marginalised Stacked Denoising Autoencoder

mSDA). Similar to other stacked auto-encoder based techniques

2] , mSDA is able to automatically learn useful representations

rom the raw signals and use them as features. Furthermore,

ompared with other stacked auto-encoders, the mSDA is 1 to 2

rders of magnitude faster in training time. It is therefore possible

o use other parameter optimisation techniques from other fields

f research, which have shown to be more effective than the re-

pective human-tuned models [17–19,22] , to adjust the parameters

f mSDA. In this paper, we propose a novel framework based

n Particle Swarm Optimisation (PSO) to tune the parameters

f mSDA, to mitigate the reliance on the user’s expertise with

achine learning. 

In order to experimentally show that our proposed method is a

niversal solution, that can be applied to different machine learn-

ng problems, we evaluate it on two computer vision driven tasks:

andwritten digit recognition and visual speech recognition. We

elected handwritten recognition because it is a well-defined prob-

em, and the MNIST [11] data set (designed for this problem) is one

f the most widely used data sets in the area of pattern recogni-

ion and machine learning. Hence, it is straightforward to compare

he performance of our proposed method with other popular state-

f-the-art algorithms. As for visual speech recognition, we selected

his application for two main reasons. First, to test a more inter-

http://dx.doi.org/10.1016/j.patrec.2017.03.021
http://www.ScienceDirect.com
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esting and challenging problem and demonstrate that our method

can be used directly on a wide range of tasks. Second, to show that

our proposed method is not only capable of learning static fea-

tures, as demonstrated in the case of handwritten recognition, but

it is also effective to embed features with dynamic information. 

Although various stacked auto-encoders have been developed in

recent years, using them on machine learning applications requires

practitioners with an extensive understanding of their parameter

tuning techniques. In order to overcome this limitation, this paper

provides a novel mSDA training framework, which does not require

users with an intimate knowledge of parameter tuning. To the best

of our knowledge, this is the first deep learning framework that

does not rely on human expertise to tune the model. Taking ad-

vantage of the computational efficiency of the recently developed

mSDA, PSO is used to tune the parameters of the mSDA to ensure

that the performance is optimised. Moreover, our proposed univer-

sal framework can be used for various classification tasks. In this

paper, we will demonstrate its superiority in the case of visual fea-

ture learning for the written digit and visual speech classification. 

2. Related works 

In this section, we provide an up-to-date overview of some

recent works related to automatic deep feature learning using

stacked auto-encoders. Vincent et al. [20] proposed a robust fea-

ture learning scheme based on a Stacked Denoising Auto-encoder

(SDA). The SDA is multi-layer network that can reconstruct a clean

input from its corrupted counterpart. 

Variants to the original SDA [20] have since been proposed,

Rifai et al. [14] improved the conventional SDA by introducing

a penalty term which corresponds to the Frobenius norm of the

Jacobian matrix of the encoder activations with respect to the

input. This was named the Contractive Auto-Encoder (CAE), and

was shown to be effective in preventing the feature learning

model from overfitting. 

However, training SDA requires long time, because each data

sample needs to be corrupted explicitly. In order to shorten the

training time and instead of explicitly corrupting each training

data, Chen et al. [4] proposed a new stacked auto-encoder, the

marginalised Stacked Denoising Auto-encoder (mSDA), which

implicitly marginalized out the reconstruction error over all pos-

sible data corruptions from a pre-specified corrupting distribution.

Then, based on this linear mSDA, Chen et al. [3] further proposed a

non-linear version of mSDA. Compared with the conventional SDA

and its variants, the non-linear mSDA achieved similar or even

better performances on various hand-written digit recognition

data sets. Moreover, mSDA was able to achieve up to 1 to 2 orders

of magnitude improvement in terms of training time over SDA [3] .

However, training SDA based feature learning models requires

a certain amount of practical experience to decide on the values

of the meta-parameters, such as the number of hidden layers, the

unit number of each layer and the learning rate. This presents

a serious impediment to make deep learning techniques more

accessible to a wider range of researchers and engineers. Although

Hinton [8] attempted to provide users with a guide on how to

set up a deep RBM learning network, it is still quite an involved

process for people who do not have a good understanding of

deep learning techniques. Hence, this paper endevours to lower

the barrier for novice practitioners and proposes a method that

can automatically optimise the parameters of mSDA. Although a

number of other SDA based feature learning methods were intro-

duced in [2,6] , unattended or automatic optimisation of the model

parameters is a relatively unresearched area. In this paper, we pro-

pose a framework that only requires very simple heuristics which

can be applied to a wide range of deep learning applications. 
. Proposed PSO-mSDA feature learning system 

In this section, we introduce our proposed visual feature

earning method. This method uses a non-linear marginalised

tacked Denoising Auto-encoder (mSDA) [3] to learn useful feature

epresentations from raw inputs. The parameters of mSDA are

hen optimised by the PSO [9] . As can be seen from this figure,

ompared with the human tuned feature learning framework, our

ethod does not need intensive deep learning specific knowledge

o choose the parameters of the model. 

.1. Marginalised stacked denoising autoencoder 

The mSDA is used for learning useful representations from

aw inputs. As with the conventional SDA, mSDA is a deep neural

etwork consisting of multiple denoising auto-encoders in which

he output of each auto-encoder is wired to the input of the

uccessive auto-encoder. The main difference between the conven-

ional SDA [20] and mSDA is that, instead of explicitly corrupting

he input by artificial noise as in the case of the conventional SDA,

SDA implicitly marginalises out corruptions from a pre-defined

orrupting distribution. The reasons for using mSDA rather than

he conventional SDA are two folds: i) mSDA achieves similar or

etter performance compared to SDA in various classification tasks

3] . ii) mSDA is able to achieve up to 1 to 2 orders of magnitude

mprovement in training time over SDA [3] . Since mSDA is signif-

cantly faster than SDA, we propose a PSO-based mSDA parameter

uning method (described in Section 3.2 ), which does not require

ractitioners to have any specific deep learning knowledge. 

For each layer of mSDA, it learns to reconstruct the input

 x ) from a corrupted version ( ̃ x ). With the corrupted input ˜ x ,

he latent representation y is constructed through the encoder

sing the weights W and the bias b of the hidden layer and the

on-linear activation function σ y : 

 = σy (W ̃  x + b ) . (1)

For the decoding process, the reconstruction of the input f θ ( ̃ x )

s obtained using the transposed weight matrix W 

T , the bias of

he visible layer c , and the non-linear function σ z : 

f θ ( ̃  x ) = σz (W 

T y + c ) . (2)

The training of the denoising auto-encoder is carried out using

he back-propagation algorithm to minimize the loss function

 (x , f θ ( ̃ x )) between the clean input x and the reconstruction

f θ ( ̃ x ) . Given the training sample x i ( x = { x 1 , x 2 , . . . , x n } ), each

f x i is corrupted m -times, and the corrupted inputs are used

o generate the reconstruction of the input using Eq. (1) and

q. (2) ( f θ ( ̃ x ) 1 
i 
, f θ ( ̃ x ) 2 

i 
, . . . , f θ ( ̃ x ) m 

i 
). Hence, the loss function

 (x , f θ ( ̃ x )) can be formulated as: 

 (x , f θ ( ̃  x )) = 

1 

n 

n ∑ 

i 

1 

m 

m ∑ 

j 

� (x i , f θ ( ̃  x ) j 
i 
) , (3)

For the first layer of the stacked auto-encoder, it models raw

nputs, and the mean square error is used for the loss function: 

 (x i , f θ ( ̃  x ) j 
i 
) = (x i − f θ ( ̃  x ) j 

i 
) 2 , (4)

ince the following layers of the stacked auto-encoder model the

robabilities of the hidden units of the corresponding previous

ayers, the cross-entropy error is used as a loss function: 

 (x i , f θ ( ̃  x ) j 
i 
) = x i log f θ ( ̃  x ) j 

i 
+ (1 − x i ) log (1 − f θ ( ̃  x ) j 

i 
) . (5)

As shown in Eq. (3) , corrupting x means that the training

ystem needs to cope with m -folder larger data compared with

he original training data. However, in order to train the deep

eature learning network sufficiently, m is a very large value,
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hich requires a dramatically large computational cost. In order to

void the time-consuming training process, mSDA uses an implicit

nput corrupting trick, i.e., when m → ∞ , the loss function in

q. (3) becomes: 

 (x , f θ ( ̃  x )) = 

1 

n 

n ∑ 

i 

E q ( ̃ x i | x i ) (� (x i , f θ ( ̃  x ) j 
i 
)) , (6) 

here E q ( ̃ x i | x i ) (� (x i , f θ ( ̃ x ) j 
i 
)) is the expected averaged loss un-

er the corruption distribution q ( ̃ x i | x i ) . Although Eq. (6) seems

onceptually appealing, E q ( ̃ x i | x i ) (� (x i , f θ ( ̃ x ) j 
i 
)) is not analytically

ractable. Therefore, the Taylor expansion is used to approximate

he loss function � (x i , f θ ( ̃ x ) j 
i 
) . We expand the loss function at

he mean of the corruption μx = E q ( ̃ x i | x i ) ( ̃ x ) to the second order,

hich can be formulated as: 

 (x , f θ ( ̃  x )) ≈ � (x , f θ (μx )) + ( ̃  x − μx ) 
� ∇ ˜ x � (x , f θ (μx )) 

+ 

1 

2 

( ̃  x − μx ) 
2 � ∇ 

2 
˜ x � (x , f θ (μx )) , (7) 

here ∇ ˜ x � and ∇ 

2 
˜ x 
� are the first-order (i.e. gradient) and second-

rder (i.e. Hessian) derivative of � with respect to ˜ x , respectively.

aking expectation of � (x , f θ ( ̃ x )) in Eq. (7) with respect to ˜ x , we

an obtain: 

(� (x , f θ ( ̃  x ))) ≈ � (x , f θ (μx )) + 

1 

2 

Tr (�x ∇ 

2 
˜ x � (x , f θ (μx ))) , (8) 

here �x = E[( ̃ x − μx )( ̃ x − μx ) 
� ] , which is the variance of the

orrupting distribution. In our work, the corruption process can be

ormulated as: 

˜  ∼ q D ( ̃  x | x ) , (9) 

here q D is a stochastic process which randomly (under the

robability q ) sets a fraction of elements of the clean input to

ero. Because each dimension of x is corrupted independently,

x is a diagonal matrix. The d th diagonal term σ 2 
d 

of �x can be

epresented as: 

2 
d = 

qx 2 
d 

1 − q 
. (10) 

Since E[ ̃ x ] = μx , the second term of Eq. (7) vanishes in

q. (8) . As �x is a diagonal matrix, only the diagonal elements of

 

2 
˜ x 
� (x , f θ (μx ))) need to be calculated. The d th dimension of the

iagonal ∇ 

2 
˜ x 
� (x , f θ (μx ))) can be computed as: 

∂ 2 � 

∂ ̃  x 2 
d 

= 

(
∂y 

∂ ̃  x d 

)� ∂ 2 � 
∂y 2 

∂y 

∂ ̃  x d 
+ 

(
∂� 

∂y 

)� ∂ 2 y 
∂ ̃  x 2 

d 

, (11) 

here y is the latent representation given by Eq. (1) . As explained

n [12] , ∂ 2 � 
∂ ̃ x 2 

d 

can be estimated by dropping the last term, and

q. (11) can then be reformulated as : 

∂ 2 � 

∂ ̃  x 2 
d 

≈
D h ∑ 

h =1 

∂ 2 � 

∂y 2 
h 

(
∂y h 
∂ ̃  x d 

)2 

. (12) 

After combining Eq. (8) , Eq. (10) and Eq. (12) , the learning

bjective of mSDA can be obtained: 

 (x , f θ ( ̃  x )) = � (x , f θ (μx )) + 

1 

2 

D ∑ 

d=1 

qx 2 
d 

1 − q 

D h ∑ 

h =1 

∂ 2 � 

∂y 2 
h 

(
∂y h 
∂ ̃  x d 

)2 

. (13) 

For the input layer and the first hidden layer, the squared

oss was used as the loss function ( Eq. (4) ). Taking derivatives of

he meaning square loss, the learning objective function can be

ewritten as: 
 (x , f θ ( ̃  x )) = 

1 

n 

n ∑ 

i 

1 

m 

m ∑ 

j 

(x i − f θ ( ̃  x ) j 
i 
) 2 

+ 

D ∑ 

d=1 

qx 2 
d 

1 − q 

D ∑ 

d=1 

D h ∑ 

h =1 

ω 

2 
hd (y h (1 − y h ) ω hd ) 

2 . (14) 

imilarly, in relation to the remaining hidden layers where the

ross-entropy loss was used as the loss function ( Eq. (5) ), the

earning objective function can be computed as: 

 (x , f θ ( ̃  x )) = x i log f θ ( ̃  x ) j 
i 
+ (1 − x i ) log (1 − f θ ( ̃  x ) j 

i 
) 

+ 

1 

2 

D ∑ 

d=1 

qx 2 
d 

1 − q 

D ∑ 

d=1 

D h ∑ 

h =1 

z d (1 − z d ) ω 

2 
hd (y h (1 − y h ) ω hd ) 

2 . 

(15) 

.2. Particle Swarm Optimization for mSDA 

For most deep feature learning systems, the parameters of the

eature learning models need to be exhaustively tuned experi-

entally [2] . As mSDA is dramatically faster than the conventional

DA, we propose a PSO based method to optimise the parameters

f mSDA, which is able to ensure that the most representative

eatures can be learned from mSDA. 

PSO [10] is a computational optimisation method that it-

ratively searches a solution for a problem with regard to a

redefined quality measurement. The basic idea of PSO is that

ach of the candidate solutions of the given problem can be

onsidered as a particle in the search space. The movement of

ach particle is determined by the location of the particle and

he location of the particle that can achieve the best result so far.

ince the best known position is updated if a better solution is

ound by other particles, it is expected that the best solution can

e found eventually after a number of iterations. 

In terms of the PSO algorithm, there are m particles in the

warm. Each particle at time t ( p i (t) ∈ { p 1 (t) , p 2 (t ) , . . . , p m 

(t ) } )
onsists of two attributes: the current position x i ( t ) and the

urrent velocity v i ( t ). In our work, both x i ( t ) and v i ( t ) are 2 n + 1

imensional vectors, including the unit number from the first

ayer ( u 1 ) to the n th layer ( u n ), the noise level of the first layer

 q 1 ) to the n th layer ( q n ), and the learning rate lr . Hence, x i ( t ) can

e represented as: 

 i (t) = { x u 1 
i 

(t ) , . . . , x u n 
i 

(t ) , x q 1 
i 

(t ) , . . . , x q n 
i 

(t ) , x lr i (t ) } ) . (16) 

Similarly, v i ( t ) can be represented as: 

 i (t) = { v u 1 
i 

(t ) , . . . , v u n 
i 

(t ) , v q 1 
i 

(t ) , . . . , v q n 
i 

(t ) , v lr i (t ) } ) . (17) 

Each particle p i ( t ) in the swarm is randomly initialised to dif-

erent positions x i ( t ) with velocities v i ( t ) in the search space. Then,

SDA can be configured for training using the value of x i ( t ). After

he training of mSDA, the reconstruction error of the last layer

 Eq. (15 ) is used as the fitness value of PSO, and the goal of the

SO is to search in the space to obtain a minimum fitness value. 

At each iteration, the fitness value l i ( t ) is first calculated using

q. (15) . If l i ( t ) is the minimum fitness value found so far in the

warm, we set the current position x i ( t ) as the best position g . If

 i ( t ) is the minimum fitness value found by the particle p i ( t ), we

et x i ( t ) as the particle’s best position b i ( t ). Then, each particle’s

elocity is updated based on its own current velocity and location

nd the global swarm information g . The particle velocity update

an be formulated as: 

 (t + 1) = v (t) + c 1 r 1 (b i − x (t)) + c 2 r 2 (g − x (t)) , (18) 

here v (t + 1) and v ( t ) are the velocity of the particle at time

 + 1 and the current velocity respectively, c 1 and c 2 are learning

actors, and r and r (0 ≤ r , r < 1) are random variables. One
1 2 1 2 
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Table 1 

The 10 phrases in OuluVS data corpus. 

No. Phrase No. Phrase 

01 Excuse me 02 Goodbye 

03 Hello 04 How are you 

05 Nice to meet you 06 See you 

07 I am sorry 08 Thank you 

09 Have a good time 10 You are welcome 
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can note that the second term c 1 r 1 (p (t) − x (t)) in Eq. (18) repre-

sents the influence taken by the local information, while the third

term c 2 r 2 (g − x (t)) indicates the best particle’s movements, which

is determined by the entire swarm. After obtaining the updated

velocity, the position of each particle can be updated as: 

x (t + 1) = x (t) + v (t + 1) . (19)

After the specified number of iterations, g holds the best

solution, and can be used for setting up the parameters of mSDA. 

The details of the algorithm can be found in Algorithm 1 . As

Algorithm 1 Particle Swarm Optimisation algorithm used in our

proposed method. 

Set particle number pn . 

Set maximum generation number t max . 

Set unit layer number ln . 

Set the range of unit number [ un min , un max ] . 

Set the range of noise probability np min , np max ] . 

Set the range of learning rate [ l r min , l r max ] . 

for each particle ( p i (t) , where 1 ≤ i ≤ pn ) do 

for each layer j of mSDA( 1 ≤ j ≤ ln ) do 

Initialise the unit number x 
u j 
i 

(t) and its update speed

v 
u j 
i 

(t) ( un min ≤ x 
u j 
i 

(t) , v 
u j 
i 

(t) ≤ un max ). 

Initialise the noise level x 
p j 
i 

(t) and its update speed v 
p j 
i 

(t)

( np min ≤ x 
p j 
i 

(t) , v 
p j 
i 

(t) ≤ np max ). 

end for 

Initialise the learning rate x lr 
i 
(t) and its update speed v lr 

i 
(t)

( lr min ≤ x lr 
i 
(t) , v lr 

i 
(t) ≤ lr max ). 

end for 

while t ≤ t max do 

for each particle ( p i (t) ) do 

Perform mSDA pre-training using the current particle. 

Compute � (x , f θ ( ̃ x )) usingEq. (15), and set fitness value

l i (t) = � (x , f θ ( ̃ x )) . 

if l i (t) is smaller than its personal best l i 
best 

then 

l i 
best 

= l i (t) . 

Set the current position as personal best: b i (t) = x i (t) . 

end if 

if l i (t) is smaller than the swarm best l best then 

l best = l i (t) . 

Set the current position as personal best: g = x i (t) . 

end if 

Update Speed: v i (t + 1) = v i (t) + c 1 r 1 (b i − x i (t)) + c 2 r 2 (g −
x i (t)) . 

if v (t + 1) is smaller than the minimum speed v min then 

v (t + 1) = v min . 

end if 

if v (t + 1) is larger than the maximum speed v max then 

v (t + 1) = v max . 

end if 

Update the particle position: x i (t + 1) = x i (t) + v i (t + 1) . 

end for 

t = t + 1 

end while 

g holds the best configuration of mSDA. 

one can note from the PSO described above, in our work, all the

parameters of mSDA are optimised by PSO. Except the particles

number pn , the maximum generation t max and the layer number ln ,

the user does not need to select any specific value for the other pa-

rameters (other than the range over which the PSO will optimise). 
. Experimental results 

We evaluate our proposed method on the hand written digit

ata set MINIST and visual speech recognition data corpus OuluVS.

he mSDA was implemented using Theano [1] , and the PSO was

mplemented using DEAP [5] . A GPU was also used to speed up the

raining process of mSDA. In this section, we start by introducing

he data sets and the experimental setup, followed by reporting

he performance of our proposed method compared with other

tate-of-the-art methods. 

.1. Database 

.1.1. MNIST 

The MNIST dataset is a large-scale database of handwritten dig-

ts that consists of 70,0 0 0 examples. The reason for choosing this

ataset for our experiments is that the MNIST is one of the most

idely used data sets to evaluate pattern recognition and machine

earning algorithms, including SDA based methods [3,4,14,20] . In

ur experiments, 50,0 0 0 examples were used for training, 10,0 0 0

xamples were used for validation and 10,0 0 0 examples were used

or testing. In our experiments, the 28 × 28 images in the data set

ere used as the inputs of the models directly. 

.1.2. OuluVS 

Compared with the handwritten digit recognition, less stud-

es have been conducted on visual speech recognition, but this

roblem is more challenging and has a wide range of potential

pplications [25] . In the visual speech recognition community,

uluVS is one of the most popular data corpus, and the majority

f high-quality works in this area have chosen this data set to

valuate their methods [25] in recent years. OuluVS is an audio-

isual data corpus comprising of 10 English phrases (see Table 1 )

ttered by 17 male speakers and 3 female speakers. Each phrase is

epeated nine times by each speaker. As in Zhao et al. [24] ’s work,

17 sequences from 20 speakers were used in this experiment. In

erms of experiment setup, a leave-one-speaker-out approach was

dopted, such that the recordings of 19 speakers was used for the

raining dataset and the left out speaker was used to test the data

or each of the 20 runs. 

Instead of using raw images as inputs to the model, the LBP-

OP [24] features were extracted from each frame of the video, and

n average pooling over the LBP-TOP feature sequence was carried

ut to generate the input to the model. After this pre-processing

tep, each video has a corresponding fixed-length visual feature. 

.2. Performance evaluation 

We start by describing the performance of our method on

NIST, followed by the performance on OuluVS. 

.2.1. MNIST 

Table 2 compares the error rates of mSDA with a different

umber of layers tuned by the human practitioner and the PSO.

s can be seen from this table, for mSDA with one hidden layer,

he PSO tuned model achieved the same performance as the
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Table 2 

Comparison between human-tuned mSDA and PSO tuned mSDA. 

Layer number Human PSO 

1 1.37 1.37 

2 1.43 1.30 

3 – 1.45 

Table 3 

Parameter comparison between the expert-tuned mSDA and PSO-tuned mSDA on 

the MNIST. 

Human-tuned PSO-tuned 

Hidden layers number 1 2 

Hidden units number 10 0 0 1st layer: 1500 

2nd layer: 2500 

Noise level 0.50 1st layer: 1.45 

2nd layer: 1.37 

Learning rate 0.20 0.01 

Test error 1.37 1.30 
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Table 4 

Test error rates produced by our proposed method and various methods on MNIST. 

Methods Test Error (%) 

Baseline 8.71 

1-layer DAE [20] 1.37 

2-layer DAE [20] 1.29 

1-layer CAE [14] 1.49 

mLDAE [4] 7.17 

1-layer mDAE [3] 1.37 

2-layer mDAE [3] 1.43 

Our proposed method 1.30 

Table 5 

Visual speech classification comparison on the OuluVS data corpus. 

Methods Accuracy (%) 

Baseline: LBP-TOP + SVM [24] 62.4 

Sequential Pattern Boosting [13] 65.6 

Transported Square-Root Vector Field [15] ‡ 70.6 

Our proposed method 67.3 

‡ The results were reported in terms of speaker-dependent speech classification. 
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t  
uman tuned model. Meanwhile, for the two-hidden-layer mSDA,

he PSO tuned model outperformed the human tuned model by

 9% relative test error reduction. This confirms that, compared

ith the human tuned mSDA, our proposed method is able to get

n equivalent or even better model without relying on extensive

uman expertise. It is interesting to note that mSDA did not

mprove the feature quality with a further increase in the number

f hidden layers. A similar observation was also reported in [3] . 

From Table 2 , one can note that the PSO-tuned mSDA achieved

 lower test error compared to the human-tuned model (1.30%

s 1.37%) because of the different model configurations. Table 3

ists the parameter differences between the human-tuned mSDA

nd the PSO-tuned mSDA. One of the most noticeable differences

etween these two models is that the human-tuned mSDA has one

idden layer, while the PSO-tuned model has two hidden layers.

s shown in Chen’s work [3] , manually tuning its 1-layer mSDA

chieved a test error at 1.31%, while the test error for the same

-layer model increased to 1.43%. On the other hand, the proposed

SO-tuned 2-layer mSDA achieved a more promising test error at

.30%, which is lower than the 1-layer manually tuned counter-

art. As discussed in [2] , increasing the network layer potentially

esults in a more abstract feature at higher layers, which is gen-

rally invariant to most local and irrelevant changes of the input,

onsequently reducing the test error. However, effective training

f the network with a larger number of layers is challenging. This

ay result in a worse test error when the mSDA layer number

s increased. Fortunately, our proposed PSO-tuning method over-

omes this problem by applying an automatic population based

earch technique. Hence, as shown in Table 3 , compared with

he 1-layer PSO-tuned and the human-tuned mSDA, the 2-layer

SO-tuned model achieved the lowest test error. This confirms

hat our proposed method is more capable to automatically find

n optimum parameter set with only few human interventions

ompared to human experts. 

In order to compare our proposed method with other state-

f-the-art SDA based methods, we include the test error rates

chieved by other methods in Table 4 . The baseline reported in

his table is a linear SVM on the raw images. In terms of other

uto-encoder based methods, the parameters of the auto-encoder

ere used as initialisation of a Multi-Layer Perceptron (MLP) which

s used for classification. Compared with the baseline (8.71%), both

he Stacked Denoising Auto-encoder (SDA) [20] (2-layer, 1.29%)

nd Contractive Auto-Encoder (CAE) (1-layer, 1.29%) with different

idden layers were able to obtain an impressive test error rate,

hich shows that the deep auto-encoder based methods are able

o learn more representative features than the baseline method.
eanwhile, the marginalised Linear Denoising Auto-Encoder 

mLDAE) [4] (7.71%) also performed noticeably better than the

aseline. Because mLDAE is restricted to linear auto-encoders, the

est error rate generated by the mLDAE was not as promising as

he SDA and CAE. However, it speeds up the DAE by two orders of

agnitude [4] . Inspired by the mLDAE which uses marginalisation

o avoid explicitly constructing corrupted learning samples, a

on-linear version of marginalised DAE (mDAE) is proposed. This

ethod (1-layer, 1.37%) achieved a similar performance as its DAE

nd CAE counterparts, while significantly shortening the training

rocess. However, all these auto-encoder based methods require

n extensive practical experience to ensure that the parameters of

he model are wisely selected. On the other hand, our proposed

pproach provides a training method that is simple to use and

oes not require users to have an extensive deep learning expe-

iences (as most parameter values are automatically tuned rather

han set by the user), and the feature quality produced by our

odel is comparable to or even better than the state-of-the-art

uto-encoder based methods with test error rates of no more than

.50%. 

.2.2. OuluVS 

We compared the speech accuracy obtained from different

ethods on the OuluVS data corpus, and listed the results in

able 5 . The baseline reported in this table uses the raw LBP-

OP features to train an SVM to perform speech classification.

ence, this is a hand-crafted visual feature based method. Based

n this method, the rest of the methods reported here attempt

o learn a better feature representation from the raw LBP-TOP

eatures. As listed in this table, the manifold based methods

13,15] outperformed the method that only used hand-crafted

eatures. However, one should note that the results of the method

ntroduced in [15] was reported in terms of speaker-dependent

peech classification, which is a much simpler task compared

ith our experiments. Like the existing deep feature learning

ethods, training a manifold based model also requires extensive

ser knowledge of manifold learning. On the other hand, as

hown in this table, our method which is based on deep feature

earning was able to achieve a marginally better accuracy than the

tate-of-the-art approaches. 

. Conclusion 

In recent years, stacked auto-encoder based feature learning

echniques were extensively investigated for different computer
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vision tasks [2] , and the performance of some of these techniques

has shown superiority over hand-crafted features [7,16,21,23] .

However, to the best of our knowledge, the automatic selection of

the training parameters of a stacked autoencoder is still a largely

untouched area. Therefore, the training of these models still

remains a challenging task, and the choice of these parameters

requires extensive human expertise. In order to make it easier for

users to adopt stacked autoencoder techniques, we propose a deep

feature learning method that can automatically choose the optimal

parameters for specific applications. To the best of our knowledge,

this is the first deep feature learning framework that does not

require any deep learning knowledge. 

The method introduced in this paper integrates a newly de-

veloped non-linear marginalised Stacked Denoising Auto-encoder

(mSDA) with Particle Swarm Optimization (PSO) for parameter

tuning. The non-linear mSDA is not only able to achieve a similar

performance compared with the conventional stacked denoising

auto-encoder and its variants, but it is also 1 to 2 orders of mag-

nitude faster in training time. Hence, the rapid training process

of mSDA makes our proposed framework be able to produce an

optimal feature representation within a short time. We carried our

experiments on a visual speech recognition corpus, and experi-

mental results show that our proposed technique outperforms the

performance of various hand-crafted features. In order to demon-

strate that our proposed method is a universal solution for auto-

matic feature learning, a popular hand-written digit recognition

database MNIST was also used to show that our method achieves

an accuracy improvement compared with other autoencoders. 

This paper proposes a deep learning techniques with an au-

tomatic parameter tuning. Convolutional Neural Network (CNN)

is widely acknowledged to be the most successful deep learning

network in the computer vision [2] . However, how to automatic

train the parameters of CNN still remains untouched. Hence,

pursuing a research to develop a CNN based learning system with

an automatic parameter mechanism is expected to result in an

improvement of recognition accuracy. 
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